Deduction, Abduction, and Induction SteffenHo¨lldobler InternationalCenterforComputationalLogic TechnischeUniversita¨tDresden Germany (cid:73) Introduction (cid:73) Deduction (cid:73) Sorts (cid:73) Abduction (cid:73) Induction SteffenHo¨lldobler Deduction,Abduction,andInduction 1 AnIntroductoryExample: Abduction (cid:73) ConsiderK|=F, whereKisasetofformulascalledknowledgebaseandF isaformula. (cid:73) InthefollowingexampleIwillusethefollowingpropositionalatoms: grassIsWet, wheelsAreWet, sprinklerIsRunning, raining. (cid:73) LetK={g →w, s→w, r →g}. (cid:46) DoesK|=w hold? (cid:73) Idea FindanatomAsuchthatK∪{A}|=w andK∪{A}issatisfiable. (cid:46) A=w (cid:46) A=g (cid:46) A=s or A=r (cid:73) Thisprocessiscalledabduction. SteffenHo¨lldobler Deduction,Abduction,andInduction 2 Deduction,Abduction,andInduction (cid:73) Peirce1931 K ∪K |=G . facts rules result (cid:46) Deduction isananalyticprocessbasedontheapplicationofgeneralrulestoparticular facts,withtheinferenceasaresult. (cid:46) Abduction issyntheticreasoningwhichinfersafactfromtherulesandtheresult. (cid:46) Induction issyntheticreasoningwhichinfersarulefromthefactsandtheresult. SteffenHo¨lldobler Deduction,Abduction,andInduction 3 Deduction (cid:73) AllreasoningprocessesconsideredinthemoduleFoundationssofarare deductions. (cid:73) Thelogics(first-order,equational)areunsorted. (cid:73) Theycanbeeasilyextendedtosortedlogics. SteffenHo¨lldobler Deduction,Abduction,andInduction 4 Sorts (cid:73) (∀X,Y)(number(X)∧number(Y)→plus(X,Y)≈plus(Y,X)) (cid:46) (∀X,Y:number)plus(X,Y)≈plus(Y,X). (cid:73) Afirstorderlanguagewithsortsconsistsof (cid:46) afirstorderlanguageL(R,F,V)and (cid:46) afunctionsort:V →2RS, whereR ⊆Risafinitesetofunarypredicatesymbolscalledbasesorts. S (cid:73) Elementsof2RS arecalledsorts;∅∈2RS iscalledtopsort. (cid:73) WewriteX:sifsort(X)=s. (cid:73) WeassumethatforeverysortstherearecountablymanyvariablesX:s∈V. SteffenHo¨lldobler Deduction,Abduction,andInduction 5 Sorts–Semantics (cid:73) LetIbeaninterpretationwithdomainD, I : s={p1,...,pn}(cid:55)→sI =D∩p1I ∩...∩pnI. (cid:46) I : ∅(cid:55)→D. (cid:73) AvariableassignmentZissortediffforallX:s∈VwefindXZ ∈sI. (cid:73) Weassumethatallsortsarenon-empty. (cid:73) FI,Z isdefinedasusualexceptfor [(∃X:s)F]I,Z =(cid:62) iff thereexistsd ∈sI suchthatFI,{X(cid:55)→d}Z =(cid:62). [(∀X:s)F]I,Z =(cid:62) iff foralld ∈sI wefindFI,{X(cid:55)→d}Z =(cid:62). SteffenHo¨lldobler Deduction,Abduction,andInduction 6 Relativization (cid:73) Sortedformulascanbemappedontounsortedonesbymeansofa relativizationfunctionrel: rel(p(t1,...,tn)) = p(t1,...,tn) rel(¬F) = ¬rel(F) rel(F ∧F ) = rel(F )∧rel(F ) 1 2 1 2 rel(F ∨F ) = rel(F )∨rel(F ) 1 2 1 2 rel(F →F ) = rel(F )→rel(F ) 1 2 1 2 rel(F ↔F ) = rel(F )↔rel(F ) 1 2 1 2 rel((∀X:s)F) = (∀Y)(p1(Y)∧...∧pn(Y)→rel(F{X (cid:55)→Y})) ifsort(X)=s={p1,...,pn}andY isanewvariable rel((∃X:s)F) = (∃Y)(p1(Y)∧...∧pn(Y)∧rel(F{X (cid:55)→Y})) ifsort(X)=s={p1,...,pn}andY isanewvariable SteffenHo¨lldobler Deduction,Abduction,andInduction 7 SortingFunctionandRelationSymbols (cid:73) Eachatomoftheformp(t1,...,tn)canbeequivalentlyreplacedby (∀X1...Xn)(p(X1,...,Xn)←X1 ≈t1∧...∧Xn ≈tn). (cid:73) EachatomA(cid:100)f(t1,...,tn)(cid:101)canbeequivalentlyreplacedby (∀X1...Xn)A(cid:100)f(t1,...,tn)/f(X1,...,Xn)(cid:101)←X1 ≈t1∧...∧Xn ≈tn. (cid:73) EachformulaF canbetransformedintoanequivalentformulaF(cid:48),inwhich (cid:46) allargumentsoffunctionandrelationsymbolsdifferentfrom≈ arevariablesand (cid:46) allequationsareoftheformt1 ≈t2orf(X1,...,Xn)≈t,where X1,...,Xnarevariablesandt, t1,andt2arevariablesorconstants. (cid:73) SortingthevariablesoccurringinF(cid:48)effectivelysortsthefunctionandrelation symbols. SteffenHo¨lldobler Deduction,Abduction,andInduction 8 SortDeclaration (cid:73) F(cid:48)isusuallyquitelengthyandcumbersometoread. (cid:73) Ifsort(X)=sthenthesortdeclarationforthevariableX is X:s. (cid:73) Lets,1≤i ≤n,andsbesorts,f afunctionandparelationsymbol,both i witharityn.Then f:s1×...×sn →s and p:s1×...×sn aresortdeclarationsforf andp,respectively. SteffenHo¨lldobler Deduction,Abduction,andInduction 9 Abduction (cid:73) Example Startingacar. (cid:73) Applications (cid:46) faultdiagnosis (cid:46) medicaldiagnosis (cid:46) highlevelvision (cid:46) naturallanguageunderstanding (cid:46) reasoningaboutstates,actions,andcausality (cid:46) knowledgeassimilation SteffenHo¨lldobler Deduction,Abduction,andInduction 10
Description: