ebook img

Cybersecurity for Artificial Intelligence PDF

387 Pages·2022·12.455 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cybersecurity for Artificial Intelligence

Advances in Information Security 54 Mark Stamp Corrado Aaron Visaggio Francesco Mercaldo Fabio Di Troia   Editors Cybersecurity for Artificial Intelligence Advances in Information Security Volume 54 SeriesEditor SushilJajodia,GeorgeMasonUniversity,Fairfax,VA,USA The purpose of the Advances in Information Security book series is to establish the state of the art and set the course for future research in information security. Thescopeofthisseriesincludesnotonlyallaspectsofcomputer,networksecurity, andcryptography,butrelatedareas,suchasfaulttoleranceandsoftwareassurance. Theseriesservesasacentralsourceofreferenceforinformationsecurityresearch anddevelopments.Theseriesaimstopublishthoroughandcohesiveoverviewson specific topics in Information Security, as well as works that are larger in scope than survey articles and that will contain more detailed background information. The series also provides a single point of coverage of advanced and timely topics and a forum for topics that may not have reached a level of maturity to warrant a comprehensivetextbook. Mark Stamp • Corrado Aaron Visaggio Francesco Mercaldo • Fabio Di Troia Editors Cybersecurity for Artificial Intelligence Editors MarkStamp CorradoAaronVisaggio SanJose,CA,USA Benevento,Italy FrancescoMercaldo FabioDiTroia Campobasso,Italy SanJose,CA,USA ISSN1568-2633 ISSN2512-2193 (electronic) AdvancesinInformationSecurity ISBN978-3-030-97086-4 ISBN978-3-030-97087-1 (eBook) https://doi.org/10.1007/978-3-030-97087-1 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Weareonthecuspofarevolutioninartificialintelligence(AI).Today,AIplaysa significant role in daily life, and the impact of AI is sure to increase dramatically overthecomingyears.Perhapssurprisingly,theneteffectofthisAIrevolutionon cybersecurity is, at present, unclear, as both the “good guys” and the “bad guys” canemploysuchtechnology.IfcybersecurityistoreapmajorbenefitsfromAI,the technologyitselfmustbebetterunderstood—blackboxesareinherentlytheenemy ofsecurity. Models used in AI are notoriously opaque, which creates numerous potential problems. From a cybersecurity perspective, one of the greatest of these problems isthethreatofadversarialattacks.Itfollowsthat“explainableAI,”forexample,is offundamentalimportanceininformationsecurity. ThisbookincludeschaptersthatattempttoilluminatevariousaspectsoftheAI blackboxesthathavecometodominatecybersecurity.ThetopicsofexplainableAI andadversarialattacks—aswellasthecloselyrelatedissueofmodelrobustness— areconsidered.Mostofthechaptersexploretheseandsimilartopicsinthecontext of specific security threats. The security domains considered include such diverse areas as malware, biometrics, and side-channel attacks, among others. We have strivedtomakethematerialaccessibletothewidestpossibleaudienceofresearchers andpractitioners. Weareconfidentthatthisbookwillprovevaluabletopractitionersworkinginthe fieldandtoresearchersinbothacademiaandindustry.Thechaptersincludeinsights thatshouldhelptoilluminatesomeofthedarkestcornersofpopularAImodelsthat areusedincybersecurity. SanJose,CA,USA MarkStamp Benevento,Italy CorradoAaronVisaggio Campobasso,Italy FrancescoMercaldo SanJose,CA,USA FabioDiTroia December2021 v Contents PartI Malware-RelatedTopics GenerationofAdversarialMalwareandBenignExamplesUsing ReinforcementLearning......................................................... 3 MatoušKozák,MartinJurecˇek,andRóbertLórencz 1 Introduction .................................................................. 3 2 Background .................................................................. 5 2.1 AdversarialMachineLearning........................................ 5 2.2 ReinforcementLearning............................................... 6 2.3 PortableExecutableFileFormat...................................... 8 3 Implementation .............................................................. 8 3.1 Overview............................................................... 9 3.2 Dataset ................................................................. 9 3.3 PEFileModifications ................................................. 9 3.4 TargetClassifier........................................................ 10 3.5 AgentandItsEnvironment............................................ 11 4 Evaluation.................................................................... 11 4.1 AdversarialMalwareExamples....................................... 12 4.2 AdversarialBenignExamples......................................... 17 5 RelatedWork................................................................. 20 5.1 Gradient-BasedAttacks ............................................... 20 5.2 ReinforcementLearning-BasedAttacks.............................. 20 5.3 OtherMethods......................................................... 21 6 Conclusion ................................................................... 22 6.1 FutureWork............................................................ 23 References ......................................................................... 23 Auxiliary-ClassifierGANforMalwareAnalysis ............................. 27 RakeshNagarajuandMarkStamp 1 Introduction .................................................................. 27 2 RelatedWork................................................................. 28 vii viii Contents 3 Methodology................................................................. 30 3.1 Data..................................................................... 30 3.2 AC-GAN............................................................... 31 3.3 EvaluationPlan ........................................................ 33 3.4 Accuracy............................................................... 35 4 Implementation .............................................................. 36 4.1 DatasetAnalysisandConversion..................................... 37 4.2 AC-GANImplementation............................................. 38 4.3 EvaluationModels..................................................... 40 5 ExperimentalResults ........................................................ 42 5.1 AC-GANExperiments ................................................ 42 5.2 CNNandELMExperiments.......................................... 48 6 ConclusionandFutureWork................................................ 65 References ......................................................................... 66 AssessingtheRobustnessofanImage-BasedMalwareClassifier withSmaliLevelPerturbationsTechniques................................... 69 GiacomoIadarola,FabioMartinelli,AntonellaSantone,andFrancesco Mercaldo 1 Introduction .................................................................. 69 2 BackgroundandRelatedWorks............................................. 71 2.1 StaticMalwareAnalysis............................................... 71 2.2 ConvolutionalNeuralNetwork ....................................... 72 2.3 DalvikVMandDalvikEXecutable................................... 74 2.4 Image-BasedMalwareClassification................................. 75 3 Methodology................................................................. 76 3.1 UntargetedMisclassification.......................................... 78 4 ImplementationandExperiments........................................... 80 5 ConclusionandFutureWork................................................ 82 References ......................................................................... 82 DetectingBotnetsThroughDeepLearningandNetworkFlowAnalysis.. 85 JiAnLeeandFabioDiTroia 1 Introduction .................................................................. 85 2 Background .................................................................. 86 2.1 IntroductiontoBotnets................................................ 87 2.2 AutocorrelationAnalysis.............................................. 88 2.3 DeepNeuralNetworks ................................................ 89 3 RelatedWork................................................................. 90 4 Dataset........................................................................ 91 4.1 CTU-13DatasetFeatures ............................................. 92 5 ProposedMethodology...................................................... 92 5.1 DataPreprocessingPhase............................................. 94 5.2 DeepLearningPhase.................................................. 99 Contents ix 6 Results........................................................................ 101 7 Conclusions .................................................................. 103 References ......................................................................... 103 InterpretabilityofMachineLearning-BasedResultsofMalware DetectionUsingaSetofRules.................................................. 107 JanDolejšandMartinJurecˇek 1 Introduction .................................................................. 107 2 RelatedWorks................................................................ 109 3 Rule-BasedClassification ................................................... 110 3.1 FromTreestoRules................................................... 112 3.2 Rule-LearningAlgorithms ............................................ 113 4 ImplementationofRule-BasedClassifiers.................................. 115 4.1 DecisionList........................................................... 115 4.2 I-REP................................................................... 116 4.3 RIPPER ................................................................ 117 5 Experiments.................................................................. 118 5.1 DatasetDescription.................................................... 118 5.2 DataSplitting .......................................................... 119 5.3 FeatureTransformationandSelection................................ 120 5.4 EvaluationMetrics..................................................... 122 5.5 InterpretabilityofMachineLearningModels........................ 123 5.6 MeasuringPerformanceofRBCsonMLPredictions ............... 124 5.7 InterpretingMLResultsUsingRBCs ................................ 126 5.8 PruningandMetrics................................................... 128 5.9 DoesOrderoftheRulesMatter?...................................... 130 6 ConclusionandFutureWork................................................ 133 References ......................................................................... 135 MobileMalwareDetectionUsingConsortiumBlockchain.................. 137 GeorgeMartin,DonaSpencer,AdityaHair,DeepaK,SoniaLaudanna, VinodP,andCorradoAaronVisaggio 1 Introduction .................................................................. 138 2 UseCase...................................................................... 139 3 AndroidApplicationComponents .......................................... 140 3.1 Activities............................................................... 140 3.2 Services ................................................................ 141 3.3 BroadcastReceivers................................................... 141 3.4 ContentProviders...................................................... 141 4 RoleinMalwareDetection.................................................. 141 5 TheBlockchainNetwork.................................................... 142 6 RelatedWorks................................................................ 143 7 Methodology................................................................. 144 7.1 APKFiles.............................................................. 145 7.2 TrustedServer ......................................................... 145 7.3 AddingaRecord....................................................... 145 x Contents 7.4 MembersoftheConsortium .......................................... 146 7.5 BlockchainLedger..................................................... 146 7.6 FinalResponse......................................................... 146 7.7 TechnologyBehindBlockchainNetwork ............................ 147 8 ImplementationDetails...................................................... 149 8.1 Scenario1.............................................................. 149 8.2 Scenario2.............................................................. 151 8.3 InitializingBlockforUnknownapk.................................. 152 8.4 UpdatingBlockwithVoteandFeatures.............................. 153 8.5 SettingtheStateoftheapkAfterCountingAlltheVotes........... 154 9 FeatureExtractionandModelTraining..................................... 155 10 DatasetandExperimentation................................................ 156 11 Results........................................................................ 157 12 Conclusion ................................................................... 158 References ......................................................................... 159 BERTforMalwareClassification.............................................. 161 JoelAlvaresandFabioDiTroia 1 Introduction .................................................................. 161 2 RelatedWork................................................................. 162 3 Background .................................................................. 163 3.1 NLPModels ........................................................... 164 3.2 Classifiers .............................................................. 168 4 ExperimentsandResults .................................................... 171 4.1 Dataset ................................................................. 172 4.2 Methodology........................................................... 173 4.3 ClassifierParameters .................................................. 173 4.4 LogisticRegressionResults........................................... 174 4.5 SVMResults........................................................... 174 4.6 RandomForestResults................................................ 175 4.7 MLPResults ........................................................... 176 4.8 FurtherAnalysis ....................................................... 176 4.9 Summary............................................................... 178 5 ConclusionsandFutureWork............................................... 179 References ......................................................................... 180 MachineLearningforMalwareEvolutionDetection........................ 183 LolithaSrestaTupadhaandMarkStamp 1 Introduction .................................................................. 183 2 Background .................................................................. 185 2.1 Malware................................................................ 185 2.2 RelatedWork .......................................................... 186 2.3 Dataset ................................................................. 187 2.4 LearningTechniques .................................................. 189

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.