ebook img

Critical Number of Flavours in QED PDF

0.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Critical Number of Flavours in QED

Critical Number of Flavours in QED A. Bashir1, C. Calcaneo-Roldan2, L.X. Gutiérrez-Guerrero1 and M.E. Tejeda-Yeomans2 1Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia, Michoacán 58040, México. 2Departamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, Hermosillo, Sonora 83000, México. Wedemonstratethatinunquenchedquantumelectrodynamics(QED),chiralsymmetrybreaking ceases to exist above a critical number of fermion flavours N . This is a necessary and sufficient 1 f consequenceofthefactthatthereexistsacriticalvalueofelectromagneticcouplingαbeyondwhich 1 dynamical mass generation gets triggered. We employ a multiplicatively renormalizable photon 0 propagator involving leading logarithms to all orders in α to illustrate this. We study the flavour 2 andcouplingdependenceofthedynamicallygeneratedmassanalyticallyaswellasnumerically. We n alsoderivethescalinglawsforthedynamicalmassasafunctionofαandN . Uptoamultiplicative f Ja constant, these scaling laws are related through (α,αc) ↔ (1/Nf,1/Nfc). Calculation of the mass anomalous dimension γm shows that it is always greater than its value in the quenched case. We 8 alsoevaluatetheβ-function. Thecriticalityplaneisdrawninthe(α,N )phasespacewhichclearly f 2 depictshowlarger N isrequired torestore chiral symmetryfor an increasing interaction strength. f ] h PACSnumbers: 12.20.-m,11.30.Rd,11.15.Tk p - p Theβ-functiondeterminestherunningofthecoupling function renormalization in the bare vertex approxima- e constant. In quantum chromodynamics (QCD), its evo- tion was obtained in [8]. In this article, we demonstrate h lution, both in the ultraviolet and infrared, is crucially that the unquenched QED also has a critical number [ influencedbythenumberoflightquarkflavours. Virtual of flavours Nc above which chiral symmetry is restored. f 1 quarksandgluonscontributetoits perturbativetailina ThestartingpointistheSDEfortheelectronpropagator v diametricallyopposedmannerandthevalueofN deter- 8 mineswhichwouldbethedominanteffect. QCDefxhibits S−1(p)=S−1(p)+ie2 d4kγµS(k)Γν(k,p)∆ (q),(1) 5 asymptotic freedom because N happens to be less than 0 Z µν 4 f 5 a critical value of Nfc1 = 16.5. Lattice studies in the where q = k−p, e is the electromagnetic coupling and 1. infrared indicate that just below this value, chiral sym- S0−1(p) = 6p is the inverse bare propagator for mass- 0 metry remains unbroken and colour degrees of freedom less electrons. We parameterize the full propagator 1 are unconfined [1]. Below this conformal window, for an S(p) in terms of the electron wave function renormal- 1 8<Nfc2 <∼12,theevolutionofthebetafunctioninthe ization F(p2) and the mass function M(p2) as S(p) = v: infraredis suchthat QCD enters the phase ofdynamical F(p2)/(6p−M(p2)). ∆µν(q) is the full photon propaga- i mass generation (DMG) as well as confinement. QCD is tor which can be conveniently written as X not the only gauge theory where infrared dynamics re- r sponds to the number of fermion flavours in such a dra- G(q2) qµqν qµqν a maticfashion. IthasbeenestablishedthatQED3possess ∆µν(q)=− q2 (cid:18)gµν − q2 (cid:19)−ξ q4 , (2) a critical number of flavours Nc3 associated with the si- f whereξ isthecovariantgaugeparametersuchthatξ =0 multaneous emergence of dynamicalmasses and confine- corresponds to the Landau gauge. G(q2) is the photon ment if the electron wave function renormalization,pho- renormalization function. The full electron photon ver- ton vacuum polarization and electron photon vertex are tex is represented by Γµ(k,p). The form of the full ver- homogeneous functions at the infrared momenta, [2, 5]. texistightlyconstrainedbyvariouskeypropertiesofthe See [3] and [4] for some original works on DMG in QCD gaugetheory,[9], e.g.,multiplicative renormalizabilityof and QED3, respectively, through the Schwinger-Dyson the fermion and the gauge boson propagators, [10, 11], equations (SDEs). perturbation theory, [12], the requirements of gauge in- One ponders if suchcriticality also characterizesother variance/covariance,[13–17]andofcourse,observedphe- gauge theories in a similar manner. In this paper, nomenology,[18]. Themostgeneraldecompositionofthis we study the flavour dependence of DMG in QED4 or vertexintermsofitslongitudinalandtransversecompo- QED, [6]. For large α, it is known to exhibit chiral nents is symmetrybreakinginthe oneloopapproximationofthe 4 8 photonpropagator,[7]. Aconsistentsolutionforcoupled Γµ(k,p)= λ (k,p)Lµ(k,p)+ τ (k,p)Tµ(k,p),(3) i i i i equationsforthefermionmassfunctionandphotonwave Xi=1 Xi=1 2 Nf αAc αNc α NfcA NfcN The coefficient λ3, which enters into the description of 0.5 1.69 1.7405 2.5 1.18 1.0253 massivefermions,isirrelevanttothepowerlawbehaviour 1.0 2.27 2.4590 3.0 1.54 1.3205 of both F(p2) and G(q2). However, it is intimately re- lated to the value of the anomalous dimension γ for 1.5 2.94 3.3056 3.5 1.86 1.6209 m the fermion mass function. In the quenched theory, the 2.0 3.74 3.9879 4.0 2.15 2.0123 ultraviolet behaviour of M(p2) can be expressed as TABLEI:Wetabulateanalytical(indicatedwithsuperscript M(p2)∼(p2)γm/2−1 (7) A)andnumericalvalues(indicatedwithsuperscriptN)ofαc for different valuesof N , and Nc for different valuesof α. in the deep Euclidean region. At criticality, the mass f f functionbehavesasEq.(7)atallmomenta. Ifthe trans- verse vertex vanishes in the Landau gauge, γ = 1.058, m where Lµ = γµ, Lµ = (k+p)µ(6k +6p), Lµ = (k +p)µ see e.g. [19]. However, Holdom and Mahanta [20], using 1 2 3 and Lµ = σµν(k+p) , where σµν = [γµ,γν]/2. The co- the arguments based on the Cornwall-Jackiw-Tomboulis 4 ν efficientsλi aredeterminedthroughtheWard-Takahashi (CJT) effective potential technique, have shown that γm identity relating the electron propagator with the elec- is strictly equal to 1. The importance and usefulness of tron photon vertex [23] : employing the bare vertex was also stressed in [21]. If it were true that γ = 1, this would suggest that there is m 1 1 1 a necessary piece in the transverse part of the effective λ (k,p) = + , 1 2(cid:20)F(k2) F(p2)(cid:21) vertexwhichdoesnotvanishintheLandaugauge. Com- 1 1 1 1 plete calculation of the fermion-boson vertex at the one λ2(k,p) = 2k2−p2 (cid:20)F(k2) − F(p2)(cid:21) , loopinarbitrarygaugeanddimensions,[22],revealsthat the transverse part of the vertex indeed does not vanish 1 M(k2) M(p2) λ (k,p) = − − (4) inthe Landaugaugein anyspace-time dimensions. This 3 k2−p2 (cid:20)F(k2) F(p2)(cid:21) fact may possibly favour Holdom’s arguments. Thus it may well be that the non-zero transverse piece in the andλ (k,p)=0. Asimplechoiceofthetransversecoeffi- 4 Landaugaugecancelsouttheλ pieceofthelongitudinal cientswhich,combinedwiththelongitudinalcomponent, 3 component in the equation for the mass function. Con- renders both F(p2) the G(q2) multiplicatively renormal- sidering this argument, one such vertex was constructed izable for massles fermions, has been constructed only in [15]. Following suit, consider the following full vertex recently[11]. The longitudinalcoefficientλ playsa cru- 1 cial role in ensuring the correct leading logarithms are Γµ(k,p) = Γµ (k,p)+Γµ (k,p)+Γµ(k,p). (8) BC KP A summed up for the photon wave function renormaliza- As the subscripts indicate, Γµ (k,p) is the longitudinal tion. Similarly λ2 dictates the multiplicativerenormaliz- Ball-Chiuvertex,definedbyEBqC.(4),Γµ (k,p)isthepro- abilityofthephotonpropagator. Usingthisinformation, posalbyKizilersuandPennington,EqK.P(6), andΓµ(k,p) the ansatz proposed in [11] makes use of the following A is the additional transverse piece which minimally en- four transverse basis vectors as suggested by Ball and sures γ = 1 in the quenched case. With this choice of m Chiu, [23] : the full vertex, we obtain, in the massless limit T2µ(k,p) = pµk·q−kµp·q , F(p2)= p2 ν G(q2)= q2 s , (9) Tµ(k,p) = q2γµ−qµ6q , (cid:18)Λ2(cid:19) (cid:18)Λ2(cid:19) 3 T6µ(k,p) = −γµ(k2−p2)+(k+p)µ6q , where ν = αξ/(4π), s = αNf/(3π), α = e2/(4π) and Tµ(k,p) = −γµkλpνσ +kµ6p−pµ6k . (5) N is the number of massless fermion flavours. All main 8 λν f conclusions are robust under different truncations, e.g., The corresponding coefficients are chosen to depend for 1-loop logarithmic photon propagator and for a re- upon F(p2) in the following simple manner : summationofthepropagatorsbeyondleadinglogs. Near criticality,wherethegeneratedmassesaresmall,onecan −4 1 1 2 τ = − − assume that the power law solutions for the propaga- 2 3(k4−p4)(cid:20)F(k2) F(p2)(cid:21) 3(k2+p2)2 tors capture the correct description of chiral symmetry 1 1 1 F(q2) F(q2) breaking. We choose to study the resulting equation for × + ln + , (cid:20)F(k2) F(p2)(cid:21) (cid:20)2(cid:18)F(k2) F(p2)(cid:19)(cid:21) the mass function in the convenient Landau gauge. Re- sults for any other gauge canbe derivedby applying the 5 1 1 1 τ3 = 12(k2−p2)(cid:20)F(k2) − F(p2)(cid:21)+ 3(k2+p2) Landau-Khalatnikov-Fradkintransformations[5,17,24]. The usual simplifying assumption G(q2) = G(k2) for 1 1 1 F(q2) F(q2) k2 > p2 and G(q2) = G(p2) for p2 > k2 allows the ana- × + ln + , (cid:20)F(k2) F(p2)(cid:21) (cid:20)2(cid:18)F(k2) F(p2)(cid:19)(cid:21) lytical treatment of the linearized equation for the mass −1 1 1 function : τ6 = 4(k2+p2)(cid:20)F(k2) − F(p2)(cid:21) , g(p2) p2 Λ2 M(k2) M(p2)= dk2M(k2)+ dk2 g(k2),(10) τ8 = 0. (6) p2 Zm2 Zp2 k2 3 FIG. 1: The mass function for different values of α. FIG. 2: The mass function for a fixed α and varying N . f As N is reduced, the mass function drops significantly for f increasingly small variations in N , suggesting the existence where g(q2) = 3αG(q2)/(4π) and we have introduced f of a critical numberof flavours. ultraviolet cut-off Λ2. The infrared cut-off m2 mimics the M2(k2) term in the denominator which has been dropped off. It is already known that for the one loop where γ =−s/2, λ= (1−s)/2, A =(1−s)/s and B = photon propagator, there exists a critical coupling α 3α(1−s)/(πs2). Moreover, we have assumed s < 1. c above which masses are dynamically generated. One Epq. (13) has the solution can formally demonstrate that the existence of critical W(z) = C J (z)+C Y (z), (14) coupling implies the existence of a critical number of 1 A 2 A flavours above which chiral symmetry is restored. Note where J (z) and Y (z) are the Bessel functions of the A A that in Eq. (10), G(q2) ≡ G(q2,αNf). Instead of work- first and the second kind respectively. The boundary ′ ing with the variables (α,Nf), if we define α = αNf, conditions get translated as ′ we could equally work with (α,N ). In such case, f g(q2) = 3α′G(q2)/(4Nfπ) with G(q2) ≡ G(q2,α′). If we ′ 1−s−λ hold α′ constant, the effective coupling is 1/Nf. There- W (z)= γB W(z)(cid:12)(cid:12) , fore, the presence of an α implies the existence of an (cid:12)z=B Nc. The critical behaviocur should thus translate as Λ2 γ (cid:12)(cid:12) f αW(z)+γB W′(z)=0 . (15) i(cαa,lααc), →ther(e1/wNifll,1b/eNnfco).crMitoicraelovNerf,.ifWtheersehailsl ndoemcorint-- (cid:18)m2(cid:19) (cid:12)(cid:12)(cid:12)(cid:12)z=B(cid:16)mΛ22(cid:17)γ strate this explicitly for the multiplicatively renormaliz- (cid:12) These conditions allow us to find the constants C and 1 able photonpropagator. Let us makethe changeofvari- C , and the equation for the mass m : ables x = Λ2/p2 and convert the integral equation (10) 2 into a second order differential equation 2λJA(z)+γB Λ2/m2 γ[JA−1(z)−JA+1(z)] x2M′′(x)+sxM′(x)+ 34απ(1−s)Mx(sx) =0 (11) 2λYA(z)+γB(cid:0)(Λ2/m2)(cid:1)γ[YA−1(z)−YA+1(z)](cid:12)(cid:12)(cid:12)(cid:12)z=B(cid:16)mΛ22(cid:17)γ withthefollowinginfraredandultravioletboundarycon- = γB[JA−1(B)−JA+1(B)]−2(1−s−λ)JA(cid:12)(B) .(16) ditions respectively γB[YA−1(B)−YA+1(B)]−2(1−s−λ)YA(B) M(1)=M′(1)/(1−s), M′(Λ2/m2)=0. (12) Critical α or Nf can be obtained from this equation by requiringittoholdtrueforΛ→∞. Thisimpliesfinding Eq.(11)canbeconvertedintoaBesselequationthrough the zeros of the equation Lommel transformations : z = Bxγ, W = x−λM. Thus we workwith W(z)instead ofM(x). The corresponding γB[JA−1(B)−JA+1(B)]−2(1−s−λ)JA(B)=0.(17) equation is ForvariousvaluesofN ,analyticalvaluesofα havebeen f c z2W′′(z)+zW′(z)+(z2−A2)W(z)=0, (13) tabulatedinthesecondcolumnofTable.I. Similarly,for 4 4 4.2 4.4 4.6 0 0.2 0.4 0.6 0.8 1 FIG. 3: The scaling law for the coupling α. Numerical FIG. 4: The scaling law for the dynamically generated mass solution (solid line) is compared with analytical prediction as afunction of N . Thesolid lineis thefit to thenumerical f (dashed line) of thelinearized equation. findingswhereasthedashedlineistheanalyticalresultofthe linearized equation for themass function. Nf 1/bα α 1/bNf MHp2=0L(cid:144)L vs Α and N 0.5 1.0313 2.5 0.7629 f 1.0 0.7819 3.0 0.6944 1.5 0.6882 3.5 0.7314 2.0 0.6257 4.0 0.7640 TABLE II: The numerical results for the scaling law. 10-1 0 10-2 various α, Nfc has been tabulated in the fifth column of Nf 1 10-3 the sametable. In orderto arriveatthe scalinglaws,we 2 10-4 expandthe lefthandsideofEq.(16)inpowersofm2/Λ2 and keep the leading terms. Thus 5 4 3 2 Α m2 B −2/s (α−γA) ≡f(α,N )= Γ(A)Γ(A+2) Λ2 f (cid:18)2(cid:19) 2πγ FIG. 5: The criticality plane for the dynamical mass in the γB[JA−1(B)−JA+1(B)]−2(1−s−λ)JA(B) phasespaceofαandNf. Thepointsshownarethenumerical × . (18) results obtained. γB[YA−1(B)−YA+1(B)]−2(1−s−λ)YA(B) Carrying out a Taylor expansion near the critical cou- pling, we find the following scaling law Eq.(10)confirmsthequalitativenatureofthe aforemen- tioned analytical results. In Figs. (1) and (2), we depict m/Λ = hα(Nf)(α−αc)1/2 , (19) the mass functions for different values of α and Nf. A study of the dependence of M(0) ≡ m as a function of where hα(Nf) = ∂f/∂α|α=αc. As anticipated, the α and Nf, exemplified in Figs. (3) and (4), permits us scaling law for Nf cpomes out to be of the form : to decipher the corresponding critical values and scaling laws. The numerical details differ slightly from the ana- m/Λ = h (α)(Nc−N )1/2 , (20) Nf f f lytical findings. We now have the scaling laws with hNf(α) = ∂f/∂Nf|Nf=Nfc. These analytical re- m/Λ = aα(Nf)(α−αc)1/bα(Nf) , (21) q sleumltsaanrdetbhaeseiddeunptoifinctahtieolninoefaMriz(apt2io→no0f)th=eomr.igEinxaalcptrnobu-- m/Λ = aNf(α)(Nfc−Nf)1/bNf(α) . (22) merical analysis of the original non-linearized version of Though none of b (N ) and b (α) is strictly 2 for a α f Nf 5 broader fit of the scaling law (see Table II), figures (3) Thus the β-function has a stable zero at the point and(4)showthattheanalyticalresultsarenotabadrep- α = α , the result also obtained with the one loop c resentation of the exact results in the immediate vicin- approximation to the photon propagator, [7]. Not ity of the critical coupling (compare the solid curves only does a critical value of coupling separate chirally against the dashed ones). The infinite order phase tran- asymmetric and symmetric phases but so does also a sition of the quenched QED softens out to a finite or- critical number of flavours above which fermions cease der transition in its unquenched version. It also has to posses mass just like in QCD and QED3. Fig. (5) consequences for the mass anomalous dimensions. If shows the criticality plane in the phase space of α and B ≈ C ≡ |A2 − 1/4|, the large momentum behaviour N . It interpolates and extrapolates the points obtained f of Eq. (14) implies γ ≈ 1+s. On the other hand, if through the numerical analysis. We believe that our m B >> C, γ ≈ 1+s/2. The quenched limit trivially analysis can and should be extended to the study of m follows. The numerical analysis of the full equation also QCD through its SDEs. This is for the future. yieldsγ >1. Inordertoobtainafiniteelectronmassin m the limit of Λ→∞, one requires charge renormalization [26]. Therefore, in this limit, we impose 1 m bα(Nf) α(Λ) = α + . (23) c (aα(Nf))bα(Nf) hΛi We are grateful to R. Delbourgo and V. Gusynin for It implies the following β-function their comments on the draft version of this paper. We acknowledgeCIC (UMICH) andCONACyTgrants4.10, β(α)=Λ∂α/∂Λ=−b (N )(α−α ). (24) 46614-I,50764 and 94527 (Estancia de Consolidación). α f c [1] T. Appelquist et. al., Phys. Rev. Lett. 104, 071601 NuovoCimento 6, 371 (1957). (2010);T.Appelquist,G.T.FlemingandE.T.Neil,Phys. [14] A. Bashir and M.R. Pennington, Phys. Rev.D 50, 7679 Rev. D 79, 076010 (2009); Z. Fodor et. al., Phys. Lett. (1994). B 681, 353 (2009); K.-I. Nagai et. al., Phys.Rev. D 80, [15] A. Bashir and M.R. Pennington, Phys. Rev.D 53, 4694 074508 (2009); L. Del Debbio et. al., Phys. Rev. D 82, (1996). 014510 (2010); A. Hasenfratz, Phys. Rev. D 82, 014506 [16] L.D.LandauandI.M.Khalatnikov,Zh.Eksp.Teor.Fiz. (2010). 29, 89 (1956); Sov.Phys.JETP 2,69 (1956); E.S. Frad- [2] A.Bashir et. al., Phys.Rev.C 78, 055201 (2008). kin, Sov. Phys. JETP 2, 361 (1956); K.Johnson and B. [3] K. Higashijima, Phys. Rev. D 29, 1228 (1984); V. A. Zumino, Phys. Rev.Lett. 3351 (1959). Miransky,Phys. Lett. B165, 401 (1985). [17] A.Bashir, Phys.Lett.B491, 280 (2000); A.Bashirand [4] R.Pisarski,Phys.Rev.D29,2423(1984);T.Appelquist A. Raya,Phys. Rev.D 66 105005 (2002). et. al., Phys.Rev.Lett. 55, 1715 (1985). [18] L.ChangandC.D.Roberts,Phys.Rev.Lett.103081601 [5] A.Bashir et. al., Few Body Sys. 46, 229 (2009). (2009). [6] T. Maskawa and H. Nakajima, Prog. Theor. Phys. 52, [19] D.Atkinson,J.C.R.Bloch,V.P.Gusynin,M.R.Penning- 1326 (1974); P.I. Fomin and V.A. Miransky, Phys. Lett. ton and M. Reenders, Phys.Lett. B 329, 117 (1994). B 64 166 (1976). [20] B. Holdom, Phys. Lett. B 213, 365 (1988); Phys. Rev. [7] V.P. Gusynin, Mod. Phys. Lett. A 5, 133 (1990); K-I. Lett. 62, 997 (1989); U. Mahanta, Phys. Lett. B 225, Kondoand H. Nakatani,Nucl. Phys.B351, 236 (1991). 181 (1989). [8] J.C.R. Bloch and M.R. Pennington, Mod. Phys. Lett. [21] A.G.CohenandH.Georgi,Nucl.Phys.B314,7(1989); A10, 1225 (1995). T. Appelquist, K.D. Lane and U. Mahanta, Phys. Rev. [9] A.BashirandA.Raya,TrendsinBosonResearch,edited Lett. 61, 1553 (1988). byA.V.Ling,NovaSciencePublishers,Inc.N.Y.,ISBN: [22] A.I. Davydychev, P. Osland and L. Saks, Phys. Rev. D 1-59454-521-9 (2005) 63, 014022 (2000). [10] D.C.CurtisandM.R.Pennington,Phys.Rev.D42,4165 [23] J.S. Ball and T-W. Chiu, Phys.Rev. D 22 2542 (1980). (1990); Z.Dong, H.J.Munczekand C.D.Roberts,Phys. [24] A. Bashir and R. Delbourgo, J. of. Phys. A 37, 6587 Lett.B33,536(1994);A.Bashir,A.KizilersuandM.R. (2004); A. Bashir and A. Raya, Nucl. Phys. B 709, 307 Pennington,Phys. Rev.D 57 1242 (1998); (2005); Few Body Syst.41, 185 (2007). [11] A. Kizilersu and M.R. Pennington, Phys. Rev. D 79 [25] W.A. Bardeen, C.N. Leung and S.T. Love, Phys. Rev. 125020 (2009). Lett. 56, 1230 (1986); C.N. Leung, S.T. Love and W.A. [12] A. Kizilersu, M. Reenders and M.R. Pennington, Phys. Bardeen, Nucl.Phys. B 273, 649 (1986). Rev. D 52, 1242 (1995); A. Bashir, A. Kizilersu and [26] NotethatQEDwithlargecouplingisnotaclosedtheory. M.R. Pennington, Phys. Rev. D 62, 085002 (2000); It needs to be supplemented with certain perturbatively hep-ph/9907418 (1999); A. Bashir and A. Raya, Phys. irrelevantoperatorswhichbecomemarginalduetostrong Rev.D 64, 105001 (2001). QED interactions [25]. [13] J.C. Ward, Phys. Rev. 78, 1 (1950); H.S. Green, Proc. Phys. Soc. (London) A 66, 873 (1953; Y. Takahashi,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.