ebook img

Deduction, Abduction, and Induction - International Center for PDF

40 Pages·2012·0.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deduction, Abduction, and Induction - International Center for

Deduction, Abduction, and Induction SteffenHo¨lldobler InternationalCenterforComputationalLogic TechnischeUniversita¨tDresden Germany (cid:73) Introduction (cid:73) Deduction (cid:73) Sorts (cid:73) Abduction (cid:73) Induction SteffenHo¨lldobler Deduction,Abduction,andInduction 1 AnIntroductoryExample: Abduction (cid:73) ConsiderK|=F, whereKisasetofformulascalledknowledgebaseandF isaformula. (cid:73) InthefollowingexampleIwillusethefollowingpropositionalatoms: grassIsWet, wheelsAreWet, sprinklerIsRunning, raining. (cid:73) LetK={g →w, s→w, r →g}. (cid:46) DoesK|=w hold? (cid:73) Idea FindanatomAsuchthatK∪{A}|=w andK∪{A}issatisfiable. (cid:46) A=w (cid:46) A=g (cid:46) A=s or A=r (cid:73) Thisprocessiscalledabduction. SteffenHo¨lldobler Deduction,Abduction,andInduction 2 Deduction,Abduction,andInduction (cid:73) Peirce1931 K ∪K |=G . facts rules result (cid:46) Deduction isananalyticprocessbasedontheapplicationofgeneralrulestoparticular facts,withtheinferenceasaresult. (cid:46) Abduction issyntheticreasoningwhichinfersafactfromtherulesandtheresult. (cid:46) Induction issyntheticreasoningwhichinfersarulefromthefactsandtheresult. SteffenHo¨lldobler Deduction,Abduction,andInduction 3 Deduction (cid:73) AllreasoningprocessesconsideredinthemoduleFoundationssofarare deductions. (cid:73) Thelogics(first-order,equational)areunsorted. (cid:73) Theycanbeeasilyextendedtosortedlogics. SteffenHo¨lldobler Deduction,Abduction,andInduction 4 Sorts (cid:73) (∀X,Y)(number(X)∧number(Y)→plus(X,Y)≈plus(Y,X)) (cid:46) (∀X,Y:number)plus(X,Y)≈plus(Y,X). (cid:73) Afirstorderlanguagewithsortsconsistsof (cid:46) afirstorderlanguageL(R,F,V)and (cid:46) afunctionsort:V →2RS, whereR ⊆Risafinitesetofunarypredicatesymbolscalledbasesorts. S (cid:73) Elementsof2RS arecalledsorts;∅∈2RS iscalledtopsort. (cid:73) WewriteX:sifsort(X)=s. (cid:73) WeassumethatforeverysortstherearecountablymanyvariablesX:s∈V. SteffenHo¨lldobler Deduction,Abduction,andInduction 5 Sorts–Semantics (cid:73) LetIbeaninterpretationwithdomainD, I : s={p1,...,pn}(cid:55)→sI =D∩p1I ∩...∩pnI. (cid:46) I : ∅(cid:55)→D. (cid:73) AvariableassignmentZissortediffforallX:s∈VwefindXZ ∈sI. (cid:73) Weassumethatallsortsarenon-empty. (cid:73) FI,Z isdefinedasusualexceptfor [(∃X:s)F]I,Z =(cid:62) iff thereexistsd ∈sI suchthatFI,{X(cid:55)→d}Z =(cid:62). [(∀X:s)F]I,Z =(cid:62) iff foralld ∈sI wefindFI,{X(cid:55)→d}Z =(cid:62). SteffenHo¨lldobler Deduction,Abduction,andInduction 6 Relativization (cid:73) Sortedformulascanbemappedontounsortedonesbymeansofa relativizationfunctionrel: rel(p(t1,...,tn)) = p(t1,...,tn) rel(¬F) = ¬rel(F) rel(F ∧F ) = rel(F )∧rel(F ) 1 2 1 2 rel(F ∨F ) = rel(F )∨rel(F ) 1 2 1 2 rel(F →F ) = rel(F )→rel(F ) 1 2 1 2 rel(F ↔F ) = rel(F )↔rel(F ) 1 2 1 2 rel((∀X:s)F) = (∀Y)(p1(Y)∧...∧pn(Y)→rel(F{X (cid:55)→Y})) ifsort(X)=s={p1,...,pn}andY isanewvariable rel((∃X:s)F) = (∃Y)(p1(Y)∧...∧pn(Y)∧rel(F{X (cid:55)→Y})) ifsort(X)=s={p1,...,pn}andY isanewvariable SteffenHo¨lldobler Deduction,Abduction,andInduction 7 SortingFunctionandRelationSymbols (cid:73) Eachatomoftheformp(t1,...,tn)canbeequivalentlyreplacedby (∀X1...Xn)(p(X1,...,Xn)←X1 ≈t1∧...∧Xn ≈tn). (cid:73) EachatomA(cid:100)f(t1,...,tn)(cid:101)canbeequivalentlyreplacedby (∀X1...Xn)A(cid:100)f(t1,...,tn)/f(X1,...,Xn)(cid:101)←X1 ≈t1∧...∧Xn ≈tn. (cid:73) EachformulaF canbetransformedintoanequivalentformulaF(cid:48),inwhich (cid:46) allargumentsoffunctionandrelationsymbolsdifferentfrom≈ arevariablesand (cid:46) allequationsareoftheformt1 ≈t2orf(X1,...,Xn)≈t,where X1,...,Xnarevariablesandt, t1,andt2arevariablesorconstants. (cid:73) SortingthevariablesoccurringinF(cid:48)effectivelysortsthefunctionandrelation symbols. SteffenHo¨lldobler Deduction,Abduction,andInduction 8 SortDeclaration (cid:73) F(cid:48)isusuallyquitelengthyandcumbersometoread. (cid:73) Ifsort(X)=sthenthesortdeclarationforthevariableX is X:s. (cid:73) Lets,1≤i ≤n,andsbesorts,f afunctionandparelationsymbol,both i witharityn.Then f:s1×...×sn →s and p:s1×...×sn aresortdeclarationsforf andp,respectively. SteffenHo¨lldobler Deduction,Abduction,andInduction 9 Abduction (cid:73) Example Startingacar. (cid:73) Applications (cid:46) faultdiagnosis (cid:46) medicaldiagnosis (cid:46) highlevelvision (cid:46) naturallanguageunderstanding (cid:46) reasoningaboutstates,actions,andcausality (cid:46) knowledgeassimilation SteffenHo¨lldobler Deduction,Abduction,andInduction 10

Description:
Sorts. ▻ Abduction. ▻ Induction. Steffen Hölldobler. Deduction, Abduction, and Induction In the following example I will use the following propositional atoms:.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.