ebook img

Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical PDF

27 Pages·2017·3.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical

Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications Julien Perchoux, Adam E Quotb, Reza E Atashkhooei, Francisco E Azcona, Evelio Esteban Ramírez-Miquet, Olivier E Bernal, Ajit E Jha, Antonio Luna Arriaga, Carlos E Yanez, Jesus E Caum, et al. To cite this version: Julien Perchoux, Adam E Quotb, Reza E Atashkhooei, Francisco E Azcona, Evelio Esteban Ramírez- Miquet, et al.. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications. Sensors, 2016, 16 (5), pp.694. ￿10.3390/s16050694￿. ￿hal-01389568￿ HAL Id: hal-01389568 https://hal.archives-ouvertes.fr/hal-01389568 Submitted on 28 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. sensors Article Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications JulienPerchoux1,AdamQuotb1,RezaAtashkhooei2,†,FranciscoJ.Azcona2,†, EvelioE.Ramírez-Miquet1,3,†,OlivierBernal1,AjitJha2,AntonioLuna-Arriaga1, CarlosYanez2,JesusCaum2,ThierryBosch1andSantiagoRoyo2,∗ 1 LAAS-CNRS,UniversitédeToulouse,CNRS,INP,6AlléeEmileMonso,31400Toulouse,France; [email protected](J.P.);[email protected](A.Q.);[email protected](E.E.R.-M.); [email protected](O.B.);[email protected](A.L.-A.);[email protected](T.B.) 2 CentrefortheDevelopmentofSensors,InstrumentsandSystems,UniversitatPolitècnicadeCatalunya (UPC-CD6),RamblaSantNebridi10,E08222Terrassa,Spain;[email protected](R.A.); [email protected](F.J.A.);[email protected](A.J.);[email protected](C.Y.); [email protected](J.C.) 3 CentrodeAplicacionesTecnológicasyDesarrolloNuclear,Calle30,No.502,Miramar, LaHabana11300,Cuba * Correspondence:[email protected];Tel.:+34-93-739-8904 † Theseauthorscontributedequallytothiswork. AcademicEditor:VittorioM.N.Passaro Received:1March2016;Accepted:6May2016;Published:13May2016 Abstract: Opticalfeedbackinterferometry(OFI)sensorsareexperiencingaconsistentincreasein theirapplicationstobiosensingduetotheircontactlessnature,lowcostandcompactness,features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. Theactivitiespresentedaredividedintotwomainsensingstrategies: Themeasurementofoptical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequencymeasurements, respectively. Foropticalpathchangemeasurements, measurementsof transientpulses,usualinbiosensing,togetherwiththemeasurementoflargedisplacementsapplied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-basedapproach,progressinflow-relatedsignalprocessingandapplicationsinreal-time monitoringofnon-steadyflows,humanbloodflowmonitoringandOFIpressuremyographsensing willbepresented. Inallcases,experimentalsetupsarediscussedandresultspresented,showingthe versatilityofthetechnique.Thedescribedapplicationsshowthewidecapabilitiesinbiosensingofthe OFIsensor,showingitasanenableroflow-cost,all-optical,highaccuracybiomedicalapplications. Keywords: optical feedback interferometry; biosensors; vibrometry; flowmetry; biophotonics;metrology 1. Introduction Despitetheextensiveuseofsemiconductorlasers(SCLs)indiverseapplications,fromveryearly times,itwasshownthattheymightshowrelevantinstabilitieswhensubjecttoexternalperturbations as optical reinjection, also known as optical feedback (OF). When a fraction of the radiated field Sensors2016,16,694;doi:10.3390/s16050694 www.mdpi.com/journal/sensors Sensors2016,16, 694 2of26 from the laser is fed back into its own cavity, it induces a very rich phenomenology [1], including modulation of injection current and emitted power, changes in emission modes and even chaotic behavior,dependingontheamountofenergythatre-entersthecavity.Beyondthepotentialinstabilities thatmaybeintroducedinthecavity,OFhasfoundseveralapplicationsinnon-destructivetesting andnon-contactopticalsensingthroughtheopticalfeedbackinterferometer(OFI)(alsoknownas self-mixinginterferometer(SMI))[2,3],wherethefieldemittedfromthelaserincidesuponaremote target after traveling through an optical path, so changes in the few nanometers’ scale in such an opticalpathbetweenthelaserandtargetmaybemonitored. Thebeatingofthedelayedopticalfield fedbacktothecavitywiththatofthestationaryfieldinsidethecavitycausestheopticalfrequency andpowerofthelasertochange,creatingobservableinterferencefringes,witheachfringeequivalent toachangeofhalftheemissionwavelength[4]intheexternalopticalpathlengthseparatingthelaser andthetarget. Suchachangecontainsthesignatureofrelevantpropertiesofchangesintheoptical path,whichmaybemeasuredinthesamelaserusingthebuilt-inphotodiodeusedastheemission monitor. The main advantage of OFI sensors is the use of the packaged laser as the light source, theinterferingmediumandthecoherentdetectorallinone,makingthesetupextremelycompact, economic,self-alignedandefficient,whilekeepingitcontactless. Further,theresolutionandaccuracy obtainedwiththeuseofOFIiscomparabletothatofclassicalopticalinterferometry,asfarasitisa coherentdetectionmethod[5]. Awidevarietyofapplicationshasbeenapproachedalongtheyearsindifferentfields,including all types of changes in the optical path of the laser and Doppler effects in the cavity. Most of the applications include the measurement of distance changes or the velocity of the target, but also absolutedistance,profiling,measurementorpositioninghasbeenapproached[6–8]. Asthesignal obtained may be quite noisy, accurate signal processing and extraction of the desired parameters isrequiredfortheoptimumperformanceofOFIsensorsandhasbeenasourceofconstantactivity. Differentapproacheshavebeentaken,includingsimplefringecounting(FC)[9],Fouriertransform processing[10],thephaseunwrapmethod(PUM)[11]and,morerecently,theHilberttransform[12]or wavelets [13], in order to extract the desired parameters (amplitude, velocity, distance, etc.) with increasedaccuracy. Thishasledtoagrowingnumberofreal-worldapplicationsinsensing,asdiverse asmotorrunout[14],integralstrain[15],laserparameters[16]oracousticfields[17],tonameafew. Theinterestinthetechniquehasalsobeenacceptedindifferentindustrialenvironments,bothinthe formofpatentapplicationsorasconcreteproductdevelopments[18,19]. Furthermore, although most of the activity on OFI has been traditionally happening in the short and mid-infrared wavelengths, in the last few years, an entirely full field is emerging related to terahertz self-mixing sensing, driven by the evaluation of novel quantum cascade laser designs and properties. The research activities presented are combining the simplicity and resolutioncapabilitiesofself-mixinginterferometrywiththeparticularopticalpropertiesofterahertz radiation. Thisispushingforwardanumberofnovelapproachestosensors. ApplicationsinTHz wavelengths are blooming, including large opportunities in the biomedical field [20], but also in spectroscopy[21],materialanalysis[22]includingthedetectionofplasticexplosives[23],andimaging, bothbyscanning[24]orbyusingasyntheticapertureapproach[25]. Biophotonics and, in particular, biomedical applications are experiencing, at the same time, atrendtowardsbetter,lessexpensiveandmorecompactsystems,eitherfordiagnosticorprognostic usesorinremotepatientcare. Suchatrendis,thus,extremelywellalignedwiththecapabilitiesofOFI sensors. Althoughthetrendhasacceleratedinthelastfewyears,biophotonicshasbeenalwaysatopic closetothedevelopmentsonOFI[26],whereapplicationsinpulseshapemeasurementsbasedon Dopplermeasurements,bothinextracorporealcirculatorsorinvivo[27–29],havebeendemonstrated. Optical path change measurements on the fingernail have also enabled the measurement of the arterialpulsewave[30]. Othermeasurementsrelatedtobodyvibrationshavebeenperformedfor respiratorymotility[31],orocularmovements[32],orevenheaddisplacement[33]. Otherapproaches Sensors2016,16, 694 3of26 tothedevelopmentofinstrumentationhaveinvolvedthecombinationofOFIinterferometerswith microscopy[34],includingconfocalarrangements[35]. Thispaperisintendedtoprovideageneraloverviewofthedifferentworkinprogressinour labs,coveringthenoveldevelopmentsbeingrelatedtoOFItechniquesappliedtobiosensing. Wehave dividedthemintothosebasedonsensingopticalpathchangesandthosebasedonDopplersensing. Unlessexplicitlystatedotherwise,allsetupsareacquiringtheOFIsignalfromtheinternalphotodiode ofthelaser,usingeitheraUSB-connectedoscilloscopeoranA/DconversioncardconnectedtoaPC. OnlywhentheprocessingmethoddepartsfromthegeneralapproachinOFIdescribedin[2]will beexplicitlydescribedforconciseness. Alongthenextsection,wewillintroduceourdevelopments relatedtosensingofopticalpathchanges,appliedtothemeasurementoftransientvibrationsand toanOFIsensorforverylargedisplacementstailoredtothedevelopmentofbiomedicalequipment forpalliativecare. Section3willoutlineourmaindevelopmentsrelatedtoflowmonitoringbased ontheDopplereffect. Wewilldiscussouradvancesinprocessingoftheflowsignals,thereal-time monitoringofnon-steadyflows,bloodflowmeasurementsonhumanskinandOFI-basedpressure myography. Thelastsectionwilldiscusstheconclusionsofthepaper. 2. OpticalPathChanges 2.1. OFIfortheMonitoringofTransientPathChanges 2.1.1. Introduction Theapplicationoftransientopticalpathchanges(forcedorfreechangesineitherdistanceorthe refractiveindexofthemediacrossedbythebeam,whosestatisticsvarywithtime)isusedextensively in biosensing and medical signals, usually related to vibration (e.g., in electroencephalography (EEG), electrocardiography (ECG) or vibrocardiography (VCG)) [36–39]. So far, optical feedback interferometry(OFI)hasbeennormallyusedtoanalyzeperiodicvibrationpatternsusingdifferent signalprocessingschemes(outlinedintheIntroduction)toextractvibrationalparameters,suchas displacement,frequencyandtheaveragevelocityofvibratingtargets. WhileFourier-basedsignal processing is an elegant approach, it requires the measurement of the complete signal over time andcannotbeusedinordertoanalyzetransientsignalsorsignalswithunknownfuturebehavior. Fringecounting,thoughbeingsimpleinordertoprocessOFIsignals,isnotsuitablewhensignals aretime-dependent,asthethresholdofdetectionoftenneedstobechanged,optimizedoradapted dependingonthedisplacementofthetarget. Here,wepresentamethodologyfortheanalysisoftransientvibrationsusinganOFIsensorbased onanadaptedprocessingstrategy,hencebroadeningthescopeofthemeasurementandmakingOFI sensorsmoresuitablefortheiruseasbiosensor. Toharnessthepoweroffrequencyspectrumanalysis without the need of a complete characterization of the signal in time, wavelet analysis provides a very suitable framework [13,40]. In such a representation, the frequency domain reflects the behaviorofatemporally-localizedversionofthesignal,thusmakingitsuitedtostudyatransientor undeterminedsignal. 2.1.2. ExperimentalSetup TheexperimentalsetupispresentedinFigure1. AHL8337MGAlGaAslaserdiode(LD)was used. Theemissionwavelength,measuredwithanInstrumentSystem’sSPECTRO320(D)R5unit, wasmeasuredasλ=692.5nm. TheopticalbeamemittedfromtheLDwasfocusedusingaThorlabs lens 352,240 with a focal length of 8 mm and numerical aperture of 0.5 on target. The target was apiezoelectric(PZT)linearstagePhisikInstrumente-LISA(PI-LISA)(P-753.3CD),whichincludedan embeddedcapacitivesensorwitharesolutionof0.2nm. Thevoltagetoamplitudeconversionfactor was3.8µm/V.ToanalyzethetransientresponseusingOFI,asignalintheformofanon-periodic sincpulsewasappliedtothePZT(Figure2a). The3-dBpulseduration(timedurationforwhichthe Sensors2016,16, 694 4of26 √ voltageofpulsebecomes1/ 2ofthemaximumvalue)wasτ = τ −τ =613.3−592.8=20.5ms, 3dB 1 2 whereτ andτ arethefirstandsecond3-dBpoints. Thepeakvalueofthepulseoccursatτ =603ms, 1 2 0 whereitpresentsamaximumamplitudeofV =1V.Thisperturbationinvoltageinducedatransient 0 vibrationofamplitudeof A = 3.8µm= 5λ/2onthePZT.Theperturbationisthenmeasuredby m theOFIsensordescribedandtheoscillationsignalfromtheinternalmonitorphotodiodemeasured inanoscilloscopeconnectedtoacomputer,asinFigure2b. Itisobservedthat,asmostofthetime, thevoltagesignalappliedtoPZTiskeptconstant,novibrationoccursinthePZT,andnofringesare registered. Atthetimemomentt = τ = 603ms,thevoltageswitchestoV = 1V,andthefringes 0 0 areproducedandcaptured(Figure2a). ThenumberoffringesdetectedN =6isconsistentwiththe f amplitudeofvibration[9]. Theoscilloscopedigitizestheanalogsignalfromthephotodiodeandsends thedigitizedsignaltoacomputer,wherefurtherprocessingisperformed. PD LD Piezo Oscilloscope Figure1.Experimentalsetupforthemonitoringoftransientpathchanges. (a) (b) Figure2. Experimentalopticalfeedbackinterferometry(OFI)signal. (a)Transientsignalappliedto PZTtointroducetransientvibration;(b)OFIsignalresultingfromtransientmotionofthepiezo;the insetgivesthemagnifiedviewofOFIsignalproducedbytransientvibration. 2.1.3. Results Havingshownthatthetransientvibrationofthetarget(PZT)iseffectivelydetectedusingtheOFI signal,theuseofwaveletsandalgorithmstoprocesstheOFIsignalmaybedirectlyapplied(see[13,40] Sensors2016,16, 694 5of26 foradetaileddescription).WeproposeanalgorithmbasedontheMorletwavelet,whichenablesoneto simultaneouslyobtainspectralandtemporalinformationrelatedtothetransientvibration,including itsdurationandtheinstantaneousvelocityprofileintroduced. Wavelettransformsarefunctionsthat are finite both in space and time, enabling one to retrieve information both on the temporal and frequencyaspectsofthesignalthroughthewaveletcoefficientsW(a,b). Foracontinuoussignalx(t), W(a,b)aregivenby: 1 (cid:90) +∞ t−b W(a,b) = √ x(t)ψ( )dt (1) a −∞ a withW(a,b)thecoefficientofwavelettransformationandaandbthedilation(scaling)andtranslation (shifting)parameters. TheMorletwaveletisdefinedinthetimedomainas: −t2 ψ(t) =exp(jω t)exp( ) (2) o 2 wherej2 = −1,andω issetto5.336[41]. o Inourapproach,acontinuouswavelettransform(CWT)hasbeencalculateddirectlyonthesignal, allowingbothnoiseremovalanddetectionoftherelevantparametersofthesignalinasinglestep. SuchcalculationsareperformedusingaMATLABcode,typicallyinafewseconds,soitsreal-time implementation is feasible. Figure 3a shows the captured OFI signal, while Figure 3b shows the associatedscalogramoftheOFIsignal. Thescalogramrepresentsthecalculatedwaveletcoefficients inthetime-frequencyplaneW(f,t),where f andtstandforfrequencyandtime,respectively. Itis observed that for most of the time of the experiment, the wavelet coefficients stay close to zero (representingtheabsenceofaspectralcomponent). Duringthepulseperiod,however,theirvalues changesignificantly,demonstratingtheriseofnovelspectralcomponentsresultingfromtheDoppler shiftalongthepulseduration. FromFigure3b,theDopplerfrequencyis f =453.72Hz. d (a) (b) Figure 3. Time-Frequency representation of the OFI signal. (a) OFI signal; (b) scalogram of the OFIsignal. Sensors2016,16, 694 6of26 Tofindthe3-dBpulsedurationoftransientvibration,thewaveletcoefficientsat f = f =453.72Hz d foralltime,i.e.,W(f )areextractedfromthescalogram. Forsimplicity,onlythewaveletcoefficientsin d thevicinityofthepulsearepresentedinFigure4. ItisobservedthatthevalueofW(f )issignificant d onlyduringthepulsedurationandiszeroanywhereelse. TheplotofW(f )hastwomaximaatτ(cid:48) and d 1 τ(cid:48) withasharpdipatτ(cid:48) representedbyPointsA,BandC,respectively,inFigure4. The3-dBwidth 2 0 (τ(cid:48) )andcenterofpulse(τ(cid:48))arecalculatedfromFigure4as: 3dB 0 τ(cid:48) = τ(cid:48)−τ(cid:48) =613.3−592.5=20.8ms (3) 3dB 2 1 τ(cid:48) =603ms (4) 0 showingverygoodcorrespondencebetweentheinducedperturbationandthemeasurementextracted fromtheOFIsignal,asmaybeobservedinTable1. 1 A (τ’ ) C (τ’2) 1 0.9 W(f ) d 0.8 transient vibration 0.7 u) 0.6 a. e ( d 0.5 u plit m 0.4 A 0.3 τ’ =592.5 msec 1 τ’ =613.3 msec 0.2 2 τ’ =603 msec 0 τ’ =τ’ −τ’ =20.8 msec 0.1 3dB 2 1 B (τ’ ) 0 540 560 580 600 620 640 660 Time (msec) Figure4.Experimentalresults.Characterizingthepulse:determiningthe3-dBwidthandcentertime ofthepulse. Table1.Comparisonbetweenthereferenceandmeasuredpulseparameters. Parameters OriginalValue CalculatedValue Error Centerpulsetime τ =603ms τ(cid:48) =603ms 0.0% 0 0 First3-dBtime τ =592.8ms τ(cid:48) =592.5ms 0.05% 1 1 Second3-dBtime τ =613.3ms τ(cid:48) =613.3ms 0.0% 2 3-dBpulseduration τ =τ −τ =20.5ms τ(cid:48) =τ(cid:48)−τ(cid:48) =20.8ms 1.4% 3dB 2 1 3dB 2 1 Peakvelocity V =1.65×10−4mm/ms V(cid:48) =1.57×10−4mm/ms 4.8% 0 0 Finally, we will determine the velocity profile v(t) of the displacement from the scalogram. First,the maximum wavelet coefficient present at each instant of time is obtained from Figure 3. Then,thecorrespondingfrequencyisfound, whichgivesthevalueoftheDopplerfrequencyshift asafunctionoftime f (t). Oncetheinstantaneousfrequencyisknown,thevelocityofthetargetis d obtained using v(t) = f (t)λ/2 and reconstructed in time in Figure 5. The amplitude plot of the d signalusedfortheexcitationofthepiezohasbeenplottedtoenablecomparison. Itisobservedthat thecalculatedpeakvelocityofthetargetisV(cid:48) = 1.57×10−4 mm/ms,whichmaybecomparedto 0 Sensors2016,16, 694 7of26 thatoftheactual,ofV = 1.65×10−4 mm/ms(fromFigure5,showingalsothatthetargetmakes 0 a displacement of 3.8 µm in 23 ms). In addition, a sharp dip in the velocity profile is observed consequenttothefactthatthetargethasreachedthemaximumvalueoftheperturbationandnow vibratesintheoppositedirection. Asthesignalappliedtothepiezocorrespondstoasincfunction withtime,somebiashasbeenaddedtotheamplitudesignaltoavoidnegativepolarizationofthePZT. Theoscillationsaroundthepeakareduetotheshapeofthesincfunctionandarerecoveredinthe velocityprofile. Thecombinationofthebiasandtheoscillationsofthesincfunctionresultinasmall velocitycomponentduetotheDopplershift. x 10−4 4 transient vibration v(t) 1.75 3.5 V’ =1.57 × 10−4 mm/msec 0 1.5 3 c) se 1.25 2.5m) m µ m/ e ( m 1 2 d city ( mplitu elo 0.75 1.5A V 0.5 1 0.25 0.5 0 0 440000 445500 550000 555500 660000 665500 770000 775500 880000 885500 Time (msec) Figure5.Experimentalresults.Velocityprofileofthetransientpulsedeterminedusingwavelets(blue) andtime-dependentsignalappliedtothetarget(red).Circlesindicatetheaxisforeachfigure. The method performs very accurately regarding the detection of time events, providing aconvenientmethodfortheanalysisoftime-dependentphenomenainOFIsignals. Thus,complete and accurate characterization of transient vibrations using a Morlet wavelet approach has been demonstrated, presentinganovel, usefultoolforthedetectionandanalysisofbiomedicalsignals, includingthecharacterizationofitstimeandspeedsignatures. 2.2. OFISensorforLargeDisplacements Self-mixinghasbeenusedfordisplacementsensing[42],thoughthepresenceofspecklenoise, whichcausesvariationsinboththeamplitudeofOFIsignalsandthevalueoftheopticalcoupling factorC, has often reduced the range or even the possibility of correct measurement. Different approacheshavebeendevelopedtocopewithspeckleeffects,suchas: • Usingtwopiezo-actuatorstomovealensforaspeckle-trackingtechnique[43], • Usingavoltage-controlledliquidlensandadouble-headedlaserdiodesensorwithdifferentlaser beamspotsizeshavealsobeenproposedtoavoidspeckle[44], • KeepingtheoperatingpointoftheOFIinterferometerfixedatthehalf-fringe[45], • UsingOFIsignalenvelopetrackinganddynamicfringedetection[46], • UsingtheHilberttransformand/orthewavelettransformtodetect[12,13]. Only the last three methods demonstrate signal processing techniques that correctly extract andprocessOFIsignalscorruptedbyspeckle,whileavoidingadditionaloptical/electro-mechanical Sensors2016,16, 694 8of26 components. However,themethodbasedonfeedbacktechniques[45]hasalimitedrangeofoperation (<100µm)comparedtothelasttwoopenloopapproaches. Here, as an example, the OFI technique has been successfully applied to quantify the displacementsoftheGoogleLiftwarespoon(Figure6),inordertodetermineitsefficiencytodamp hand-shaking vibration due to diseases, such as Parkinson. The experimental setup is shown in Figure6. Forthesamegivenfrequencyandamplitudevibration,boththedisplacementofthehandle andofthestabilizedutensilaremeasuredtoestimatetheLiftwaresystemefficiency. Notealsothatthe Liftwareisplacedontopofasteelpostinordertoreducetheparasiticinfluenceofthemagnetofthe shaker. Duetothenon-linearityoftheinducedmovementandtheamplitudeofthedisplacements (a few millimeters), the OFI signals obtained with an oscilloscope from the internal photodiode areunavoidablyaffectedbyadynamically-changingcouplingfactor, plusthepresenceofspeckle, asshowninFigure7. Consequently,inordertodetectthesecorruptedOFIfringes,themethodused hereisbasedontheHilberttransform. TheresultsaresummarizedinFigure8. Thebiggestinduced displacement(4.56mm)onthehandlewasobtainedat4Hz,whilethesmallest(2.48mm)at15Hz. Dependingontheshakingfrequency,itcanbeobservedthatthestabilizinghandlecaneffectively suppressvibrationsfrom25%(at4Hz)upto80%(at15Hz)oftheutensil. Whilefurtherworkis necessarytoproperlycharacterizetheLiftware’stransferfunction,notably,intermsoftheinduced movement,itcanbeforeseenthattheOFIconfigurationcoupledtoarobustsignalprocessingisan adaptedlow-costsolutionforthistask. OFI displacement sensor Liftware Liftware utensil stabilizing handle Shaker Figure6.Experimentalsetuptomeasurethevibrationofthestabilizinghandleandthevibrationof theutensilattachment. V) e ( 0.05 d u plit 0 m a al −0.05 c) n g si FI −0.1 b) O 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 Time (s) (a) Figure7.Cont. Sensors2016,16, 694 9of26 0.04 V) 0.1 V) de ( 0.05 de ( 0.02 u u plit 0 plit m m 0 al a−0.05 al a sign −0.1 sign−0.02 FI FI O−0.15 O−0.04 0.1635 0.164 0.1645 0.165 0.251 0.252 0.253 0.254 0.255 Time (s) Time (s) (b) (c) Figure7.MeasuredOFIsignalobtainedusingtheexperimentalsetupdescribedinFigure6exhibiting strongvariationsinbothamplitudeanopticalcouplingfactorC.(a)Fullacquisitionthathighlightsthe strongamplitudemodulationinducedbythespecklephenomenon;(b)truncationofthetime-domain signalshowingahighCvalue;(c)truncationofthetime-domainsignalshowingalowervalueforthe opticalcouplingfactorC. Figure8.Measuredvibrationdisplacementofthestabilizinghandleandthevibrationoftheutensil attachmentinducedbyashakeratdifferentstimulifrequencies. 3. OFIfortheMonitoringofFlows 3.1. ProcessingofOFIFlowSignalsunderDifferentScatteringRegimes 3.1.1. IntroductiontoSignalProcessingforFlowMonitoring InOFI-basedflowmetry,theDopplerspectrumisanalyzedtoobtaintheinformationregardingthe velocityofmovingparticles. SincetheDopplerspectrumisgeneratedfromthefeedbackofparticles embedded in the fluid, its morphology strongly depends on the velocity distribution of particles inside the sensing volume. Thus, the number of scattering particles in the sensing volume is also animportantfactorinspectrumdistribution. Dependingontheparticleconcentrationinthefluid, singlescatteringormultiplescatteringmayoccurinthesensingpoint,causingasignificantchangein signalpowerspectrumoftheOFIsensor. Thereby,basedonthetypeofpowerspectrummorphology (i.e.,narrowpeak,flatdistributionoraslowdecay),differentsignalprocessingmethodshavebeen recentlyproposedtoaccuratelyextracttheDopplerfrequencyfromthepowerspectrumcorresponding to the average fluid velocity at the measurement volume. The commonly-used methods include

Description:
Abstract: Optical feedback interferometry (OFI) sensors are experiencing a . respiratory motility [31], or ocular movements [32], or even head behavior of a temporally-localized version of the signal, thus making it suited to Competitividad, Spain Government, Project Tecniospring TCM213-165815,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.