Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 BinaryOperations 3 1.1 BinaryOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 IsomorphicBinaryOperations . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Groups 9 2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 IsomorphicGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 BasicPropertiesofGroups . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 VariousTypesofGroups 25 3.1 CyclicGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 FinitelyGeneratedGroups . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 DihedralGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 PermutationsandPermutationGroups . . . . . . . . . . . . . . . . . . . . 31 3.5 PermutationsPartIIandAlternatingGroups . . . . . . . . . . . . . . . . . 33 4 BasicConstructions 35 4.1 DirectProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 FinitelyGeneratedAbelianGroups . . . . . . . . . . . . . . . . . . . . . . 38 4.3 InfiniteProductsofGroups . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.5 QuotientGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2 Contents 5 Homomorphisms 45 5.1 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 KernelandImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 ApplicationsofGroups 51 6.1 GroupActions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7 RingsandFields 55 7.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8 VectorSpaces 61 8.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8.2 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.4 LinearCombinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.5 LinearIndependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8.6 BasesandDimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.7 BasesforArbitraryVectorSpaces . . . . . . . . . . . . . . . . . . . . . . 79 9 LinearMaps 81 9.1 LinearMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.2 KernelandImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 9.3 Rank-NullityTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.4 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.5 SpacesofLinearMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 10 LinearMapsandMatrices 95 10.1 ReviewofMatrices—Multiplication . . . . . . . . . . . . . . . . . . . . . 96 10.2 LinearMapsGivenbyMatrixMultiplication . . . . . . . . . . . . . . . . . 98 10.3 AllLinearMapsFn →Fm . . . . . . . . . . . . . . . . . . . . . . . . . . 100 10.4 CoordinateVectorswithrespecttoaBasis . . . . . . . . . . . . . . . . . . 101 10.5 MatrixRepresentationofLinearMaps—Basics . . . . . . . . . . . . . . . 102 10.6 MatrixRepresentationofLinearMaps—Composition . . . . . . . . . . . . 104 10.7 MatrixRepresentationofLinearMaps—Isomorphisms . . . . . . . . . . . 106 10.8 MatrixRepresentationofLinearMaps—TheBigPicture . . . . . . . . . . 108 10.9 MatrixRepresentationofLinearMaps—ChangeofBasis . . . . . . . . . . 109 1 Binary Operations 4 1. BinaryOperations 1.1 Binary Operations Fraleigh,7thed.–Section2 Gallian,8thed.–Section2 Judson,2013–Section3.2 Definition 1.1.1. Let A be a set. A binary operation on A is a function A×A → A. A unaryoperationonAisafunctionA→A. (cid:52) Definition1.1.2. LetAbeaset,let∗beabinaryoperationonAandletH ⊆A.Thesubset H isclosedunder∗ifa∗b∈H foralla,b∈H. (cid:52) Definition1.1.3. LetAbeaset,andlet∗beabinaryoperationonA.Thebinaryoperation ∗ satisfies the Commutative Law (an alternative expression is that ∗ is commutative) if a∗b=b∗aforalla,b∈A. (cid:52) Definition1.1.4. LetAbeaset,andlet∗beabinaryoperationonA.Thebinaryoperation ∗ satisfies the Associative Law (an alternative expression is that ∗ is associative) if (a∗ b)∗c=a∗(b∗c)foralla,b,c∈A. (cid:52) Definition1.1.5. LetAbeaset,andlet∗beabinaryoperationonA. 1. Lete∈A.Theelementeisanidentityelementfor∗ifa∗e=a=e∗aforalla∈A. 2. If∗hasanidentityelement,thebinaryoperation∗satisfiestheIdentityLaw. (cid:52) Lemma 1.1.6. Let A be a set, and let ∗ be a binary operation on A. If ∗ has an identity element,theidentityelementisunique. Proof. Let e,eˆ ∈ A. Suppose that e and eˆ are both identity elements for ∗. Then e = e∗ eˆ = eˆ, where in the first equality we are thinking of eˆ as an identity element, and in the secondequalitywe arethinkingofeasanidentity element.Thereforetheidentityelement isunique. Definition 1.1.7. Let A be a set, and let ∗ be a binary operation of A. Let e∈A. Suppose thateisanidentityelementfor∗. 1. Leta∈A.Aninverseforaisanelementa(cid:48) ∈Asuchthata∗a(cid:48) =eanda(cid:48)∗a=e. 2. If every element in A has an inverse, the binary operation ∗ satisfies the Inverses Law. (cid:52) Exercises Exercise 1.1.1. Which of the following formulas defines a binary operation on the given set? 1.1BinaryOperations 5 (1) Let∗bedefinedbyx∗y=xyforallx,y∈{−,−,−,...}. √ (2) Let(cid:5)bedefinedbyx(cid:5)y= xyforallx,y∈[,∞). (3) Let⊕bedefinedbyx⊕y=x−yforallx,y∈Q. (4) Let◦bedefinedby(x,y)◦(z,w)=(x+z,y+w)forall(x,y),(z,w)∈R−{(,)}. (5) Let(cid:12)bedefinedbyx(cid:12)y=|x+y|forallx,y∈N. (6) Let⊗bedefinedbyx⊗y=ln(|xy|−e)forallx,y∈N. Exercise1.1.2. Foreachofthefollowingbinaryoperations,statewhetherthebinaryoper- ation is associative, whether it is commutative, whether there is an identity element and, if thereisanidentityelement,whichelementshaveinverses. (1) Thebinaryoperation⊕onZdefinedbyx⊕y=−xyforallx,y∈Z. (2) Thebinaryoperation(cid:63)onRdefinedbyx(cid:63)y=x+yforallx,y∈R. (3) Thebinaryoperation⊗onRdefinedbyx⊗y=x+y−forallx,y∈R. (4) Thebinaryoperation∗onQdefinedbyx∗y=(x+y)forallx,y∈Q. (5) Thebinaryoperation◦onRdefinedbyx◦y=x forallx,y∈R. (6) Thebinaryoperation(cid:5)onQdefinedbyx(cid:5)y=x+y+xyforallx,y∈Q. (7) The binary operation (cid:12) on R defined by (x,y)(cid:12)(z,w) = (xz,y+w) for all (x,y),(z,w)∈R. Exercise1.1.3. Foreachofthefollowingbinaryoperationsgivenbyoperationtables,state whether the binary operation is commutative, whether there is an identity element and, if thereisanidentityelement,whichelementshaveinverses.(Donotcheckforassociativity.) ⊗ ∗ x y z w x x z w y (1) (3) y z w y x . z w y x z . w y x z w (cid:12) j k l m j k j m j (2) k j k l m l k l j l . m j m l m 6 1. BinaryOperations (cid:63) a b c d e (cid:5) i r s a b c a d e a b b i i r s a b c b e a b a d r r s i c a b (4) c a b c d e (5) s s i r b c a d b a d e c a a b c i s r . e b d e c a b b c a r i s . c c a b s r i Exercise 1.1.4. Find an example of a set and a binary operation on the set such that the binary operation satisfies the Identity Law and Inverses Law, but not the Associative Law, and for which at least one element of the set has more than one inverse. The simplest way tosolvethisproblemisbyconstructinganappropriateoperationtable. Exercise 1.1.5. Let n∈N. Recall the definition of the set Z and the binary operation · on n Z .Observethat[]istheidentityelementforZ withrespecttomultiplication.Leta∈Z. n n Provethatthefollowingareequivalent. a. Theelement[a]∈Z hasaninversewithrespecttomultiplication. n b. Theequationax≡ (mod n)hasasolution. c. Thereexist p,q∈Zsuchthatap+nq=. (Itturns outthat thethree conditionslisted aboveare equivalentto thefact thataandnare relativelyprime.) Exercise 1.1.6. Let A be a set. A ternary operation on A is a function A×A×A→A. A ternary operation (cid:63): A×A×A→A is left-induced by a binary operation (cid:5): A×A→A if (cid:63)((a,b,c))=(a(cid:5)b)(cid:5)cforalla,b,c∈A. Is every ternary operation on a set left-induced by a binary operation? Give a proof or a counterexample. Exercise1.1.7. LetAbeaset,andlet∗beabinaryoperationonA.Supposethat∗satisfies theAssociativeLawandtheCommutativeLaw.Provethat(a∗b)∗(c∗d)=b∗[(d∗a)∗c] foralla,b,c,d ∈A. Exercise1.1.8. LetBbeaset,andlet(cid:5)beabinaryoperationonB.Supposethat(cid:5)satisfies theAssociativeLaw.Let P={b∈B|b(cid:5)w=w(cid:5)bforallw∈B}. ProvethatPisclosedunder(cid:5). Exercise1.1.9. LetCbeaset,andlet(cid:63)beabinaryoperationonC.Supposethat(cid:63)satisfies theAssociativeLawandtheCommutativeLaw.Let Q={c∈C|c(cid:63)c=c}. 1.1BinaryOperations 7 ProvethatQisclosedunder(cid:63). Exercise 1.1.10. Let A be a set, and let ∗ be a binary operation on A. An element c∈A is aleftidentityelementfor∗ifc∗a=aforalla∈A.Anelementd ∈Aisarightidentity elementfor∗ifa∗d =aforalla∈A. (1) IfAhasaleftidentityelement,isitunique?Giveaprooforacounterexample. (2) IfAhasarightidentityelement,isitunique?Giveaprooforacounterexample. (3) If A has a left identity element and a right identity element, do these elements have tobeequal?Giveaprooforacounterexample. 8 1. BinaryOperations 1.2 Isomorphic Binary Operations Fraleigh,7thed.–Section3 Gallian,8thed.–Section6 Definition 1.2.1. Let (G,∗) and (H,(cid:5)) be sets with binary operations, and let f : G → H be a function. The function f is an isomorphism of the binary operations if f is bijective andif f(a∗b)= f(a)(cid:5) f(b)foralla,b∈G. (cid:52) Definition 1.2.2. Let (G,∗) and (H,(cid:5)) be sets with binary operations. The binary opera- tions∗and(cid:5)areisomorphicifthereisanisomorphismG→H. (cid:52) Theorem 1.2.3. Let (G,∗) and (H,(cid:5)) be sets with binary operations. Suppose that (G,∗) and(H,(cid:5))areisomorphic. 1. (G,∗) satisfies the Commutative Law if and only if (H,(cid:5)) satisfies the Commutative Law. 2. (G,∗)satisfiestheAssociativeLawifandonlyif(H,(cid:5))satisfiestheAssociativeLaw. 3. (G,∗) satisfies the Identity Law if and only if (H,(cid:5)) satisfies the Identity Law. If f : G→H isanisomorphism,then f(e )=e . G H 4. (G,∗)satisfiestheInversesLawifandonlyif(H,(cid:5))satisfiestheInversesLaw. Exercises Exercise1.2.1. Provethatthetwosetswithbinaryoperationsineachofthefollowingpairs areisomorphic. (1) (Z,+)and(Z,+),whereZ={n|n∈Z}. (2) (R−{},·)and(R−{−},∗),wherex∗y=x+y+xyforallx,y∈R−{−}. (3) (R,+) and (M (R),+), where M (R) is the set of all × matrices with real × × entries. Exercise1.2.2. Let f : Z→Zbedefinedby f(n)=n+foralln∈Z. (1) Define a binary operation ∗ on Z so that f is an isomorphism of (Z,+) and (Z,∗), inthatorder. (2) Define a binary operation (cid:5) on Z so that f is an isomorphism of (Z,(cid:5)) and (Z,+), inthatorder. Exercise1.2.3. ProveTheorem1.2.3(2). Exercise1.2.4. ProveTheorem1.2.3(3). Exercise1.2.5. ProveTheorem1.2.3(4).
Description: