DEFECT MODES AND HOMOGENIZATION OF PERIODIC SCHRO¨DINGER OPERATORS M. A. HOEFER: AND M. I. WEINSTEIN; Abstract. We consider the discrete eigenvalues of the operator Hε ∆ V x ε2Q εx , whereV x isperiodicandQ y islocalizedonRd, d 1. Forε 0and(cid:16)su(cid:1)fficie(cid:0)ntlypsmqa(cid:0)ll,dispcretqe p q p q ¥ ¡ eigenvalues may bifurcate (emerge) from spectral band edges of the periodic Schro¨dinger operator, 1 H0 ∆x V x , into spectral gaps. The nature of the bifurcation depends on the homogenized 1 Schr(cid:16)o¨d(cid:1)inger(cid:0)operpatqorLA,Q ∇y A∇y Q y . Here,Adenotestheinverseeffectivemassmatrix, (cid:16)(cid:1) (cid:4) (cid:0) p q 0 associatedwiththespectralbandedge,whichisthesiteofthebifurcation. 2 Keywords. multiplescales,Lyapunov-Schmidtreduction,eigenvaluebifurcation,spectralband n edge a J AMS subject classifications. 35B27,35B32,35C20,35J10 1 2 1. Introduction and Outline. Self-adjoint elliptic partial differential opera- torswithperiodiccoefficientse.g. the Schr¨odingeroperatorwithaperiodicpotential, ] h the time-harmonic Helmholtz equation with variable refractive index, and the time- p harmonic Maxwell equations with variable dielectric and permeability tensors, play - h a central role in wave propagation problems in classical and quantum physics. The t spectrum of such operators, characterized by Floquet-Bloch theory [29, 20, 12], con- a m sists of the union of closed intervals (spectral bands). The eigenstates are extended (not localized)andforma complete setwith respectto whichanyfunction in L2 Rd [ p q may be represented. 2 In many problems in fundamental and applied physics, periodic media are per- v turbed by spatially localized defects. These may appear as random imperfections 2 in a media, e.g. a defect in a crystal, or in engineering applications, they may be 2 9 introduced deliberately in order to influence wave propagation [4, 17]. Since the es- 0 sential spectrum is unchanged by a sufficiently localized and smooth perturbation . (Weyl’s theorem,[29]), typicallocalizedperturbationswillonly introduceeigenvalues 9 0 in spectral gaps of the spectrum with associated localized defect modes. 0 This paper is concernedwith a class of localized (defect) perturbations to a peri- 1 odic Schr¨odinger operator of the form: : v i Hε ∆x V x ε2Q εx , X (cid:16) (cid:1) (cid:0) p q(cid:0) p q r where V x is periodic on Rd, Q y decays as y tends to infinity and ε is a small a p q p q | | parameter. Our main result, Theorem 3.1, concerns the perturbed eigenvalue problem H u µ u , u H1 Rd , (1.1) ε ε ε ε ε (cid:16) P p q for ε positive and sufficiently small. See section 3 for hypotheses on the periodic potential, V, and the localized perturbation, Q. For ε sufficiently small, we prove the bifurcation of discrete eigenvalues into the spectral gaps, associated with the unperturbed operator, H ∆ V x . For 0 (cid:16) (cid:1) (cid:0) p q Department of Mathematics, North Carolina State University, Raleigh, NC 27695; mahoe- : [email protected] DepartmentofAppliedPhysicsandAppliedMathematics,ColumbiaUniversity,NewYork,NY ; 10027; [email protected] 1 2 M.A.HoeferandM.I.Weinstein any given spectral band edge, we give detailed expansions with error estimates for the perturbed eigenvalues and corresponding localized eigenfunctions in terms of the eigenstates of a homogenized Schr¨odinger operator d LA,Q ¸ B Ajl B Q y . (1.2) (cid:16) (cid:1) yj yl (cid:0) p q j,l 1 B B (cid:16) Here, A denotes the inverse effective mass matrix, associated with the particular jl band edge from which the bifurcation occurs; see Theorem 3.1. A , derivable by jl formal multiple scale expansion (see section 4), is expressible in terms of the band edge (Floquet-Bloch) eigenstate. It is proportionalto the Hessianmatrix D2E k b of the band dispersion function, associated with ∆ V x , evaluated at the(cid:6)bpan(cid:6)dq (cid:1) (cid:0) p q edge E E k . b (cid:6) (cid:16) (cid:6)p (cid:6)q Referring to the schematics of figures 1.1 and 1.2, we discuss our results. Suppose the inverse effective mass matrix, A, is positive definite and assume (cid:13) L has an eigenvalue, e 0. This occurs if Q y is a “down-defect” A,Q A,Q p q (sufficiently “deep” in dimensions d 3) as in figure 1.1.a. In this case, Theorem3.1 asserts the existence of a¥n eigenvalue at E ε2e O ε3 A,Q E . (cid:6)(cid:0) (cid:0) p q N(cid:6)ow suppose the inverse effective mass matrix, A, is negative definite and (cid:13) L has an eigenvalue, e 0. This occurs if Q y is a “up-defect” A,Q A,Q ¡ p q (sufficiently “high” in dimensions d 3) as in figure 1.1.b. In this case, Theorem3.1 asserts the existence of a¥n eigenvalue at E ε2e O ε3 A,Q E (cid:6)(cid:0) (cid:0) p q¡ Fi(cid:6)g. 1.2 shows a more general band edge bifurcation when L has three A,Q (cid:13) eigenvalues epA1,qQ epA2,qQ epA3,qQ, the largestof which is degenerate with mul- tiplicity three. Theorem 3.1 asserts the existence of five ordered eigenvalues atE(cid:6)(cid:0)ε2epAj,qQ(cid:0)Opε3q, j (cid:16)1,2andE(cid:6)(cid:0)ε2epA3,qQ(cid:0)ε3µp3kq(cid:0)Opε4q, k (cid:16)1,2,3. 1.1. Outlineofthepaperandoverviewoftheproof. Section2summarizes the required spectral theory for Schr¨odinger operators with periodic potentials and introduces variants of the classical Sobolev space, Hs Rd , which provide a natural p q functional analytic setting. Section 3 contains the hypotheses on V and Q and the statementofourmaintheorem,Theorem3.1. Insection4wepresentaformalmultiple scale / homogenization expansion in which we systematically construct bifurcating eigenstates and eigenvalues to any prescribed order. In section 5 we prove Theorem 3.1. In particular, we study the equations governing the correction, Ψε to the N (cid:1) term multiple scale expansion. To obtain error bounds of suitably high order in ε, we use a Lyapunov-Schmidt approach. Specifically, we decompose the error into Floquet-Bloch modes associated with energies lying near the spectral band edge, E , and those lying “far” from E : Ψε Ψε Ψε . Ψε has the characterof a wav(cid:6)e-packet,spectrally supportedo(cid:6)n a sm(cid:16)allnineatre(cid:0)rvalfawrithneenadrpoint E . The next step is to solve for Ψε as a functional far of the “parameter” Ψε , with a(cid:6)ppropriate bounds. Substitution of Ψε Ψε into the near equation impnleiaers a closed equation for Ψε . With strong mofatrivratnieoanrsfrom near the structure ofterms inthe multiple scale expansion,we appropriatelyrescale,solve via the implicit function theorem, and estimate Ψε . The approach we take has near DefectModesandHomogenization ofPeriodicSchro¨dingerOperators 3 a) b) E∗+ε2eA,Q, sgn(A) = +1 ⇒ eA,Q< 0 E∗+ε2eA,Q, sgn(A) = −1 ⇒ eA,Q> 0 ··· ··· E0(k) E1(k) E2(k) E0(k) E1(k) E2(k) Fig. 1.1. a) Periodic structure with “down defect” and corresponding localized eigenstate for the case of positive definite effectivemass tensor. b)Periodic structure with“updefect”and corre- spondinglocalizedeigenstateforthecaseofnegativedefiniteeffectivemasstensor. Belowareshown eigenvalue bifurcations from band edges of the form Eb k E . (cid:6)p (cid:6)q(cid:16) (cid:6) O(ε3) Eb∗(k) O(ε2) Fig. 1.2. Schematic of band edge bifurcations in the case where the inverse effective mass matrix, A, is positive definite. The homogenized operator, LA,Q, is assumed to have two simple eigenvaluesand one degenerate eigenvalue with multiplicity three. been applied in the context of the nonlinear Schr¨odinger / Pitaevskii equation in [31, 27, 10, 9, 16]. Previous work for linear Schro¨dinger operators: Bifurcation of eigenval- ues from the edge of the continuous spectrum for Schr¨odinger operators with small decayingpotentials, correspondingto weakdefects in dimensions one andtwo for the case of a homogeneous medium or vacuum (V 0), was studied in [30]. Conditions (cid:17) ensuring the existence of eigenvalues in the gaps of periodic potentials were obtained in [1] and[13,14], using the Birman-Schwinger(integralequation)formulationof the eigenvalue problem. Homogenization theory was applied to obtain eigenvalues in the spectral gaps of a class of periodic divergence form elliptic operators, governing lo- calized states in high contrast media in [18, 8]. An elementary variational argument in spatial dimensions one and two, yielding general conditions for the existence of discrete modes in spectral gaps of periodic potentials, was recently presented in [26]. More general, variational methods can be applied to obtain defect modes which are obtained as infinite dimensional saddle points of strongly indefinite functionals; see, for example, [11]. Our results concern a particular class of weak defects, slowly varying and of small amplitude: ε2Q εx , which give rise to defect modes in any spatial dimension. We p q note that the one- and two-term truncated multi-scale homogenization expansion of defect modes, which we construct, are natural trial functions for a variational proof 4 M.A.HoeferandM.I.Weinstein of existence of ground states; see the discussion in Appendix B. Note also that the scaling of the perturbing potential, ε2Q εx , also arises naturally in solitary standing p q wave (“soliton defect mode”) bifurcations from band edges of periodic potentials in the nonlinear Schro¨dinger / Gross-Pitaevskii equation [16]. Homogenization theory has been used to study periodic elliptic divergence form operators near spectral band edges in [6, 7, 2]. Homogenization results for the time- dependent Schr¨odingerequationwithascaling,equivalentto the oneconsideredhere, were obtained by two-scale convergence methods in [3]; see also [28, 5, 2]. In [3] the contrastbetween the scalingwe use andthe semi-classicalscalingis discussed. These resultsestablishthevalidityofthehomogenizedtime-dependentSchr¨odingerequation on certain finite time scales. The results of the present paper focus on a subclass of solutions, bound states, which are controlled on infinite time scales. Finally, we mention work on effective classical electron motion in solid state physics, derived from the Schr¨odinger equation for an electron in a spatially peri- odic Hamiltonian, perturbed by spatially slowly varying electrostatic and magnetic potentials [22, 24, 25], in a semi-classicallimit. Acknowledgments: This research was initiated while MAH was an NSF Post- doctoral Fellow under DMS-08-03074in the Department of Applied Physics and Ap- pliedMathematicsatColumbiaUniversity. MIWwassupportedinpartbyNSFgrant DMS-07-07850 and DMS-10-08855. MIW would also like to acknowledge the hospi- tality of the CourantInstitute of Mathematical Sciences, where he was on sabbatical during the preparation of this article. 1.2. Notation and conventions. We note that we may, without loss ofgener- ality, restrictto the case where the fundamental period cell is Ω 0,1 d. Indeed, let (cid:16)r s B denote the fundamental period cell, spanned by the linearly independent vectors r ,...,r and define the constant matrix R 1 to be the matrix whose jth column 1 d (cid:1) t u is r . Then, under the change of coordinates x z Rx, j ÞÑ (cid:16) ∇ ∇ V x acting on L2 B transforms to x x per (cid:1) (cid:4) (cid:0) p q p q d 2 ∇z α ∇z V˜ z ¸ αij B V˜ z (cid:1) (cid:4) (cid:0) p q(cid:17) (cid:1) i,j 1 BziBzj (cid:0) p q (cid:16) acting on L2 (cid:0) 0,1 d(cid:8) where per r s α RRT, V˜ z V (cid:0)R 1z(cid:8), x R 1z . (cid:1) (cid:1) (cid:16) p q(cid:16) (cid:16) 1. Integrals with unspecified regionof integrationare assumed to be taken over Rd, i.e. f f x dx. 2. For f,g ´L2,(cid:16)th´eRdFoupriqer transform and its inverse are given by: P F f k f k e 2πikxf x dx, (1.3) t up q(cid:17) pp q(cid:16)ˆ (cid:1) (cid:4) p q F 1 g x g k e2πixkg k dk. (cid:1) t up q(cid:17) qp q(cid:16)ˆ (cid:4) p q Thus, F F 1 Id. (cid:1) 3. Ω 0,1 d is(cid:16)the fundamental period cell, Ω 1 2,1 2 d is the dual (cid:6) (cid:16) r s (cid:16) r(cid:1) { { s fundamental cell or Brillouin zone DefectModesandHomogenization ofPeriodicSchro¨dingerOperators 5 4. 1 x is the indicator function of the set A; χ k a 1 A k Ω : k a 5. Thpe rqepeated index summation convention is up|sed|¤thrqou(cid:17)ghotuPt (cid:6) | |¤ u 6. Fourier spectral cutoff: χ ∇ a G x (cid:0)F 1χ k a F(cid:8)G e2πixkχ k a G k dk p| | q p q(cid:17) (cid:1) p| | q (cid:16) ˆ (cid:4) p| | qpp q (1.4) 7. T andT 1 denotetheGelfand-Blochtransformanditsinverse;seesection2. (cid:1) 8. Bloch spectral cutoff: # + χ ∇ a G x T 1 ¸ χ aδ T G p x; x , (cid:1) bb b b p| | q p q(cid:17) p|(cid:4)| (cid:6)q t up(cid:4)q p (cid:4)q p q b 0 ¥ where b is the index of the spectral band under consideration, 9. Hs H(cid:6)s Rd is the Sobolev space of order s (cid:16) p q }f}2Hs (cid:17) ¸ }Bαf}2L2 (cid:18)}fp}2L2,s (cid:16)ˆRdp1(cid:0)|k|2sq2|fˆpkq|2dk (1.5) α s | |¤ 2. Spectral Theory for Periodic Potentials. In this section we summarize basicresultsonthe spectraltheoryofSchr¨odingeroperatorswith periodicpotentials; see, for example, [29, 20, 12]. Gelfand-Bloch transform: Given f L2 Rd , we introduce the transform T and P p q its inverse as follows T f x;k f˜x;k ¸ e2πizxf k z , (2.1) t p(cid:4)qup q(cid:16) p q(cid:16) (cid:4) pp (cid:0) q z Zd P T 1 f˜x; x e2πixkf˜x;k dk. (2.2) (cid:1) t p (cid:4)qup q(cid:16)ˆ (cid:4) p q Ω (cid:6) One can check that T 1T Id. (cid:1) (cid:16) TwoimportantpropertiesofthetransformationT areT f (cid:0) 2πik (cid:8)Tf Bxj (cid:16) Bxj (cid:0) j and (cid:0)Te2πikf(cid:8) x,k e2πikxTf x,k . It follows that (cid:4) (cid:4) p q(cid:16) p q (cid:0)TΦ ∇ e2πikf(cid:8) x,k e2πikxΦ ∇ 2πik Tf x,k (2.3) (cid:4) (cid:4) p q p q(cid:16) p (cid:0) qp qp q T v f x,k v x Tf x,k , if v is periodic. (2.4) p p(cid:4)q qp q(cid:16) p qp qp q Floquet-Bloch states: We seek solutions of the eigenvalue equation ∆ V x u x Eu x (2.5) p(cid:1) (cid:0) p qq p q(cid:16) p q in the form u x;k e2πikxp x;k , k Ω where p x;k is periodic in x with (cid:4) (cid:6) p q (cid:16) p q P p q fundamental period cell Ω. p x;k then satisfies the periodic elliptic boundary value p q problem: (cid:1) ∇ 2πik 2 V x (cid:9)p x;k E k p x;k , x Td. (2.6) (cid:1)p (cid:0) q (cid:0) p q p q(cid:16) p q p q P 6 M.A.HoeferandM.I.Weinstein For each k Ω , the eigenvalue problem (2.6) has a discrete set of eigenpairs (cid:6) p x;k , EP k which form a complete orthonormal set in L2 Ω . The spec- b b b 0 per ttrump of q ∆ pVqxu ¥in L2 Rd is the union of closed intervals p q (cid:1) (cid:0) p q p q spec ∆ V ¤ E k . (2.7) b p(cid:1) (cid:0) q(cid:16) p q b 0, k Ω ¥ P (cid:6) We will study the bifurcation of eigenvalues from the band edge E E k , k 0,1 2 , j 1,...,d, (2.8) b ,j (cid:6) (cid:17) (cid:6)p (cid:6)q (cid:6) Pt { u (cid:16) with the associated, real-valued band edge eigenfunction w x e2πik xp x;k L2 Ω . (2.9) (cid:6)(cid:4) b p q(cid:17) (cid:6)p (cid:6)qP p q Forexample,thelowestbandedgeisE 0 andtheassociatedeigenfunctionisperiodic 0 p x e ;0 p x;0 , j 1,...,dforpthqe standardCartesianbasis vectors e d . 0p R(cid:0)emjarqk(cid:16)2.10.p Sinqce (cid:16) t juj(cid:16)1 w x ej e2πik(cid:6),jw x sjw x , (2.10) p (cid:0) q(cid:16) p q(cid:16) p q where s 1 if k 0 and s 1 otherwise, the natural function space to work j ,j j in is L2 (cid:16)(cid:0)Ω , i.e(cid:6). f(cid:16) L2 Ω(cid:16)(cid:1)if f L2 Ω and f x e s f x . Without symm symm j j p q P p q P p q p (cid:0) q (cid:16) p q loss of generality, and for ease of presentation, we focus on the case where s 1, j j 1,...,d so that L2 Ω L2 Ω , the space of square integrable, pe(cid:16)rio(cid:0)dic symm per (cid:16) p q (cid:16) p q functions. This impliesthatk 0. Themoregeneralcaseineq.(2.8)canbehandled bytakingk k k andint(cid:6)er(cid:16)pretingvaluesofkreflectedabouttheboundaryofΩ . (cid:6) The simplicÑitypof(cid:1)E(cid:6)qand the relation ∇E k 0 (see Hypothesis H2 in Sec. 3) b implies that E k (cid:6)k can be extended as(cid:6)pan(cid:6)qev(cid:16)en function of k k k for j 1,...,d [29p].1 (cid:0) (cid:6)q j1 (cid:16) j (cid:1) j,(cid:6) (cid:16) We will make repeated use of the following self-adjoint operator L ∆ V x E :H2 Ω L2 Ω . (2.11) per (cid:6) (cid:17)(cid:1) (cid:0) p q(cid:1) (cid:6) p qÑ p q Projections T and Completeness of Floquet Bloch states: Define b Tbtfupkq(cid:17)xpbp(cid:4);kq,f˜p(cid:4);kqyL2pΩq (cid:17)ˆΩpbpx;kq f˜px;kqdx. (2.12) By completeness of the p x;k b b 0 t p qu ¥ f˜x;k ¸T f k p x;k b b p q(cid:16) t up q p q b 0 ¥ Furthermore, applying T 1 we have (cid:1) f x ¸ T f k u x;k dk (2.13) p q(cid:16) ˆ bt up q bp q b 0 Ω(cid:6) ¥ (cid:16)b¸0 ˆΩ(cid:6) xubp(cid:4);kq,fyL2pRdq ubpx;kq dk, (2.14) ¥ DefectModesandHomogenization ofPeriodicSchro¨dingerOperators 7 where u x;k e2πikxp x;k . The second equality follows from an application of b (cid:4) b p q (cid:16) p q the Poisson summation formula. Sobolev spaces and the Gelfand-Bloch transform: RecalltheSobolevspace,Hs,thespaceoffunctionswithsquare-integrablederivatives of order s. Since E 0 inf spec ∆ V , then L ∆ V x E 0 is a 0 0 0 non-nega¤tive operator apnqd(cid:16)Hs Rd haps(cid:1)the(cid:0)equqivalent norm(cid:16) (cid:1)defin(cid:0)ed bpyq(cid:1) p q p q φ Hs I L0 s2φ L2 } } (cid:18) }p (cid:0) q } Introduce the space (see, e.g. [27, 9]) Xs L2 Ω ,l2,s , (2.15) (cid:6) (cid:16) p q with norm }φ˜}2Xs (cid:17)ˆ ¸8 (cid:1)1(cid:0)|b|d2(cid:9)s|Tbtφupkq|2dk. (2.16) Ω(cid:6)b 0 (cid:16) Now note that }φ}2Hs (cid:18)}pI (cid:0)L0qs2φ}2L2 2 (cid:15) (cid:15) (cid:16) (cid:15)(cid:15)(cid:15) ˆ e2πik(cid:4) ¸Tbtφupkqp1(cid:0)Ebpkq(cid:1)E0p0qqs2 pbp(cid:4),kq dk(cid:15)(cid:15)(cid:15) (cid:15) Ω(cid:6) b 0 (cid:15)L2 ¥ ¸ T φ k 2 1 E k E 0 s dk (cid:16) ˆ | bt up q| | (cid:0) bp q(cid:1) 0p q| b 0 Ω(cid:6) ¥ (cid:18) ¸ (cid:1)1(cid:0)|b|d2(cid:9)s ˆ |Tbtφupkq|2 dk b 0 Ω(cid:6) ¥ φ˜ 2 . (2.17) Xs (cid:17)} } 2 The second to last line follows from the Weyl asymptotics Eb k bd [15]. Thus we p q(cid:18) have Proposition 2.1. Hs Rd is isomorphic to Xs for s 0. Moreover, there exist positive constants C , C supchqthat for all φ Hs Rd ¥ 1 2 P p q C1 φ Hs Rd φ˜ Xs C2 φ Hs Rd . (2.18) } } p q ¤} } ¤ } } p q 3. Main Results. In this section we give a precise formulation of our main theorem, Theorem 3.1. The following are our assumptions. H1 Regularity. V L Ω , Q Hσ Rd for σ d, E C3 Ω , and 8per b (cid:6) p L2 Ω;C3 ΩP . p q P p q ¡ (cid:6) P p q b per (cid:6) H2 Ba(cid:6)nPd edgpe. Ep qEq k , where k is an endpoint of the bth band such b that (cid:6) (cid:17) (cid:6)p (cid:6)q (cid:6) (cid:6) (a) E is a simple eigenvalue with corresponding eigenfunction (cid:6) w x e2πik xp x;k H2 Ω (cid:6)(cid:4) b per p q(cid:17) (cid:6)p (cid:6)qP p q and normalization w L2 Ω 1. } } p q (cid:16) 8 M.A.HoeferandM.I.Weinstein a) b) spec(LA,Q), sgn(A) = +1 spec(LA,Q), sgn(A) = −1 0 0 Fig.3.1. DiscreteandcontinuousspectrumofLA,Q. a)Positivedefiniteeffectivemasstensor. b)Negative definite effectivemass tensor. (b) ∇E k 0. b (c) The (cid:6)Hpes(cid:6)siqa(cid:16)n matrix, 1 A D2E k , (3.1) (cid:17) 8π2 b(cid:6)p (cid:6)q is sign definite. H3 Existence of eigenvalue to homogenized equation. Introduce the homogenized operator LA,Q ∇y A ∇y Q y ¸ B Ajl B Q y (3.2) (cid:17)(cid:1) (cid:4) (cid:0) p q (cid:16) (cid:1) yj yl (cid:0) p q j,l B B Set sgn A 1 if A is positive definite and sgn A 1 if A is negative p q (cid:16) (cid:0) p q (cid:16) (cid:1) definite. Assume L has a simple eigenvalue e with sgn A e 0 A,Q A,Q A,Q and corresponding eigenfunction F y H2 Rd ; i.e. p q A,Q p qP p q L F e F , F2 y dy 1, sgn A e 0; (3.3) A,Q A,Q (cid:16) A,Q A,Q ˆRd A,Qp q (cid:16) p q A,Q see figure 3.1(a). Remark 3.1. For further details regarding the smoothness properties of E b and p with respect to k, we refer the reader to [29, 32]. It can be verified tha(cid:6)t b hypothe(cid:6)sis H2 holds in one dimension at all band edges [12] and at the lowest band edge in arbitrary dimensions [19]. Band edges with multiplicity greater than oneexist, e.g. for the separable potential V x °d V x , d 2. p q(cid:16) j(cid:16)1 1p jq ¥ Theorem 3.1. (1) Positive definite effective mass tensor:Assumehypothe- ses H1-H3, with sgn A 1. Then, there exists ε 0 such that for all 0 ε ε , 0 0 (1.1)hasaneigenpaipr µq(cid:16), u(cid:0) x;µ H2 Rd . µ lies¡inthespectralgapof ∆ V x ε ε ε ε at a distance O ε2 below thep specqtrPal banpd eqdge having E as its left endp(cid:1)oint(cid:0). p q Moreover, tpo aqny order in ε, this solution can be app(cid:6)roximated by the two-scale homogenization expansion, see Eq. (4.35), (5.1), with error estimate N (cid:15)(cid:15)uε ;µε ¸ εnUn ,ε (cid:15)(cid:15) εN(cid:1)1C, (cid:15) p(cid:4) q(cid:1) p(cid:4) (cid:4)q(cid:15)H2 Rd ¤ n 0 p q (cid:16) N (cid:7)(cid:7)µε E ε2eA,Q ¸ εnµn(cid:7)(cid:7) εN(cid:0)1C, (3.4) (cid:7) (cid:1) (cid:6)(cid:1) (cid:1) (cid:7)¤ n 3 (cid:16) for all N 4 and some constant C 0, which is independent of ε. ¥ ¡ (2) Negative definite effective mass tensor: Assume hypotheses H1-H3, with sgn A 1. Then, the statement of part (1) applies, but now µ lies in the spectral ε p q(cid:16)(cid:1) DefectModesandHomogenization ofPeriodicSchro¨dingerOperators 9 gap of ∆ V x at a distance O ε2 above the spectral band edge having E as its (cid:1) (cid:0) p q p q (cid:6) right endpoint. Theorem 3.1 extends to the case where L has multiple and/or degenerate A,Q eigenvalues with bifurcations from band edges with k 0, as discussed in the fol- (cid:6) (cid:24) lowing two remarks. Remark 3.2. General band edge bifurcations: As discussed in Remark 2.1, Theorem 3.1 generalizes to band edges where k 0 satisfying eq. (2.8) so that w x L2 Ω . (cid:6) (cid:24) symm p qP p q Remark 3.3. Multiplesimpleeigenvalues: Notethat if L has M (finitely A,Q many) eigenvalues, epAj,qQ, j (cid:16)1,...,M of multiplicity one, then Theorem 3.1 applies directly. Specifically, there exists ε˜ 0 such that for all 0 ε ε˜ , there are 0 0 ¡ eigenvalue / eigenvector branches ε (cid:1)µpεjq,uε ;µpεjq (cid:9). This behavior is shown in Ñ p(cid:4) q Fig. 1.2 with two simple eigenvalue branches with spacings O ε2 . p q Remark 3.4. Branches emanating from degenerate eigenvalues of L : A,Q In spatial dimensions, d 1, the operator L may have degenerate eigenvalues, A,Q ¡ e.g. ifthereis symmetryinQ y . Supposee has multiplicityM. Then, sinceL A,Q A,Q p q is self-adjoint, e perturbs, generically, to M distinct branches. Thus, applying the A,Q method of proof of Theorem 3.1, each degenerate eigenvalue of L of multiplicity M A,Q gives rise to M branches of eigenpairs of H . The cluster of M distinct eigenvalues ε of H are within an interval of size O ε3 about E ε2e . The jth eigen-branch ε A,Q satisfies the error estimates p q (cid:6)(cid:0) N (cid:15)(cid:15)(cid:15)upεjqp(cid:4);µpεjqq(cid:1) ¸ εnUnpjqp(cid:4),ε(cid:4)q(cid:15)(cid:15)(cid:15)H2 Rd ¤εN(cid:1)1C, n 0 p q (cid:16) N (cid:7)(cid:7)(cid:7)µpεjq(cid:1)E(cid:6)(cid:1)ε2eA,Q(cid:1) ¸ εnµpnjq(cid:7)(cid:7)(cid:7)¤εN(cid:0)1C, (3.5) n 3 (cid:16) for j 1,2,...,M, all N 4 and some constant C 0, which is independent of ε. (cid:16) ¥ ¡ This behavior is shown in Fig. 1.2 where an eigenvalue of multiplicity three bifurcates from the band edge. 4. HomogenizationandMulti-scaleExpansion. Wederiveaformalasymp- totic expansion for the bound state that bifurcates from the band edge into a gap. The results of these calculations will be used as an ansatz in the next section 5 to rigorously prove existence and error estimates. We assume that u x;µ satisfies eq. (1.1) ε ε p q ∆ V x ε2Q εx u µ u , (4.1) ε ε ε r(cid:1) (cid:0) p q(cid:0) p qs (cid:16) and expand it in an asymptotic series as follows u x;µ U x,y ¸8 εnU x,y , µ E ¸8 εnµ , (4.2) ε ε ǫ n ε n p q(cid:16) p q(cid:16) p q (cid:16) (cid:6)(cid:0) n 0 n 1 (cid:16) (cid:16) wherey εxistheslowvariable. Treatingxandyasindependentvariables,equation (cid:16) (4.1) then takes the form (cid:17) ∇ ǫ∇ 2 V x ε2Q y (cid:25) U x,y µ U x,y . (4.3) x y ε ε ε (cid:1)p (cid:0) q (cid:0) p q(cid:0) p q p q(cid:16) p q 10 M.A.HoeferandM.I.Weinstein We seek a solution U x,y which is periodic in the fast variable, x, and localized in ε the slow variable, y. pSpecqifically, we assume U x,y L Ω;H2 Rd . Inserting n 8per p q P p p qq (4.2) and (4.3) into Eq. (4.1) and equating like powers of ε we find O ε0 : L U ∆ V x E U 0, (4.4) 0 x 0 p q (cid:6) (cid:17) r(cid:1) (cid:0) p q(cid:1) (cid:6)s (cid:16) O ε1 : L U 2∇ ∇ U µ U , (4.5) 1 x y 0 1 0 p q (cid:6) (cid:16) (cid:4) (cid:0) O ε2 : L U 2∇ ∇ U µ U ∆ Q y µ U , (4.6) 2 x y 1 1 1 y 2 0 p q (cid:6) (cid:16) (cid:4) (cid:0) (cid:1)r(cid:1) (cid:0) p q(cid:1) s . . . O εn : L U 2∇ ∇ U µ U ∆ Q y µ U (4.7) n x y n 1 1 n 1 y 2 n 2 p q (cid:6) (cid:16) (cid:4) (cid:1) (cid:0) (cid:1) (cid:1)r(cid:1) (cid:0) p q(cid:1) s (cid:1) n 1 ¸(cid:1) µ U µ U , n 3. j n j n 0 (cid:0) (cid:1) (cid:0) ¥ j 3 (cid:16) . . . Viewed as a system of partial differential equations for functions of the fast vari- able x, depending on a parameter y, each equation in this hierarchy is of the form L U G x where G x has the same symmetry as w x , the band edge state (cid:6) (cid:16) p q p q p q (see (2.9)), with period cell Ω. To solve these equations, we make repeated use of the following two solvability criteria based on the Fredholm alternative applied to the self-adjoint operators L and L with ker L span w L2 Ω and A,Q per ker L span F L2 (cid:6)Rd , respectively: p (cid:6)q (cid:16) t u € p q A,Q A,Q y p q(cid:16) t u€ p q Proposition 4.1. Let G L2 Ω , then L U G has an H2 Ω solution if per per and only if P p q (cid:6) (cid:16) p q w,G L2 Ω 0. (4.8) x y p q (cid:16) Remark 4.1. If k 0, then L2 Ω and H2 Ω are replaced by function per per spaces with the same sym(cid:6)m(cid:24)etry as w x , Lp2 q Ω andpHq2 Ω . See Remark 2.1. symm symm p q p q p q Proposition 4.2. Let H L2 Rd , then L F H has a solution F H2 Rd A,Q y P p q (cid:16) P p q if and only if FA,Q,H L2 Rd 0. (4.9) x y p q (cid:16) 4.1. O ε0 Equation. FromH2,there exists aunique, real,boundedeigenfunc- tion w H2p Ωq and a simple eigenvalue E that satisfy per P p q (cid:6) L w ∆x V x E w 0, w L2 Ω 1, (4.10) (cid:6) (cid:16)r(cid:1) (cid:0) p q(cid:1) (cid:6)s (cid:16) } } p q (cid:16) so that the general solution to Eq. (4.4) has the multiscale representation U x,y w x F y , (4.11) 0 0 p q(cid:16) p q p q for some F y H2 Rd that will be determined at higher order. 0 p qP p q