ebook img

DataCamp Numpy Cheat Sheet PDF

1 Pages·2018·0.634 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DataCamp Numpy Cheat Sheet

Python For Data Science Cheat Sheet Inspecting Your Array Subsetting, Slicing, Indexing Also see Lists Array dimensions NumPy Basics >>> a.shape Length of array Subsetting >>> len(a) Number of arra y d im e nsions >>> a[2] 1 2 3 Select the element at the 2nd index Learn Python for Data Science Interactively at www.DataCamp.com >>> b.ndim Number of array elements 3 >>> e.size Data type of array element s >>> b[1,2] 1 .5 2 3 Select the element at row 1 column 2 >>> b.dtype Name of data type 6.0 4 5 6 (equivalent to b[1][2]) >>> b.dtype.name Convert an array to a different type Slicing >>> b.astype(int) NumPy >>> a[0:2] 1 2 3 Select items at index 0 and 1 2 Asking For Help array([1, 2]) The NumPy library is the core library for scientific computing in >>> b[0:2,1] 1 .5 2 3 Select items at rows 0 and 1 in column 1 Python. It provides a high-performance multidimensional array >>> np.info(np.ndarray.dtype) array([ 2., 5.]) 4 5 6 object, and tools for working with these arrays. Array Mathematics > > > b[:1] 1 .5 2 3 Select all items at row 0 array([[1.5, 2., 3.]]) 4 5 6 (equivalent to b[0:1, :]) Use the following import convention: Arithmetic Operations >>> c[1,...] Same as [1,:,:] array([[[ 3., 2., 1.], >>> import numpy as np >>> g = a - b Subtraction [ 4., 5., 6.]]]) Reversed array NumPy Arrays array([[-0.5, 0. , 0. ], >>> a[ : :-1] a array([3, 2, 1]) [-3. , -3. , -3. ]]) Boolean Indexing 1D array 2D array 3D array >>> np.subtract(a,b) Subtraction Select elements from less than 2 >>> b + a Addition >>> a[a<2] 1 2 3 a axis 1 axis 2 array([[ 2.5, 4. , 6. ], array([1]) 1 2 3 axis 1 [ 5. , 7. , 9. ]]) Fancy Indexing axis 0 14.5 25 36 axis 0 >>>>>> nap ./a dbd ( b , a ) ADdivdisitiioonn > >a>r rba[y[(1[, 4 .0 ,, 12,. ,0 ]6,.[ ,0 ,1 .15,] )2 , 0]] Select elements (1,0),(0,1),(1,2) and (0,0) array([[ 0.66666667, 1. , 1. ], >>> b[[1, 0, 1, 0]][:,[0,1,2,0]] Select a subset of the matrix’s rows Creating Arrays > > > n p . [d i0v.2i5d e ( a , ,b ) 0. 4 , 0. 5 ] ] ) Division a r r a y ([[ [1 .45., ,25.. ,, 36.. ,, 14..5 ]],, and columns >>> a * b Multiplication [[ 14..5 ,, 25.. ,, 36.. ,, 14..5 ]]],) array([[ 1.5, 4. , 9. ], >>> a = np.array([1,2,3]) [ 4. , 10. , 18. ]]) Array Manipulation >>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float) >>> np.multiply(a,b) Multiplication >>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]], >>> np.exp(b) Exponentiation Transposing Array dtype = float) >>> np.sqrt(b) Square root Initial Placeholders >>>>>> nnpp..scions((ab)) PElreinmt esninte-ws oisfe a cno asrinraey >>>>>> ii .=T n p . t r a n s p o s e ( b ) PPeerrmmuuttee aarrrraayy ddiimmeennssiioonnss >>> np.log(a) Element-wise natural logarithm Changing Array Shape >>>>>> nnpp..zoenreoss(((2(,33,,44)),)d t y p e = n p . i n t 1 6 ) CCrreeaattee aann aarrrraayy ooff zoenreoss > >a>r rea.yd([o[t (7f.), 7 . ] , Dot product >>> b.ravel() Flatten the array Create an array of evenly Reshape, but don’t change data >>> d = np.arange(10,25,5) [ 7., 7.]]) >>> g.reshape(3,-2) sCpreaaceted avna laurerasy (s otefp e vvaelnuely) Comparison Adding/Removing Elements > >>>>> >>>>> >>>> n efnnp pp. ==..l rei nnamn ppnps ..dtp feoya uym(c le.(e l(r3( (2a,0 ()n2, 2 d)2 , o), 2 m 9 ) ( ) , ( 7 2 ) , 2 ) ) sCCCCprrrreeeeaaaaacetttteeeed aaaavn nac2 olXeaunrm2ers aspitdy a(tn eynwun taim ttraihrbtray rerya ram yon fad s tora immx p vleaslu)es > > >>a >>r r aaa y =( <[ = [[ 2FFb aa ll ss ee ,, F aT lr su ee,, F aT lr su ee]] ,] , d t yp e = b o o l) EElleemmeenntt--wwiissee ccoommppaarriissoonn >>>> >>>>C>>>>o mhnnn.pppbr...ieaidnspneiipslnzeeegenrt (dteA((((r2haar,,,,a6g [y))11s) ,] ) 5 ) RAIDnepestpleueertrtnen id tiate i entmmeesmws i snf a r toraornma a ya na rw nraa iratyrhrar yashyape (2,6) I/O > >a>r rnapy(.[aTrrruaey,_ Feaqlusael,( Faa,l sbe)] , d t y p e =b o o l ) Array-wise comparison >>> np.concatenate((a,d),axis=0) Concatenate arrays array([ 1, 2, 3, 10, 15, 20]) Aggregate Functions >>> np.vstack((a,b)) Stack arrays vertically (row-wise) Saving & Loading On Disk array([[ 1. , 2. , 3. ], Array-wise sum [ 1.5, 2. , 3. ], >>> a.sum() [ 4. , 5. , 6. ]]) >>> np.save('my_array', a) >>> a.min() Array-wise minimum value >>> np.r_[e,f] Stack arrays vertically (row-wise) >>> np.savez('array.npz', a, b) >>> b.max(axis=0) Maximum value of an array row >>> np.hstack((e,f)) Stack arrays horizontally (column-wise) >>> np.load('my_array.npy') >>> b.cumsum(axis=1) Cumulative sum of the elements array([[ 7., 7., 1., 0.], Saving & Loading Text Files >>> a.mean() Mean [ 7., 7., 0., 1.]]) >>> b.median() Median >>> np.column_stack((a,d)) Create stacked column-wise arrays Correlation coefficient >>>>>> nnpp..lgoeandftrxotm(tx"tm(yfi"lmey._tfixlte".c)sv", delimiter=',') >>>>>> an.pc.osrtrdc(obe)f ( ) Standard deviation a r r a y ( [ [[[ 123,,, 112050]]],,]) Create stacked column-wise arrays >>> np.savetxt("myarray.txt", a, delimiter=" ") >>> np.c_[a,d] Copying Arrays Splitting Arrays Data Types Split the array horizontally at the 3rd Create a view of the array with the same data >>> np.hsplit(a,3) >>> h = a.view() index >>>>>> nnpp..iflnota6t43 2 SStigannedda r6d4 d-obuitb ilnet-epgreerc itsyipoens fl oating point >>>>>> nhp .=c oap.yc(oap)y ( ) CCrreeaattee aa cdoepepy ocof pthye o afr trhaey array >[a>[r>ar ranryap(y.[([v[[s1 p]1l).,i5at,r (r ca2,y.2( [),2 ] )1 ,. a r]r ,a y ( [ 3 ]) ] Split the array vertically at the 2nd index >>> np.complex Complex numbers represented by 128 floats [ 4. , 5. , 6. ]]]), >>> np.bool BPyotohleoann o tbyjpeec ts ttyoprieng TRUE and FALSE values Sorting Arrays a r r a y ( [ [ [[ 34..,, 25..,, 36..]],]])] >>> np.object Fixed-length string type Sort an array >>> np.string_ >>> a.sort() DataCamp Fixed-length unicode type Sort the elements of an array's axis >>> np.unicode_ >>> c.sort(axis=0) Learn Python for Data Science Interactively

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.