ebook img

Critical Point Theory - Sandwich and Linking Systems PDF

347 Pages·2020·3.409 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Critical Point Theory - Sandwich and Linking Systems

Martin Schechter Critical Point Theory Sandwich and Linking Systems Martin Schechter Critical Point Theory Sandwich and Linking Systems MartinSchechter Brooklyn,NY,USA ISBN978-3-030-45602-3 ISBN978-3-030-45603-0 (eBook) https://doi.org/10.1007/978-3-030-45603-0 MathematicsSubjectClassification:35A15,35B38,49J40,58E05,70G75,35-02,47-02,49-02,58-02 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland (cid:2)(cid:2) BS D Tomywife,Deborah, ourchildren,ourgrandchildren, ourgreatgrandchildren, andourextendedfamily. Maytheyallenjoymanyhappyyears. Preface The Purposeofthe Book Manyproblemsarisinginscienceandengineeringcallforthesolvingofnonlinear partialdifferentialequationsorsystems.Theseequationsaredifficulttosolve,and there are very few general techniques that can be applied to solve them. Different equationsseemtorequiredifferentmethodsofsolution.(Ofcourse,somenonlinear equationshavenosolutions.)However,itwasnoticedthatmanyoftheseequations areEulerequationsoffunctionals(i.e.,functionsfromsomespacetoR).Thismeans thatforeachequationthereisaC1 functionalG(u)suchthatanysolutionuofthe equationsatisfies G(cid:2)(u)=0. (1) (Here C1 refers to continuously differentiable functions.) As an illustration, the equation −(cid:2)u(x)=f(x,u(x)) istheEulerequationofthefunctional (cid:2) 1 G(u)= (cid:3)∇u(cid:3)2− F(x,u(x))dx 2 onanappropriatespaceS,where (cid:2) t F(x,t)= f(x,s)ds, (2) 0 andthenormisthatofL2.(Here (cid:3)n ∂2u(x ,x ,··· ,x ) (cid:2)u(x)= 1 2 n , ∂2x k=1 k vii viii Preface ∇u=(∂u(x)/∂x ,∂u(x)/∂x ,··· ,∂u(x)/∂x ), 1 2 n and (cid:2) (cid:3)u(cid:3)2 = |u(x)|2.) S The solving of the Euler equation is tantamount to finding critical points of the corresponding functional. This has motivated researchers to study critical points of functionals in order to solve the corresponding Euler equations and systems. It has led to the development of several techniques to find critical points. In many cases,thesetechniquesleadtoresultssuperiortothoseobtainedbyothermethods ofsolvingtheseequations.Thisvolumeisdedicatedtothelatestdevelopmentsand applicationsofthesetechniques. In order to explain the nature of the problem, we describe in detail the one- dimensionalcase. AOne-DimensionalProblem Considertheproblemoffindingasolutionof −u(cid:2)(cid:2)(x)+u(x)=f(x,u(x)), x ∈I =[0,2π], (3) undertheconditions u(0)=u(2π), u(cid:2)(0)=u(cid:2)(2π). (4) We assume that the function f(x,t) is continuous in I ×R and is periodic in x withperiod2π.Inordertosolveit,youmayfirstwanttosolvethelinearproblem correspondingto(3),(4),namely −u(cid:2)(cid:2)(x)+u(x)=f(x), x ∈I =[0,2π], (5) undertheconditions(4),wherethefunctionf(x)iscontinuousinI andisperiodic inx withperiod2π.Afterasubstantialcalculation,onefindsthatthereisaunique solutiongivenby (cid:2) x u(x)=Aex +Be−x + sinh(t −x)f(t)dt, (6) 0 where (cid:2) e2π 2π 2A= e−tf(t)dt (7) e2π −1 0 Preface ix and (cid:2) e−2π 2π 2B = etf(t)dt. (8) 1−e−2π 0 Canthissolutionbeusedtosolve(3),(4)?Itcaniff(x,t)isboundedforallx andt.Forthen,wecandefine (cid:2) x Tu(x)=A(u)ex +B(u)e−x + sinh(t −x)f(t,u(t))dt, (9) 0 where (cid:2) e2π 2π 2A(u)= e−tf(t,u(t))dt (10) e2π −1 0 and (cid:2) e−2π 2π 2B(u)= etf(t,u(t))dt. (11) 1−e−2π 0 Thenasolutionof(3),(4)willexistifwecanfindafunctionu(x)suchthat Tu(x)=u(x), x ∈I. (12) SuchafunctioniscalledafixedpointoftheoperatorT.Allsolutionsof(3),(4)are fixedpointsoftheoperatorT.Inthepresentcase,onecanshowthatthereisindeed a fixed point for the operator T when f(x,t) is bounded. If more than one exists, thereisnoorganizedwayoffindingallofthem. However,thereisanotherwayofsolving(3),(4)calledthevariationalapproach. Ifu(x)isasolution,thenwehave (u(cid:2),v(cid:2))+(u,v)=(−u(cid:2)(cid:2)+u,v)=(f(·,u),v) forallv ∈C1(I)satisfying(4).Here, (cid:2) 2π (u,v)= u(x)v(x)dx, 0 C1(I)isthesetofcontinuouslydifferentiableperiodicfunctionsonI,andweused thefactthatnoboundarytermsariseintheintegrationbyparts.Theexpression (u,v) =(u(cid:2),v(cid:2))+(u,v) (13) H isascalarproductcorrespondingtothenorm (cid:3)u(cid:3) =((cid:3)u(cid:2)(cid:3)2+(cid:3)u(cid:3)2)1/2. (14) H x Preface Thus,asolutionof(3),(4)satisfies (u,v) =(f(·,u),v) (15) H forallv ∈ C1(I)satisfying(4).WeletH bethecompletionofperiodicfunctions inC1(I)withrespecttothenorm(14). In searching for solutions of (3) and (4), we look for functions u ∈ H which satisfy(15).If{u }isaCauchysequenceinH offunctionsinC1(I),then k (cid:3)u −u (cid:3)→0, (cid:3)u(cid:2) −u(cid:2)(cid:3)→0. j k j k Thismeansthattherearefunctionsu,h∈L2(I)suchthat u →u, u(cid:2) →h in L2(I). (16) k k Notethat (u ,v(cid:2))=−(u(cid:2),v), v ∈C1(I), (17) k k byintegrationbyparts.Thusinthelimit, (u,v(cid:2))=−(h,v), v ∈C1(I). (18) Ifu∈C1(I), h∈L2(I),and(18)holds,thenh=u(cid:2)a.e. Now, suppose that u ∈ L2(I) and there is an h ∈ L2(I) such that (18) holds. Notethathisunique.EventhoughuisnotinC1(I)andwedonotknowwhether ornotithasaderivativeatanypoint,wedefinethe“weak”derivativeofutobeh (cid:2) anddenoteitbyu.Itbehaveslikeaderivativewithrespecttointegrationbyparts. Since H is the completion of C1(I) with respect to the norm given by (14), then everyfunctioninH hasaweakderivativeinL2(I).Conversely,everyfunctionin L2(I)thathasaweakderivativeinL2(I)isinH. Although functions in H need not be in C1(I), they are in C(I), the set of continuousfunctionsonI.Infact,thereisaconstantK suchthat |u(x)|≤K(cid:3)u(cid:3) , x ∈I, u∈H. (19) H Moreover, u(0)=u(2π). (20) Moreprecisely,everyfunctionu ∈ H isalmosteverywhereequaltoafunctionin C(I).Inequality(19)holdsforthecontinuousfunctionequaltoua.e.,i.e.,itholds foruifweadjustitonasetofmeasurezerotomakeitcontinuous.Thesameistrue of(20).Moreover,ifthesequence{u }convergesinH,thenitconvergesuniformly k onI.Wealsohave Preface xi Theorem1 Iff ∈L2(I), u∈H,and (u,v) =(f,v), v ∈C1(I), (21) H thenu(cid:2) ∈H andu(cid:2)(cid:2) =(u(cid:2))(cid:2) =u−f.Inparticular,u(cid:2) iscontinuousinI andisthe (cid:2)(cid:2) derivativeofuintheusualsense.If,inaddition,f isinC(I),thenu iscontinuous in I, and u(cid:2)(cid:2) = u−f in the usual sense. In particular, it is a solution of (3), (4). Consequently,u∈H isasolutionof(3),(4)iffitsatisfies(15)forallv ∈H. Assumethatf(x,t)isacontinuousfunctiononI ×Rsatisfying |f(x,t)|≤C(|t|+1), x ∈I, t ∈R. (22) Welet (cid:2) 1 2π G(u)= (cid:3)u(cid:3)2 − F(x,u(x))dx, (23) 2 H 0 where (cid:2) t F(x,t)= f(x,s)ds. (24) 0 NotethatG(u)isdefinedonH. Next,wecalculatethederivativeofG.Wehave 1 G(u+εv)−G(u)= ((cid:3)u+εv(cid:3)2 −(cid:3)u(cid:3)2 ) 2 H H (cid:2) 2π − [F(x,u+εv)−F(x,u)]dx 0 1 = ((cid:3)u(cid:3)2 +2ε(u,v) +ε2(cid:3)v(cid:3)2 −(cid:3)u(cid:3)2 ) 2 H H H H (cid:2) (cid:2) 2π 1 d − F(x,u+εθv)dθdx dθ 0 0 (cid:2) (cid:2) 1 2π 1 =ε(u,v) +ε2 (cid:3)v(cid:3)2 −ε f(x,u+εθv)vdθdx. H 2 H 0 0 Hence, (cid:2) 2π [G(u+εv)−G(u)]/ε−(u,v) + f(x,u)vdx H 0 (cid:2) (cid:2) ε 2π 1 = (cid:3)v(cid:3)2 − [f(x,u+εθv)−f(x,u)]vdθdx. 2 H 0 0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.