ebook img

Crustal structure of the eastern Algerian continental margin and adjacent deep basin PDF

27 Pages·2015·19.08 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Crustal structure of the eastern Algerian continental margin and adjacent deep basin

Geophysical Journal International Geophys.J.Int.(2015)201,1912–1938 doi:10.1093/gji/ggv102 GJIGeodynamicsandtectonics Crustal structure of the eastern Algerian continental margin and adjacent deep basin: implications for late Cenozoic geodynamic evolution of the western Mediterranean B. Bouyahiaoui,1 F. Sage,2 A. Abtout,1 F. Klingelhoefer,3 K. Yelles-Chaouche,1 P. Schnu¨rle,3 A. Marok,4 J. De´verche`re,5 M. Arab,6 A. Galve2 and J.Y. Collot2 1CentredeRechercheenAstronomie,AstrophysiqueetGe´ophysique(CRAAG),BP63Bouzare´ah16340Alger,Alge´rie.E-mail:[email protected] 2UMPC,UNSA,CNRS,IRD,Ge´oazur,250,AvenueAlbertEinstein,F-06560Valbonne,France 3InstitutFranc¸aisdeRecherchepourl’ExploitationdelaMer(IFREMER),ZIdelaPointedeDiable,F-29280Plouzane´,France 4DepartmentofEarthandUniverseSciences,UniversityofTlemcen,BP119,13000Tlemcen,Algeria 5Universite´deBrest(UBO),CNRSUMR6538DomainesOce´aniques,InstitutUniversitaireEurope´endelaMer,F-29280Plouzane´,France 6SonatrachExploration,AlgerianNationalOilCompany,Algeria Accepted2015February26.Received2015February25;inoriginalform2014June30 D o w n lo a SUMMARY de d WedeterminethedeepstructureoftheeasternAlgerianbasinanditssouthernmargininthe fro Annaba region (easternmost Algeria), to better constrain the plate kinematic reconstruction m h in this region. This study is based on new geophysical data collected during the SPIRAL ttp cruisein2009,whichincludedawide-angle,240-km-long,onshore–offshoreseismicprofile, ://g multichannel seismic reflection lines and gravity and magnetic data, complemented by the ji.o x available geophysical data for the study area. The analysis and modelling of the wide-angle ford seismic data including refracted and reflected arrival travel times, and integrated with the jo u multichannel seismic reflection lines, reveal the detailed structure of an ocean-to-continent rna transition.Inthedeepbasin,thereisan∼5.5-km-thickoceaniccrustthatiscomposedoftwo ls.o rg layers.TheupperlayerofthecrustisdefinedbyahighvelocitygradientandP-wavevelocities a/ between4.8and6.0kms−1,fromthetoptothebottom.Thelowercrustisdefinedbyalower t IF velocity gradient and P-wave velocity between 6.0 and 7.1km s−1. The Poisson ratio in the RE M lower crust deduced from S-wave modelling is 0.28, which indicates that the lower crust is E R composed mainly of gabbros. Below the continental edge, a typical continental crust with o n P-wave velocities between 5.2 and 7.0km s−1, from the top to the bottom, shows a gradual M a seawardthinningof∼15kmoveran∼35-kmdistance.Thisthinningisregularlydistributed y 2 7 betweentheupperandlowercrusts,anditcharacterizesariftedmargin,whichhasresultedfrom , 2 0 backarcextensionattherearoftheKabylianblock,hererepresentedbytheEdoughMassifat 1 5 theshoreline.Abovethecontinentalbasement,an∼2-km-thick,pre-Messiniansedimentlayer withacomplexinternalstructureisinterpretedasallochthonousnappesofflyschbackthrusted onthemarginduringthecollisionofKabyliawiththeAfricanmargin.Thecrustalstructure, moreover, provides evidence for Miocene emplacement of magmatic intrusions in both the deep basin and the continental margin. Based on the crustal structure, we propose that the eastern Algerian basin opened during the southeastward migration of the European forearc beforethecollision,alongaNW–SEelongatedspreadingcentrethatranperpendiculartothe subduction trend. Such an atypical geometry is explained by the diverging directions of the subductionrollbackduringthebackarcopening:eastwardfortheCorsica–Sardiniablock,and southward for the Kabylian blocks. This geometry of the forearc can be interpreted as the surfaceexpressionofaslabtearatdepth,whichisresponsibleforatypicalmagmatisminthe overlyingbackarcoceanicbasin. Keywords: Tomography;Compositionoftheoceaniccrust;Continentalmargins;divergent; Africa. 1912 (cid:3)C TheAuthors2015.PublishedbyOxfordUniversityPressonbehalfofTheRoyalAstronomicalSociety DeepstructureoftheeasternAlgerianmargin 1913 2001; Rosenbaum & Lister 2004a), or opened during the Oligo- 1 INTRODUCTION Miocene,suchastheLiguro-Provenc¸albasinortheAlgerianbasin The Mediterranean Sea at present forms a single, 2.5 × 106km2 (e.g.Bouillin1986;Faccennaetal.2001;Rosenbaumetal.2002; basinthatissurroundedbycontinents.However,infurtherdetail,it Gattaccecaetal.2007;Billietal.2011;Sageetal.2011;Fig.1a). iscomposedofacomplexmosaicofsub-basinsthatshowdifferent TheMediterraneanbasinis,moreover,surroundedbyorogenicbelts agesanddifferentevolutionarystages,whichmarkouttheAfrica– thatattesttotheCenozoicclosureoftheoceansthatwerepreviously Europeanconvergentboundary.Whilesomeofthesesub-basinsare partoftheMediterraneandomain.Rapidtransitionintimeandin ancientoceansthatclosedalongactivesubductionzones,suchas space from basin opening at the back of the subduction zones to theeasternMediterraneanbasin(e.g.Dercourtetal.1986;Wortel collisionzoneshascharacterizedtheAfrican–Eurasianborderfor &Spakman2000;Jolivetetal.2003),someothersarestillopening, atleast50Ma(e.g.Jolivetetal.2003),whichledtothepresent- suchastheTyrrhenianbasin(e.g.Gueguenetal.1998;Sartorietal. dayMediterraneanconfiguration.Understandingthespatiotemporal D o w n lo a d e d fro m h ttp ://g ji.o x fo rd jo u rn a ls .o rg a/ t IF R E M E R o n M a y 2 7 , 2 0 1 5 Figure1. (a)MagneticanomaliesfromGaldeano&Rossignol(1977)superimposedonthemapoftheWesternMediterraneanarea.Whitelines:locationof thefivewide-angleseismicprofilesacquiredduringSPIRALcruise.WA-An,Annabaprofile(thisstudy);WA-Ji,Jijelprofile;WA-Ka,GreatKabyliaprofile; WA-Ti,TipazaprofileandWA-Mo,Mostaganemprofile.Redline:locationofthewide-angleseismicprofilefromtheEuropeanGeotraverseproject(Peirce& Barton1992).Whiteframe:locationoftheinsetthatdisplaysregularlyorganizedNW–SEmagneticanomaliesinthecentralpartoftheeasternAlgerianbasin (fromSchettino&Turco2006).Blackframe:locationofthecentraleasternAlgerianbasinasdisplayedinFig.2.(b)WesternMediterraneansettingat35Ma, modifiedfromGelabertetal.(2002),indicatingthelocationoftheEuropeanforearc(inyellow),beforetheAlgerianbasinopening.DuringtheAlgerianand Tyrrhenianbasinformation,theEuropeanforearcwasfragmentedandmigratedtothesouthandtotheeasttoreachitspresentdayposition(shownin(a)), duetosubductionrollback(seetextfordetailsandreferences).Thenamesoftheforearcfragmentsweregivenaccordingtotheirpresent-daylocation,andare fromwesttoeast:R,Rif;B,Betics;GK,GreatKabylia;LK,LesserKabylia;Pe,Peloritani;Ca,Calabria.TheyformtheAlKaPeCablockdefinedbyBouillin (1986),withAl,Alboran=R+B;Ka,Kabylia=GK+PK;Pe,PeloritaniandCa,Calabria. 1914 B.Bouyahiaouietal. evolution of the Mediterranean basins is important, to be able to studieshaveproposedthatthedeepbasinhasresultedfromdelami- betterunraveltheprocessofbackarcopeningandtheevolutionof nationofacontinentallithosphere(Roureetal.2012),moststudies complexconvergentplateboundaries. have considered the eastern basin as an oceanic domain that was Numerouskinematicmodelshavebeenproposedtoexplainthe formedbybackarcaccretion,boundedtothesouthbyitscontinental current structure of the western Mediterranean basin that have margin(Alvarezetal.1974;Cohen1980;Lonergan&White1997; mostly been based on magnetic data (Schettino & Turco 2006; Doglionietal.1999;FrizondeLamotteetal.2000;Jolivet&Fac- Gattacceca et al. 2007), crustal structures of the basin and ad- cenna2000;Faccennaetal.2001;Gelabertetal.2002;Rosenbaum jacent margins (Mauffret et al. 2004), geological observations of etal.2002;Mauffretetal.2004;Schettino&Turco2006).Accord- theMediterraneancollisionzone(Lustrinoetal.2011;Carminati ingtothesemodels,theeasternAlgerianmarginmightinsteadbe etal.2012),kinematicconstraints(Gueguenetal.1998;Jolivet& consideredariftedstretched(e.g.Gueguenetal.1998;Jolivet& Faccenna2000)andtheintegrationofdifferenttypesofdata(e.g. Faccenna2000),ortranscurrent(e.g.Mauffretetal.2004;Schettino tectonic, seismological, geodetic, tomographic, seismic reflection &Turco2006),continentalmarginsegment,withimplicationson data;Billietal.2011).Allofthekinematicreconstructionmodels thewaytheslabescapedtotheeast. agree that in an initial stage before the opening of the Algerian Theaimofthisstudywastodeterminethecrustalstructureof basin,theAlboran,Kabylia,PeloritaniandCalabriablocks,which theeasternAlgerianbasinanditssouthernmarginintheAnnaba weredefinedastheAlKaPeCablock(Bouillin1986),werepartof region (Fig. 2a), to better constrain the kinematic models of the theEuropeansouthernmarginuntil∼23Ma(Alvarezetal.1974; easternAlgerianbasinandtheeastwardmigrationoftheslab.This Cohen 1980; Bouillin 1986; Lonergan & White 1997 ; Verge´s & study is based on: (1) new data acquired in 2009 during the Sis- Saba`t1999;FrizondeLamotteetal.2000;Rosenbaumetal.2002; mique Profonde et Investigation Re´gionale au Nord de l’Alge´rie Mauffretetal.2004;Billietal.2011).Thekinematicreconstruc- (SPIRAL)cruise,whichincludeda240-km-longonshore-offshore tionmodelsalsoagreethatinafinalstage,theAlKaPeCAblocks wide-angleseismicprofile,deep-penetratingmultichannelseismic D accreted by collision along the northern African border, ∼16–18 (MCS)linesandgravimetricandmagneticdata(Fig.2a);and(2) ow n Ma (Fig. 1a, R, GK, LK) (Monie´ et al. 1984; Saadallah & Caby additionalavailabledatathatincludedmultibeambathymetryand lo a 1996;Lonergan&White1997;Faccennaetal.2001;Roureetal. high-resolutionseismicdata,industrialdeep-penetratingMCSdata, de d 2012),thecollisionzonebeingunderlainbyadetached,northward andcomplementarygravimetricandmagneticdata(Fig.2a). fro dippingslab(e.g.vanHinsbergenetal.2014). m h Mostauthorsproposethatbetweenthesetwostages,theAlge- ttp rsilaanbb(Aaslivnareevzolevteadl.in19re7l4a;tiConohtoena1r9o8ll0b;acLkonperorgcaenss&ofWthheitTee1th9y9a7n; 2 GEOLOGICAL SETTING ://gji.o Dceongnlaio2n0i0e0t;aFla.c1c9e9n9n;aFertizaol.n2d0e01L;aGmeoltatbeeerttaelt.a2l0.20000;2Jo;lRivoeste&nbaFuacm- 2.1 KinematicreconstructionoftheeasternAlgerianbasin xford jo etal.2002;Mauffretetal.2004;Schettino&Turco2006;vanHins- TheeasternAlgerianbasinformsa15000km2basinthatisbounded urn bergen et al. 2014) enhanced by slab tears to the west and to the bytheeasternAlgerianmargintothesouth,theSardiniaChannel als east,ingoodagreementwithtomographicstudies(Fig.1a;Spak- totheeast,theLiguro-Provencalbasintothenorth,andthewestern .org manetal.1993;Carminatietal.1998;Piromallo&Morelli2003; Algerianbasintothewest(Fig.1a).Itsoceanicnatureissuggested a/ Spakman&Wortel2004;Bezadaetal.2013;Palomerasetal.2014; byan∼400-km-wideand∼200-km-longsetofmagneticanoma- t IF R Thurneretal.2014),howeverthetimingandthegeometryofthe lies that trend N–S to NW–SW as they diverge southward within E M southwardEuropeanforearcmigrationarestillamatterofdebate. theeasternAlgerianbasin(Fig.1a,insert;Galdeano&Rossignol E R To the west, the westward rapid slab rollback under the Alboran 1977; Schettino & Turco 2006). Indeed, these are the only clear, o n SeawouldberesponsiblefortheMioceneopeningofthewestern regularlyorganized,magneticanomaliesthathavebeenidentified M Algerianbasin(Re´haultetal.1984;Gueguenetal.1998;Jolivet& inthewesternMediterraneandomain.Inotherpartsofthebasin, ay 2 Faccenna2000;Verge´s&Ferna`ndez2012;Medaourietal.2014; disorganizedmagneticanomalieshavebeeninterpretedasthere- 7 vanHinsbergenetal.2014).Here,thewestwardvergingslabwould sultofirregularandsporadicaccretionprocessesatthebackofthe , 20 1 stillbeattachedtothesurfacelithospherebeneaththeBeticandRif subduction zones, based on the atypical structure of the oceanic 5 belts,butwouldbedetachedundertheAlboran(Palomerasetal. crust (Contrucci et al. 2001; Rollet et al. 2002). In contrast, the 2014;Thurneretal.2014),wherethelithosphericmantlemightbe setofregularanomaliesobservedwithintheeasternAlgerianbasin drivenintotheasthenosphericmantle(Bezadaetal.2013;Palom- suggests that a steady oceanic accretion occurred in this part of erasetal.2014;Thurneretal.2014).Recentstudiesdevotedtothe the basin. The timing and geometries proposed for the formation crustalstructureofthewesternAlgerianmarginandtheadjacent ofthispartofthebasin,however,varyfromonemodeltoanother, basinhaveproposedthatthesurfaceexpressionoftheslabtearin mainly because the age of these anomalies is still not known. In thisareaisa‘STEP’fault(subduction-transformedgepropagator; the simplest model, the Algerian basin opened at the back of the Govers&Wortel2005)thatisedgingthewesternAlgerianbasinto AlKaPeCablocks,asitmigratedtothesouthwithanarcuateshape thesouth(Verge´s&Ferna`ndez2012;Medaourietal.2014;Badji (Gueguenetal.1998;Jolivet&Faccenna2000;Gelabertetal.2002; etal.2015)andfollowstheslabretreatparalleltothecontinent– Rosenbaumetal.2002;Rosenbaum&Lister2004b;Michardetal. oceanboundary(Medaourietal.2014;Badjietal.2015). 2006;Schettino&Turco2006).Thesetofregularanomalieswas Totheeast,thesubductionisstillactiveundertheopeningTyrrhe- explainedbyanoceanicaccretionstagethatresultedfromthecoeval nian basin (e.g. Jolivet & Faccenna 2000; Rosenbaum & Lister divergentsouthwarddisplacementoftheKabylies,andtheCorso– 2004a;Rosenbaumetal.2008;Gallaisetal.2013).Thewaythe Sardinian block toward the east (Gelabert et al. 2002), possibly slab migrated from the Kabylian area to its present-day position along a complex spreading system that involved transform faults isnotclear,mainlybecausetheevolutionoftheeasternAlgerian andtriplejunctions(Schettino&Turco2006). basinremainspoorlyunderstood.Inparticular,littleisknownabout Other models have proposed a two-stage oceanic opening. In its crustal structure, and that of its southern margin. While some these two-stage models, the south and southeast migration of the DeepstructureoftheeasternAlgerianmargin 1915 D o w n lo a d e d fro m h ttp ://g ji.o x fo rd jo u rn a ls .o rg a/ t IF R E Figure2. (a)Locationofthedatasetusedinthisstudy,superimposedonthebathymetricmapprovidedbyMaradja2/Samracruise(2005)(Kherroubietal. M E 2009)andbyETOPO11-minglobalrelief(www.ngdc.noaa.gov)intheoffshoredomain,andontheeasternAlgeriangeologicalmapintheonshoredomain R (Vila1978).ThegeologicalmapshowsthedifferentstructuralunitsofthestudyareaincludingtheInternalzones(LesserKabylia,Fig.1,LK)andExternal on zones(Tell).Ed,Edoughmassif;CDF,CapdeFer;An,Annababasin;Mm,Melle`gueMountainsandDi,Diapirarea.Reddots,OBSposition(numberedGHxx); M a Triangles,landstationposition(numberedSPxx);Redtriangles,stationswhichrecordedusabledata.Blacktriangles:stationsrecordedonlynoise.Whitelines: y 2 locationofthemultichannelseismiclines,magneticandgravitydataacquiredduringSPIRALcruise.Blacklines:locationoftheseismicreflection,gravityand 7, 2 magneticdataprovidedbySonatrach.Yellowlines:high-resolutionseismicprofilesacquiredduringMaradja2/Samracruise(2005).Redframe:locationofthe 0 1 areadisplayedin(b).Whitedottedline(OCT):ocean-continenttransitionalzoneafterthisstudy.(b)BathymetricmapofthestudyareafromMaradja2/Samra 5 cruise(2005)(Kherroubietal.2009)andfromETOPO11-minglobalrelief(www.ngdc.noaa.gov).CDF,capdeFer,Ed,Edoughmassif. AlKaPeCaandCorso-Sardiniablockswasfollowedbyoceanicac- ofthemarginfollowingtheslabtearandtheeastwardmigrationof cretionalongaNW–SEspreadingcentre,whichledtotheobserved theslabalongtheeasternAlgerianmargin,symmetricaltotheevo- regular anomaly pattern (Cohen 1980; Mauffret et al. 2004). As lutionproposedforthewesternAlgerianmarginbyMedaourietal. the Corso-Sardinia block is assumed to be fixed in its present- (2014)andBadjietal.(2015). day position from 15 to 18 Ma, this implies that an ∼400-km- wide oceanic domain opened toward the west. This might have 2.2 Geologyoftheonshoredomain beenaccommodatedeitherbyaN–Sintra-oceanicsubductionlo- cated at ∼5◦30(cid:5)E (Cohen 1980), or by the western migration of The north Algerian geology derives from the Tethys Ocean clo- theneo-formedoceanicflooralongatransformzonelocatednorth sure during the Algerian basin opening, and the subsequent col- of the Algerian margin (Mauffret et al. 2004). In the first case, lage of the AlKaPeCa blocks along the North African margin. theoceanicaccretionallowedthesouthwestwardmigrationofthe This is marked by the southward thrusting of the internal zones, LesserKabyliatowardtheAfricanmarginaftertheGreaterKabylia formedbythePalaeozoicEuropeancrystallophyllianbasementof collage (Cohen 1980). In the second case, the accretion occurred the AlKaPeCa blocks and its Mesozoic carbonated sedimentary afterthecoevalGreaterandtheLesserKabyliacollages(Mauffret cover,whichisrepresentedbythelimestoneofthe‘DorsaleKabyle’ etal.2004).Thesetwo-stagemodelswhereaccretionoccurredafter (Rivie`reetal.1977;Bouillin1979;Ge´ryetal.1981;Djellit1987; themaincollisionphasearecompatiblewithaSTEP-faultevolution Bracene2001),overtheexternalzonesformedbytheNorthAfrican 1916 B.Bouyahiaouietal. margin (Fig. 2a). The North African margin is composed of pa- 3 ACQUISITION, DATA QUALITY rautochthonousTellianunitsthatincludesedimentsfromTriasto AND PROCESSING Eocenetimes(Fig.2a),whichlieabovetheAfricanbasementthat Inthepresentstudy,newgeophysicaldatawasacquiredduringthe outcropsmorethan180kmsouthoftheshoreline.Betweenthein- SPIRAL cruise, which was conducted on the R/V Atalante (Ifre- ternalandexternalzones,thesuturezoneismarkedbyflyschunits mer) in September–November 2009, along the Algerian margin. of various ages. These correspond to allochthonous clastic sedi- Duringthiscruise,oneonshore–offshore,wide-angleseismicpro- mentdepositedintheclosedTethyanoceanicdomain,andinclude file(Fig.2a,WA-An),fourMCSlines,andmagneticandgravity theMassilianandMauritanianflysch,whichhavebeeninterpreted datawererecordedalongtheeasternmostpartoftheAlgerianmar- as Cretaceous deposits (Djellit 1987), and the Numidian flysch, ginandtheadjacentdeepbasin(Fig.2a,Spi18toSpi21).MCSLine which has been interpreted as Oligo-Miocene deposits (Bouillin Spi18iscoincidentwiththewide-angleseismicprofileWA-An. et al. 1970). These allochthonous flysch formations are found on The additional available data used included: (1) bathymetry the foreland, although they are also backthrusted on the internal and high-resolution seismic data acquired in 2005 during the zones(Fig.2a;Durand-Delga1969). Maradja2/Samra cruises (Fig. 2a, yellow lines; De´verche`re et al. Theonshorepartofthestudyareaincludesthedifferentunitsof 2005;Domzigetal.2006;Kherroubietal.2009;Yellesetal.2009); this Alpine collision zone: along the shoreline, the Edough Mas- (2) time-migrated industry seismic lines provided by Sonatrach sif (Fig. 2a, Ed) corresponds to a crystallophyllian basement that (Fig. 2a, lines L1 to L4) and (3) gravity and magnetic data (pro- iscomposedofavarietyofNeoproterozoicandPalaeozoicmeta- videdbyCRAAGandSonatrach;Fig.2a,linesL1–L4). morphicrock(Laouaretal.2002),whichislocallyoverlainbyal- lochthonousflysch,andhasintrusionsoferuptiverock(Hilly1962). Theoriginofthismassifhasbeendebatedforalongtime.Although 3.1 Wide-angleseismicdata atfirstitwasconsideredaspartoftheAfricanmargin(Vila1980; D o Bouillin 1986; Frizon de Lamotte et al. 2000 ; Cabyet al. 2001), Thecompleteonshore–offshoreprofileis240kminlength,along w n recentstudiesindicatethatitispartoftheEuropeanbasementthat which 42 ocean-bottom seismometers (OBS; Fig. 2a, red circles) lo a formstheeastwardextensionoftheLesserKabylia,andthusispart and25landstations(Fig.2a,redandblacktriangles)weredeployed. de d of the internal zones (Laouar et al. 2002; Bruguier et al. 2009). The average spacing between the OBS and between the land sta- fro SouthoftheEdoughMassif,thereisalargesedimentarybasinthat tionswas3and5km,respectively.TheOBSusedwereMicroOBS, m isformedbytheAfricanMesozoictoCenozoicsedimentarycover, MicroOBS+ and OldOBS from Ifremer (Auffret et al. 2004). http between the Mellegue Massif and the Saharan flexure, with this The land stations used were of the Geostar-2000, Geodevice and ://g area characterized by intense Triassic salt diapirism [Fig. 2a, ‘di- Kinemetricstypes. ji.o apirarea’(Di);Dubourdieu1956;Rouvier1977;ChikhiAouimeur Theseismicsourceusedforthewide-angleprofilewasa146-l xfo 1980; Pertthuisot & Rouvier 1992]. Between the diapir area and airgunarraytunedtothefirstpeak,whichwascomposedofeight rd jo theEdoughMassif,theE–Welongated,QuaternaryAnnababasin 16-l airguns and two 9-l airguns. The airgun array generated 807 urn extendsoveranareaof∼1200km2(Fig.2a,An).TheCretaceousto shotsalongtheprofile,every60s,leadingto150-mshotspacing. als Oligo-Mioceneflyschconsistsofseveralsheetsthatdeformedand The marine instrument positions were corrected for drift dur- .org stackedalongthrusts,toforman∼1.5-km-thicksedimentpilewith ingtheirdescenttotheseafloorusingthefirst-arrivaldirectwave. a/ acomplexinternalstructure(Hilly1962).TheNumidianflyschis Clock drift of the internal clock of the seafloor instruments was t IF R particularlywellrepresentedSEofAnnaba,whereitsoutcropsover correctedlinearly.Onfaroffsets,thesignal-to-noiseratiowasim- E M 3500km2 (Fig. 2a). The accurate location of the Alpine suture is proved by processing the OBS and land station data, to facilitate E R notknowninthestudyarea.Itisprobablylocatedunderneaththe arrival identification and interpretation. The processing sequence o n flyschcover,southoftheEdoughMassif,anditprobablyextends included:spectraldeconvolution(whitening),4–18Hzbandpassfil- M totheeastintheoffshoredomain(Fig.2a). tering(Butterworth),andautomaticgaincontrol. ay 2 Offshore,allOBSexceptone(whichwaslost;GH14)recorded 7 goodqualitydata(e.g.seeFigs3and4).FortheP-wavearrivals,the , 20 1 datashowedhighersignal-to-noiseratioontheverticalgeophone 5 2.3 Geologyoftheoffshoredomain componentthanonthehydrophoneandhorizontalgeophonecom- Little is known about the deep crustal structure offshore of the ponents,withcleararrivalsidentifiableuptoa65-kmoffsetinthe Annabaregion.Indeed,previousstudieshaveessentiallybeenbased deepbasin,anda50-kmoffsetatshallowwaterdepth(Figs3a,b, onhigh-resolutionseismicreflectiondata,whichresultedindetailed andAppendix1).S-wavearrivalswerealsoobservedonthehori- imagingoftherecentsedimentarycover.Thesedatashowthatthe zontalgeophoneof18OBSlocatedwithinthedeepbasin(Fig.5b, margin and the deep basin edge were reactivated by contraction blue dots) for offsets that ranged between ∼15km and ∼40km duringthePlio-Quaternary(Kherroubietal.2009),withtherecent (Fig.4).TheotherOBSdidnotshowanyS-wave,eitherbecausethe margininversionindicatedbyolderdeeppenetratingseismicpro- seafloorinstrumentswereequippedwithhydrophoneonly(Fig.5b, files(Mauffret2007).TheaverageMohodepth,asgivenbygravity blackdots),orbecauseS-wavesdidnotgetgeneratedorwerenot modelling of the European Plate, is of the order of 25km below detectableonthedatasetduetopoorsignal-to-noiseratio(Fig.5b, the margin and 15km below the deep basin (Grad et al. 2009). reddots). EastoftheAnnabaarea,theSardinianChannelisunderlainbya Fortheonshorepartoftheprofile,onlythe13stationslocated 10-km-thick to 25-km-thick continental basement that is overlain within an 80-km range from the shoreline recorded usable data by a 4-km-thick sedimentary cover, as shown by the wide-angle (Fig. 2a, red triangles). The absence of useful signals from the seismicdatafromtheEuropeanGeotraverseproject(Peirce&Bar- other stations was probably related to the lack of energy at large ton1992).ThebasementcropsoutonGaliteIsland(Fig.1a),and offsetand/ortocomplexgeologicstructuresthataffectedthewave thisisinterpretedaspartoftheinternalzones(Tricartetal.1994; propagation, rather than to dysfunction of the instruments. The Bouillinetal.1998;Mascleetal.2004;Belayounietal.2010). dataacquiredshowedgoodsignal-to-noiseratio,withidentifiable DeepstructureoftheeasternAlgerianmargin 1917 D o w n lo a d e d fro m h ttp ://g ji.o x fo rd jo u rn a ls Figure3. Examplesofrepresentativewide-anglesectionsrecordedalongWA-AnprofileandshowingP-wavearrivals.(a)and(b)OBSsections(GH39 .o andGH26,respectively)locatedwithinthedeepbasin,(c)land-stationsection(SP01)locatedonshore2kmsouthoftheshoreline.Theseseismicsections arg/ cAourtroemspaotnicdGtoaitnheCovnetrrtoicla(lAcGomC)p,ownietnhtare7ckomrdss.−T1hveeylowcietryerdedisupcltaiyoend.Rafetderlidnaetsa:ppricokcsesosfinthgeinficrslutdairnrigv:adlsecuosendvoflourtifiornstwahrriitveanlintogm,Bogutrtaeprhwyo.rthfilter(4–18Hz), t IFR E M E arrivalsforsomestations,to∼70kmdistance(Fig.3c,Appendix1). 1973)andthesmoothedNMO-velocitymodel;(7)multipleatten- R o NoS-waveswereobservedforthesesections. uation using the two complementary methods of surface-related n M multiple elimination based on the subtraction of a model of the a y multiple to the dataset (Berkhout & Verschuur 1997), and a 27 3.2 Multichannelseismicdata parabolic stack radon transform based on the velocity difference , 2 0 1 The SPIRAL MCS data (Fig. 2a, Spi18 to Spi21) were acquired between the multiples and the primaries (Bradshaw & Ng 1987); 5 usinga4.5-km-longstreamer(Ifremer)composedof360channels and(8)Kirchhoffpre-stacktimemigration.Thefinalpre-stacktime with a 12.5-m interval. The seismic source was an airgun array migrationvelocitymodelwasobtainedafterfiveiterationsofve- composedof13airgunsofvariousvolumestunedtothefirstbubble locity picking performed on migrated CMPs every 1250 m. The pulse,togeneratelow-frequencysignalsfordeeppenetration(dom- processed section was plotted after application of a two-window, inantfrequency,∼25Hz)(Avediketal.1993).Theseismicsource time-variant, Butterworth frequency filter of [3–8–20–30Hz] and usedatotalvolumeof3040cubicinches(49.8l),withaninter-shot [3–8–20–30Hz],appliedfromtheseabedtothetopoftheacous- of 20 s, which provided 50-m shot spacing. The MCS data were tic basement, and deeper than the top of the acoustic basement, recordedwitha4-mssamplerate. respectively(Fig.5). TheprocessingsequenceappliedtothedatausedtheGeocluster TheadditionalmultichannelseismiclinesL1toL4ofFig.2awere software (CGG Veritas package), and included: (1) quality con- acquiredandprocessedin2000byWestern-Geco(Cope2003)for trolofthedataset;(2)zero-phaseconversionofthesinglebubble Sonatrach.Theseismicsourceconsistedofatunedfirstpeakfroma wavelet;(3)commonmid-point(CMP)gathering(CMPdistance, sleeveairgunarrayof3000ci(45l)shotatapressureof∼2000psi 6.25 m; coverage, 45-fold); (4) reverse Q-filtering to remove the andtowedat6mindepth(Arabetal.2014;Medaourietal.2014). nonstationary phase components of the data, and external mute Theshotpointintervalwas25m.Thereceiverwasa480-channel fortheremovalofthestretchedpartofthesignaloftherefracted (12.5meach),6000-m-longstreamertowedat8mindepth.The waves;(5)normalmoveout(NMO)velocityanalysesperformedev- processingsampleintervalwas4msforaprocessingrecordlength ery200CMP(1250m),inthreesuccessiveiterations;(6)spherical of10000ms(Arabetal.2014).Theprocessingsequenceisdetailed divergence correction based on the compensation laws (Newman inMedaourietal.(2014). 1918 B.Bouyahiaouietal. D o w n lo a d e d fro m h ttp ://g ji.o x fo rd jo u rn a ls .o rg a/ t IF R E M E R o n M a y 2 7 Figure4. ExamplesofrepresentativesectionsrecordedwithinthedeepbasinalongWA-Anprofilefor(a)OBSGH16,(b)OBSGH26and(c)OBSGH33.The , 2 0 blackframesindicatethelocationofthezoomspresentedatthetopofeachseismicsection.ThebluedotspointouttheS-wavetraveltimesusedformodelling. 15 TheSwavescomefromP-waveconversionalongsubsurfaceinterfaces.Thethreeseismicsectionscorrespondtothehorizontalcomponentrecordsofthe OBSs.Theyweredisplayedafterdataprocessingincluding:deconvolutionwhitening,Butterworthfilter(4–18Hz),AutomaticGainControl(AGC),witha 4.5kms−1velocityreduction. 3.3 Gravityandmagneticdata ThedistancesbetweentheSPIRALprofiles,whichwereoftheor- derof12km,didnotprovideadequatecoverageforgravityandmag- Four gravity and magnetic profiles were acquired offshore of the neticanomalymapping,sothatexistingdataprovidedbySonatrach AnnabaareaduringtheSPIRALcruisealongtheMCSlines(Fig.2a, werealsoused(Fig.2a,blacklines).Theseexistingprofileshadan white lines). The gravity data were recorded with a 25-m inter- averagelengthof80km. stationspacing,usingaLockheedMartinBGM-5gravimeter.These dataweretiedtoabsolutegravityviaareferencepointlocatedin OranHarbor(Fig.1a)andusingaterrestrialScintrexCG3gravime- ter.Onegravitymeasurewasrecordedevery10s,afterfiltering.The 4 RESULTS instrumentdriftwaslinearlycorrectedbetweenties,beforeandafter thecruise.TheFreeAirandtheBougueranomalieswerecalculated 4.1 Morphology afterEo¨tvo¨scorrection,with1-mGalprecision.Themagneticdata wererecordedat150-m(60-s)intervals,usingaSeaSPYmagne- TheeasternmostAlgerianmarginischaracterizedbytwodistinct tometer,whichmeasuredthetotalintensityofthegeomagneticfield morphological domains, with the location of the wide-angle pro- withan∼0.2-nTprecision. file marking the limit between these two. West of the wide-angle DeepstructureoftheeasternAlgerianmargin 1919 D o w n lo a d e d fro m h ttp ://g ji.o x fo rd jo u rn a ls Figure5. Time-migratedMCSprofileSpi18(coincidentwiththewide-angleLineWA-An;seeFig.2aforlocation)withsuperimpositionoftheseismic .org interpretationoftheline(a),andtheP-wavevelocity–depthmodeldeducedfromforwardmodellingofthewide-angledataconvertedintoatwo-waytraveltime a/ section(b).ThedotsatthetopoftheseismicsectionmarkthelocationoftheOBS(Bluedots:Swavesobservedonthehorizontalgeophone;Reddots:noS t IF wavedetectedonthehorizontalgeophone;Blackdots:NoSwaverecordedbecausethereceiverswerehydrophonesonly). R E M E R o n line (Fig. 2b, the western margin segment), the continental shelf 4.2 Multichannelseismicdatainterpretation M a reaches a maximum width of 15km within the Skikda Bay, and y 2 reacheshalfthiswidthwestandeastofthebay,offshoreofCapde 4.2.1 Architectureoftheacousticunits 7, 2 Fer(Fig.2b,CDF).Thecontinentalslopeextendsover18kmand 0 showsaregular,abrupt,8◦averageslope.Thissectorismarkedby Theseismicinterpretationproposedbelowisbasedontheseismic 15 units defined in previous studies conducted on the Algerian mar- abundanterosivegulliesthatgenerallyrunparalleltotheslopeline. gin and within the adjacent deep basin. All of these studies use Offshore of Cap de Fer, the slope has a 12-km-wide, dome-like, the Messinian units (as mobile unit [MU] and upper unit [UU]) rounded shape (Fig. 2b, D). East of the wide-angle line (Fig. 2b, and surfaces (as Messinian erosion surface [MES]) for chrono- easternmarginsegment),thecontinentalshelffromAnnabaBayto stratigraphic markers, as they can be recognized easily in the theTunisianborderiswider(∼25km)(Figs2aandb).Here,the seismic lines (Auzende 1978 ; De´verche`re et al. 2005; Domzig slopeisgreater,andoftheorderof35km,anditismarkedbya 2006;Domzigetal.2006;Mauffret2007;Kherroubietal.2009; slopebreaklocatedmid-slope.Theslopeisgentle(4◦)initsupper Yellesetal.2009)andtheyhavebeenwelldated(5.96–5.32Ma; part,whichextendsover25km,andsharplyincreasesatthedeep Gautieretal.1994;Krijgsmanetal.1999).Wethusdefinedthree slopetoreach9◦onaverage. sedimentaryseismicunits,asMessinian(UU-MU),pre-Messinian Thedeepbasinshowsasmoothmorphologyandauniformdepth (Pre-MSC)andpost-Messinian(Plio-Quaternary,PQ)units,using throughout the study area, with a maximum depth of ∼2800 m. thenomenclatureproposedbyLofietal.(2011a,b)onthebasisof The seafloor depth gradually decreases east of Line Spi21, while arecentcompilationofMediterraneanstudies.Itshouldbenoted approachingtheSardiniaChannel(Fig.2a).Alongthecontinental that a Messinian lower unit (LU) is observed locally within the slopeandbetween7◦35(cid:5)Eand8◦00(cid:5)E,a∼2500-m-deep,∼27-km- Mediterranean Sea below a MU (Lofi et al. 2011a,b ; Arabet al. long step overhangs the rest of the abyssal plain (Fig. 2b, ST). 2014). However, because the Messinian LU could not be clearly Thisstepwasinterpretedastheresultofrecentmarginreactivation identifiedinthelow-resolutiondatasetofthestudy,itwasincluded (Kherroubietal.2009). inthePre-MSCunitinourinterpretationoftheseismicdata. 1920 B.Bouyahiaouietal. Figure6. Time-migratedMCSLineSpi21(seeFig.2aforlocation)andseismicinterpretation.PQ,Plio-Quaternaryunit;UU,upperMessinianunit;MU, mobileMessinianunit;Pre-MSC,pre-Messinianunit.Inthenorthernpartoftheseismicline,thereflectormarkingthetopofthebasementisweak,andliesata constantdepthof∼5.8stwtt,whereasitismorecontinuousandshallowerinitssouthernpart.Thischangeinthetopofthebasementmorphologycorresponds Do w toachangeintheMessinianunitfacies,fromroughtosmooth. n lo a d 4.2.2 Acousticunitsinthedeepbasin whichwasoftheorderof∼0.6stwtt,hasbeenexplainedbyPlio- ed Quaternarycontractivedeformationofthemargin(Kherroubietal. fro AlongthemainMCSprofile(Spi18),whichiscoincidentwiththe m wide-angleprofile,theMessinianunitsformaclearsetofreflectors 200S9im).ilarfaciesanddistributionoftheshallowestacousticunitsare http withinthesedimentarycoverobservedbetween4-sand5-stwo-way observedthroughoutthedeepbasinofthestudyarea.Inparticular, ://g travel times (stwtt) in the deep basin (Fig. 5, Spi18). These units thediscontinuousbasementtopshowsauniformdepthof∼5.8stwtt ji.o consistoftheUUandtheunderlyingMU.TheUUis∼0.35-stwtt through the deep basin, ∼15km from the slope toe and beyond. xfo thick,andhasatypicallayeredfaciesthatshowshighamplitude, rd In the ∼15-km-wide area that bounds the margin, the top of the jo and high continuity reflectors (Lofi et al. 2011a). Below UU, the u MUformsfoldsanddiapirs.ThetopoftheMUisobservedat∼4.4 basementhasenhancedcontinuityandsmoothermorphologyasit rna stwtt,whichismostlythesamedepthaselsewhereinthewestern deepens,toreach6.5stwttto6.9stwtt,asthePre-MSCunitisthicker ls.o inthisarea.Anexceptionistheeasternmostpartofthearea,where rg M20e1d1iate).rrWaneeannot(eDaomslizgihgt2c0h0a6n;geKihnertrhoeubMieestsianli.an20u0n9it;fLacoifiesetaanld. sthloepbeastoeem(eFnitgt.o6p).liHesearet,∼it5i.5stshtwusttsohvaellroaw3e5r-tkhmandeislstaenwcheefrreoimntthhee at IFR/ deformation along the seismic line. Close to the margin, the UU E vicinity of the margin. All along the eastern part of the Algerian M reflectorsappeartobecontinuousandthesalttectonicsarechar- margin,thechangesinthebasementtopgeometryandfaciestoward ER amcatergriizne,dnubmyewroeluls-ddeisaipginrsedoffsomldasllaenrdsidzieaipnitresr,rwuphtetrheeasUfUarrferfloemcttohres tahceoumstaircgfinaccieosindceisdceriwbeitdhatbhoevleatfeorraLlicnheanSgpei1i8n.theMessinianunit on M (uFniigt,.s5o).thHateirtei,stdhieffirceusultlttoisdeaficnoemthpeleexxasctrtuschtaupreeooffththeeMMUesdsiianpiiarns At CMP number ∼8000 along Line Spi18, an ∼15-km-wide ay 27 amongadiscontinuousUUunit.TheseMessinianunits(UU,MU) TrehlieefMiesssfionrimanedanbdypothset-Mtoepssoinfiathneunpirtes-Mbeevseslinoinanthuenrietli(eFfigsi.d5es),. , 201 pinchoutalongthemargintoeat2.6stwttand4.0stwtt,respectively 5 whereas the pre-Messinian reflectors dip gently toward the relief (Fig.5). edges.ThisreliefisalsoobservedalongLineSpi19(seeFig.2afor AbovetheMessinianunits,thePQunitischaracterizedbyhigh location),atitsjunctionwithinLineSpi18. continuity,lowamplitudereflectors.ThePQunitthickensfromthe centralpartofthedeepbasintothemargintoe,from∼0.3stwttto ∼1stwtt. 4.2.3 Acousticunitsonthecontinentalmargin BelowtheUUandMUunits,thePre-MSCunitischaracterized bysub-horizontalstratification,especiallyatthesouthernedgeof AlongLineSpi18,belowthecontinentalslopeandthecontinental the basin below the bathymetric step (Fig. 5, ST). The Pre-MSC shelf,theMessinianeventischaracterizedbyaMESthattruncates unitshowsarelativelyconstantthicknessinthecentralpartofthe theunderlyingreflectors(Fig.5).AbovetheMES,thePQunithas deepbasin(∼1–1.2stwtt),tothenorthernedgeofthebathymetric athicknessofbetween0.1stwttand0.5stwtt.UndertheMES,the step.Here,thethicknessofthePre-MSCunitsharplyincreases,to upperpartofthePre-MSCunitischaracterizedbysetsofdipping reach∼1.7stwttbelowthebathymetricstep. reflectorswithoppositedip(Fig.5).Togofurtherintotheseismic Farfromthemargin,thetopoftheacousticbasementismarked interpretation of the seismic units along the margin, we used the by an irregular, discontinuous reflector at ∼5.8 stwtt depth. As high-resolutionseismiclinesavailableinthestudyarea,whichshow this approaches the margin, it shows enhanced continuity and it differentimagesbetweentheeasternandwesternsegmentsofthe deepensto6.5stwtt(Fig.5).Atthebasinedge,thePre-MSCand studyarea. MSCunitsarefoldedandupliftedbelowthebathymetricstep.The Alongtheeasternsegmentofthestudyarea,whichismarkedbya verticalthrowoftheseismicmarkersalongthenorthernstepedge, smoothmorphology(Fig.2b),thehigh-resolutionseismicreflection DeepstructureoftheeasternAlgerianmargin 1921 D o w n lo a d e d fro m h ttp ://g ji.o x fo rd jo u rn a ls .o rg a/ t IF R E M E R o n M a y Figure7. Seismicreflectionlinesandseismicinterpretationillustratingthemarginstructureeastofthewide-angleLineWA-An/Spi18(a,b),andwestof 2 7 these(c).(a)Time-migratedMCSprofileL4(seeFig.2aforlocation)providedbySonatrachanditszoomofthislineonthemarginseismicimage(b).The , 2 pre-MessinianunitsFb(bedded)andFc(chaotic)formsubunitsbelowtheMessinianErosionSurface(MES).Eachsubunitshowsitsownreflectivityand 01 5 deformationpatterns.Thesubunitslimitsareusuallysharpandmarkedbyclearunconformities.Fb-FcsubunitslieinunconformityoveradeepersubunitMio, characterizedbylow-frequencyreflectorsthatappearlessdeformedthanFb-Fcreflectors.(c)Time-migratedMCSprofileL1(seeFig.2aforlocation)provided bySonatrach.WestofLineWA-An/Spi18,thePQunitisthin,andonlyafewreflectorsarelocallyobservedjustbelowthePQunit.Theserarereflectorsshow poorlateralcontinuityandchaoticorganization,exceptatthedeepmargin,wherePre-MSCreflectorsareclearlyidentifiedoverathicknessoffewhundreds ofmillisecondsoftwo-waytraveltime,withanunusuallyhighdipcomparedtothearealocatedeastofthewide-angleLineWA-An. linesshowthatthePre-MSCunitcanbesplitintothreeunits:Fb, preventsseismicimagingofthesub-unitreflectors(seeforexample Fc, and Mio (Figs 7a and b). The Mio forms the deepest unit at Fig.7b,forCMPnumbers∼1500to2000,or2200to2600).The thetopoftheacousticbasementandisoverlaininunconformityby densityoftheavailableseismiclinesisnotsufficienttodefinethe FbandFc,whichdifferfromeachotheraccordingtotheiracoustic three-dimensional(3D)accuratespatialorganizationoftheFband facies. The seismic unit Fb is characterized by clear sub-parallel Fcsub-units.Itishoweverclearthattheyarefoldedinthelinesshot reflectors, whereas Fc is devoid of reflectors, or shows a chaotic both parallel and perpendicular to the margin, and that the sharp pattern(Fig.7b).TheFbandFcunitscanbedividedintosub-units contactbetweenthefoldedsub-unitsistectonicratherthanerosive that show lateral extensions of ∼5km to∼12km. Each Fb and (Figs7aandb).Asthenumerousfoldsimplyacontractivetectonic Fcsub-unitischaracterizedbyitsowndeformationandreflectivity environment,thesecontactsareinterpretedasthrusts,whichleadto patterns,andthecontactbetweenthesub-unitsissharpandisusually thestackingofthesubunitsoverthicknessesthatlocallyreach∼1.4 markedbyclearunconformities(Fig.7b).Locally,lateralchangesin stwtt(Fig.7a;i.e.∼2800m,accordingtothevelocity–depthmodel). reflectivityinsidesomeofthesub-unitsaccompanyincreasesinthe The seismic lines show that the Fb and Fc subunits are observed reflectordip,whichsuggeststhatacomplexinternalorganization belowtheslopeanduptotheshelfbreak,whichislocated∼20km

Description:
and adjacent deep basin: implications for late Cenozoic geodynamic evolution of the western Mediterranean. B. Bouyahiaoui,1 F. Sage,2 A. Abtout,1
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.