ebook img

Data-Driven Fault Detection for Industrial Processes: Canonical Correlation Analysis and Projection Based Methods PDF

124 Pages·2017·3.847 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data-Driven Fault Detection for Industrial Processes: Canonical Correlation Analysis and Projection Based Methods

Zhiwen Chen Data-Driven Fault Detection for Industrial Processes Canonical Correlation Analysis and Projection Based Methods Data-Driven Fault Detection for Industrial Processes Zhiwen Chen Data-Driven Fault Detection for Industrial Processes Canonical Correlation Analysis and Projection Based Methods Zhiwen Chen Duisburg, Germany Dissertation, University of Duisburg-Essen, 2016 ISBN 978-3-658-16755-4 ISBN 978-3-658-16756-1 (eBook) DOI 10.1007/978-3-658-16756-1 Library of Congress Control Number: 2016961279 Springer Vieweg © Springer Fachmedien Wiesbaden GmbH 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer Vieweg imprint is published by Springer Nature The registered company is Springer Fachmedien Wiesbaden GmbH The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany Tomyparents,myloveCaiwenandmyson Preface Inordertomaximizethecustomersatisfactionandprofitaswellastoobeygovernment regulations, the complexity and automation degree of modern industrial processes are significantly growing. To ensure the safety and overall reliability of such complicated processes,automatizedfaultdetectionisofgreatimportance. Althoughthemodel-based faultdetectiontheoryhasbeenwellstudiedinthepastdecades,itsapplicationsarestill limitedforlarge-scaleindustrialprocessesbecauseitisdifficulttoestablishaccuratemodel bymeansoffirstprinciples. Ontheotherhand,sufficient(real-time)dataarecollected andrecordedduringprocessoperations,andhigh-speedcomputationisavailabledueto therapidimprovementinsensorandcomputertechnologies. Therefore,themainobjective of this work is to develop advanced data-driven fault detection methods for different applicationscopes. Thisworkisfirstlydedicatedtoevaluatebasicfaultdetectionstatisticswithanalter- nativeperformanceindex. Thecommonlyused T2 andQstatisticsarecomparedwith respecttothegeometricrelationshipandperformanceindices. Thefurtherstudyfocusesondevelopingeffectivefaultdetectionmethodsforstaticand steady-statedynamicprocesseswithavailableprocessinputandoutputdata. Different fromthewell-establishedmethodsbasedonmultivariateanalysistechniques,thecoreof theproposedmethodsistobuildresidualsignalsbymeansofthecanonicalcorrelation analysistechniqueforthefaultdetectionpurpose. However,theproposedmethodsareless powerfultodealwithincipientmultiplicativefaults. Toimprovetheirfaultdetectability ofsuchfaults,thestatisticallocalapproachisintegratedintotheoriginalmethods. For dynamic processes, an alternative fault detection method is proposed, in which residualsignalsaregeneratedbymeansofaprojectionofprocessinputdata. Thisway ofresidualgenerationcircumventstheparameteridentificationprocedure. Ontheother hand,italsoallowsustoaddressdeterministicdisturbances,whichareoftennottaken intoaccountbytheexistingdata-drivenfaultdetectionmethods. Finally,theproposed faultdetectionmethodsareverifiedbyfourbenchmarkcases,i.e. thealuminaevaporation process, theTennesseeEastmanprocess, thepilotscalecontinuousstirredtankheater andtheinvertedpendulumsystem. Theapplicationresultsshowstheeffectivenessofthe proposedmethods. ThisworkhasbeendoneattheInstituteforAutomaticControlandComplexSystems (AKS)intheFacultyofEngineeringattheUniversityofDuisburg-Essen,Germany. First VIII Preface ofall,Iowethedeepestgratitudetomysupervisor,Prof. Dr.-Ing. StevenX.Ding,forall theinspirationandhelpheprovidedduringthecourseofthelastfouryears. Iamheartily thankfulforhisguidanceonmyscientificresearchwork. Mysincerethanksmustgoto Prof. Dr. PingZhangforthevaluablecomments,whichimprovedthequalityofthiswork. IwouldliketoexpressmysincerethankstomygroupmatesDr.-Ing. KaiZhang,Dr. ZhangmingHeandDr.-Ing. HaiyangHaoforthevaluablediscussionsandsuggestions; Prof. YuriShardtforsharinghisrichandvaluableexperienceonacademicresearchand scientificwriting. IwouldliketothankDr.-Ing. LinlinLi,M.Sc. ChangchenXiang,Dr.-Ing. DongmeiXu, Dr. YongZhang,M.Sc. SihanYu,Dr.-Ing. HaoLuo,M.Sc. MinjiaChang,Dr. ShashaLi, Dr.-Ing. YingWangfortheirhelpduringmystayatAKS.Mythanksshouldalsogoto allmyotherAKScolleagues,Dr.-Ing. TimKo¨nings,Dr. ZhiqiangGe,Dr. MingzhuTang, Dr.-Ing. ChrisLouen,Mrs. SabineBay,Dr.-Ing. ShaneDominic,Dr.-Ing. Ko¨ppen-Seliger, Dipl.-Ing. EberhardGoldschmidt,Dr. QingchaoJiang,M.Sc. LuQian,M.Sc. Changsheng Hua, M.Sc. Yunsong Xu, M.Sc. Zhengen Zhao, M.Sc. Tim Daszenies, M.Sc. Judith Minten,M.Sc. SvenjaSiewers,Dipl.-Ing. KlausGo¨belandMr. UlrichJanzen,aswellas theformercolleaguesM.Sc. PingLiu,Prof. YaguoLei,Prof. BoShen,Prof. HongliDong, Prof. XuYang, Prof. JianbinQiu, Dr. ShouchaoZhai, Prof. Dr.-Ing. ShenYin, Prof. KaixiangPengandProf. YingYangfortheirvaluablediscussionsandhelpfulsuggestions. Withouttheirhelpthisworkwouldnothavebeencompletedatthislevel. Iwillforeverbeindebtedtomybigfamily, especiallymyparentsandsisters, forall theirsupportandlove. Inparticularly,Iwouldliketothankmywife,CaiwenLi,forall hersupport,encouragement,patience,andforbeingbymyside. MyspecialthanksmustgotoProf. ZhikunHu,awonderfulmentor,whointroduced meto‘faultdiagnosis’andpassedawayduringthewritingofthework. Hewillbedeeply missed. ZhiwenChen Contents Preface VII List of Figures XIV List of Tables XV List of Notations XVII 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 BasicConceptsandMotivationoftheWork . . . . . . . . . . . . . . . . . 1 1.2.1 BasicConceptsofFaultDetection . . . . . . . . . . . . . . . . . . . 1 1.2.2 MotivationfortheWork . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ObjectivesoftheDissertation . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 OutlineoftheDissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 The Basics of Fault Detection 13 2.1 MathematicalDescriptionsofIndustrialProcesses . . . . . . . . . . . . . . 13 2.1.1 RepresentationofStaticProcesses. . . . . . . . . . . . . . . . . . . 13 2.1.2 RepresentationofDynamicProcesses . . . . . . . . . . . . . . . . . 14 2.2 BasicPrincipleofFaultDetection . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 BasicStatisticalFaultDetectionMethods . . . . . . . . . . . . . . . . . . 16 2.3.1 T2 andQTestStatistics . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 PrincipalComponentAnalysis-basedMethod . . . . . . . . . . . . 18 2.3.3 PartialLeastSquares-basedMethod . . . . . . . . . . . . . . . . . 21 2.3.4 DynamicalPCA-basedMethod . . . . . . . . . . . . . . . . . . . . 22 2.4 QuantitativeModel-basedResidualGeneration. . . . . . . . . . . . . . . . 23 2.4.1 FDF-basedResidualGeneration . . . . . . . . . . . . . . . . . . . . 23 2.4.2 DO-basedResidualGeneration . . . . . . . . . . . . . . . . . . . . 24 2.4.3 PS-basedResidualGeneration . . . . . . . . . . . . . . . . . . . . . 24 2.4.4 KernelRepresentation . . . . . . . . . . . . . . . . . . . . . . . . . 25 X Contents 2.5 Data-DrivenKernelRepresentation-basedFDMethods . . . . . . . . . . . 26 2.5.1 Data-DrivenRealizationoftheKernelRepresentation . . . . . . . . 26 2.5.2 Data-DrivenPS-basedMethod. . . . . . . . . . . . . . . . . . . . . 27 2.5.3 Data-DrivenDO-basedMethod . . . . . . . . . . . . . . . . . . . . 28 2.6 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Evaluation and Comparison of T2 and Q Statistics for Fault Detection 31 3.1 PerformanceEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 FARandFDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 MeanTimetoAFalseAlarm . . . . . . . . . . . . . . . . . . . . . 33 3.2 GeometricRelationshipbetweenT2 andQStatistics . . . . . . . . . . . . 34 3.2.1 DistributionofQisApproximatedbyλ χ2(m). . . . . . . . . . . . 36 1 3.2.2 DistributionofQisApproximatedbytr(Σ )χ2(1) . . . . . . . . . . 37 y 3.2.3 DistributionofQisApproximatedbygχ2(h). . . . . . . . . . . . . 37 3.3 NumericalExampleStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 ExampleforGeometricRelationship . . . . . . . . . . . . . . . . . 39 3.3.2 ExampleforPerformanceEvaluation . . . . . . . . . . . . . . . . . 39 3.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Canonical Correlation Analysis-based Fault Detection Methods 43 4.1 BackgroundandProblemFormulation . . . . . . . . . . . . . . . . . . . . 43 4.2 TheBasicofCCATechnique . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 CCA-basedFDMethodforStaticProcesses . . . . . . . . . . . . . . . . . 46 4.3.1 CCA-basedFDMethod . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.2 AnIllustrativeExample . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 DCCA-basedFDMethodforDynamicProcesses. . . . . . . . . . . . . . . 50 4.4.1 ModelingofInputandOutputDataSets . . . . . . . . . . . . . . . 50 4.4.2 DCCA-basedFDMethod . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.3 AnIllustrativeExample . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 Improved CCA-based Fault Detection Methods 59 5.1 BackgroundandProblemFormulation . . . . . . . . . . . . . . . . . . . . 59 5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.2 AMotivationExample . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 IntegratingtheStatisticalLocalApproachintoCCAforFD . . . . . . . . 61 5.2.1 IntroductionoftheStatisticalLocalApproach . . . . . . . . . . . . 61 5.2.2 DerivationofthePrimaryResidual . . . . . . . . . . . . . . . . . . 62 5.2.3 TheFaultDetectionMethod . . . . . . . . . . . . . . . . . . . . . . 63 Contents XI 5.3 OnDetectingIncipientMultiplicativeFaultsUsingtheT2 Statistic . . . . 65 5.3.1 T2 StatisticforDetectingMultiplicativeFaults. . . . . . . . . . . . 66 5.3.2 Statistical Local Approach for Detecting Incipient Multiplicative Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6 A Projection-based FD method for Dynamic Processes with determin- istic disturbances 71 6.1 BackgroundandProblemFormulation . . . . . . . . . . . . . . . . . . . . 71 6.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1.2 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2 I/ODataModelwithDeterministicDisturbancesandFaults . . . . . . . . 72 6.3 TheProjection-basedData-DrivenFDMethod. . . . . . . . . . . . . . . . 75 6.3.1 On-lineUpdateOrthogonalProjectionMatrix . . . . . . . . . . . . 76 6.3.2 AlgorithmfortheProposedApproach . . . . . . . . . . . . . . . . 77 6.3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7 Benchmark Studies 79 7.1 CaseStudyontheAluminaEvaporationBenchmarkProcess . . . . . . . . 79 7.1.1 ProcessDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1.2 ApplicationoftheCCA-basedMethods. . . . . . . . . . . . . . . . 80 7.2 CaseStudyontheCSTHBenchmarkProcess . . . . . . . . . . . . . . . . 85 7.2.1 ProcessDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2.2 ApplicationofImprovedStaticCCA-basedMethod . . . . . . . . . 86 7.3 CaseStudiesontheTEBenchmarkProcess . . . . . . . . . . . . . . . . . 88 7.3.1 ProcessDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.3.2 ApplicationofImprovedDynamicCCA-basedMethod . . . . . . . 89 7.4 CaseStudyontheInvertedPendulumBenchmark . . . . . . . . . . . . . . 92 7.4.1 BenchmarkDescription. . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2 SimulationSetting . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.4.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8 Conclusions and Future Work 99 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.2 FutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Bibliography 103

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.