Core-Collapse Supernovae at the Threshold H.-Th.Janka,R.Buras,K.Kifonidis,A.Marek,andM.Rampp 4 Max-Planck-Institutfu¨rAstrophysik,Postfach1317,D-85741Garching,Germany 0 [email protected] 0 2 n a Summary. Recentprogressinmodelingcore-collapsesupernovaeissummarizedandsetin J perspective.Two-dimensionalsimulationswithstate-of-the-arttreatmentofneutrinotransport 2 stillfailtoproducepowerfulexplosions,butevidenceispresentedthattheyareverycloseto 2 success. 1 v 1 1 Aiming high 6 4 Despite of still bothering uncertainties and ongoing controversy, the convectively 1 0 supportedneutrino-heatingmechanism(1) mustbe consideredas a promisingway 4 to explain supernova explosions of massive stars. Neutrinos drive the evolution of 0 the collapsing stellar core and of the forming neutron star and dominate the event / h energeticallybycarryingawayabout99%ofthegravitationalbindingenergyofthe p compactremnant.Adetaileddescriptionoftheirprocessesinmodelswhichcouple - (relativistic) hydrodynamicsand accurate neutrinotransportis thereforeindispens- o r able formakingprogresstowardsan understandingof theremnant-progenitorcon- t s nection,supernovaenergetics,explosionasymmetries,pulsarkicks,nucleosynthesis, a andobservableneutrinoandgravitational-wavesignals.Itisa necessaryingredient : v inanycalculationwhichclaimsahigherdegreeofrealism. i X r a 2 Stepping forward Successful simulations of neutrino-driven supernova explosions have so far either employed special, usually controversial, assumptions about the physics at neutron starconditionsorhavemadeuseofcrudeapproximationsintheneutrinotransport. They are contrasted by simulations with widely accepted microphysics and an in- creasingsophisticationofthetransporttreatment,whichhavenotbeenabletopro- duceexplosions. It must be stressed, however, that these simulations do not conflict with each other. They were performed with largely different numerical descriptions and the 2 H.-Th.Janka,R.Buras,K.Kifonidis,A.Marek,andM.Rampp discrepantresultssimplydemonstratethesensitivityofthedelayedexplosionmech- anismtovariationsatthelevelofthedifferentapproaches. 2.1 Successfulexplosionsontheonehand... Wilson and collaborators (2) found explosions in one-dimensional simulations by assuming that neutron finger convection below the neutrinosphere boosts the neu- trinoemissionfromthenascentneutronstarandthusincreasestheneutrinoheating behindthestalled supernovashock.Neutronfingerconvection,however,requiresa fasterexchangeofenergythanleptonnumberbetweenfluidelements,anassumption that could notbe confirmedby detailed analysisof the multi-flavorneutrino trans- port(3).AnotheringredienttotheenergeticexplosionsofWilson’sgroupisanuclear equationofstate(EoS)whichyieldshighneutronstartemperaturesandν luminosi- e ties because of the formationof a pion condensateat rather low densities (4). The adopteddispersionrelation of the pionsin dense matter, however,is notsupported byacceptednuclearphysics. Intheearly1990’sitwasrecognizedthatviolentconvectiveoverturnbetweenthe neutrinosphereand the supernovashock is helpfulfor the neutrino-heatingmecha- nism and a possible origin of the anisotropies and large-scale mixing observed in SN 1987A(1). Two-dimensionalhydrodynamicmodels(5) and,morerecently,3D simulations(6)thattakethiseffectintoaccountproducedexplosions,butusedgrey (i.e.,spectrallyaveraged),flux-limiteddiffusionfordecribingtheneutrinotransport, an approximationwhich fell much behind the elaborate multi-group diffusion that hadbeenappliedbyBruenninsphericalsymmetry(7). 2.2 ...andfailuresontheother Bruenn, using standard microphysics and a sophisticated multi-group flux-limited diffusion treatment of neutrino transport, could never confirm explosions in one- dimensionalsimulations (8). But there was hope that an even better description of thetransportmightbringsuccess. Anewlevelofaccuracyhasindeedbeenreachedwiththeuseofsolversforthe Boltzmanntransportequation.Employingdifferentnumericaltechniques,theywere onlyrecentlyappliedintime-dependenthydrodynamicsimulationsofsphericalstel- lar core collapse with Newtonian gravity (9), approximate treatment of relativistic effects (10), and general relativity (11). These simulations, all performed with the EoSofLattimer&Swesty(12),agreethatneitherpromptexplosionsbythehydro- dynamic bounce-shock mechanism, nor delayed, neutrino-drivenexplosions could be obtained without the help of convection,not even with the best available treat- mentoftheneutrinophysicsandgeneralrelativity. Mezzacappaetal.(13)alsoexpressedconcernsthatthesuccessofmulti-dimen- sional calculations (5; 6) might disappear once the neutrino transport is improved to the sophistication reached in 1D models. They demonstrated this by mapping transportresultsfrom1Dsupernovamodelsto2Dhydrodynamics.Thelackingself- consistencyofthisapproach,however,wasanobviousweaknessoftheargument. Core-CollapseSupernovae 3 3 Pushing thelimits Inthissituationthecore-collapsegroupatGarchinghasadvancedtothenextlevel of improvementsin supernova modeling. To this end we have generalized our 1D neutrino-hydrodynamics code (VERTEX; (10)) for performing multi-dimensional supernova simulations with a state-of-the-art treatment of neutrino transport and neutrino-matterinteractions,callingtheextendedcodeversionMuDBaTH(14). 3.1 Anewtool... ThehydrodynamicspartoftheprogramisbasedonthePROMETHEUScode,which isanEulerianfinite-volumemethodforsecond-order,time-explicitintegrationofthe hydrodynamics equations. It employs a Riemann solver for high-resolution shock capturing, a consistent multi-fluid advection scheme, and general relativistic cor- rections to the gravitational potential. “Odd-even decoupling” at strong shocks is avoidedbyanHLLEsolver.Moredetailsabouttechnicalaspectsandcorresponding referencescanbefoundinRefs.(10;14). Thehydroroutineislinkedtoacodewhichsolvesthemulti-frequencytransport problemforneutrinosandantineutrinosofallflavorsbyclosingthesetofmoment equationsforparticlenumber,energyandmomentumwithavariableEddingtonfac- tor that is computedfroma modelBoltzmann equation.The transportis done in a time-implicit way and takes into account moving medium effects and general rel- ativistic redshift and time dilation. Transport and hydro componentsare joined by operator-splitting.Themulti-dimensionalversionofthecodeassumesthattheneu- trino flux is radial and the neutrino pressure tensor can be taken as diagonal, thus ignoringeffectsduetoneutrinoviscosity.WhilethevariableEddingtonfactorisde- termined as an average value at all radii by solving the transport equations on an angularly averaged stellar background, the multi-dimensionality of the problem is retainedonthelevelofthemomentequations,whichareradiallyintegratedwithin everyangularzoneofthesphericalcoordinategrid.Inaddition,lateralgradientsthat correspondto neutrinopressureandadvectionof neutrinoswith the movingstellar fluid are includedin the momentequations(“ray-by-rayplus”). Note that neutrino pressurecannotbeignoredintheprotoneutronstarinteriorandadvectivetransport ofneutrinosisfasterthandiffusionbelowtheneutrinosphere. Electronneutrinosandantineutrinosareproducedbye− capturesonnucleiand protonsande+capturesonneutrons,respectively.Nucleon-nucleonbremsstrahlung ande+e−annihilationareconsideredforthecreationofνν¯pairsofallflavors.Muon andtauneutrino-antineutrinopairsarealsomadebyν ν¯ annihilation.Neutrinoscat- e e tering off n, p, e±, and nuclei is included, for muon and tau neutrinos also off ν e andν¯ . Thecharged-currentreactionsofneutrinoswith nucleonstakeintoaccount e nucleonthermalmotions,recoilandphase-spaceblocking,weakmagnetismcorrec- tions, the reduction of the effective nucleon mass and the quenching of the axial- vectorcouplinginnuclearmatter,andnucleoncorrelationsathighdensities. Recently,thetreatmentofelectroncapturesonheavynucleihasbeenimproved incollaborationwithK.Langankeandcoworkers(15).Detailswerereportedatthis 4 H.-Th.Janka,R.Buras,K.Kifonidis,A.Marek,andM.Rampp Fig.1. Sequenceof snapshots showing thelarge-scaleconvective overturnintheneutrino- heatedpostshocklayeratfourpost-bouncetimes(t = 141.1ms,175.2ms,200.1ms,and pb 225.7ms,fromtoplefttobottomright)duringtheevolutionofa(non-rotating)11.2M⊙pro- genitormodelfromWoosleyetal.(17).Theentropyiscolorcodedwithhighestvaluesbeing represented by red and yellow, lowest values by blue and black. The dense neutron star is visibleaslow-entropycircleatthecenter.Theconvectivelayerinterioroftheneutrinosphere cannotbevisualizedwiththeemployedcolorscalebecausetheentropycontrastthereissmall. Convectioninthisregionisdrivenbyanegativegradientoftheleptonnumber.Thecomputa- tionwasperformedwithsphericalcoordinates,assumingaxialsymmetry,andemployingthe “ray-by-rayplus”variableEddingtonfactortechniquedevelopedbyRampp&Janka(10)and Burasetal.(18)fortreatingneutrinotransportinmulti-dimensionalsupernova simulations. Equatorialsymmetryisbrokenonlargescalessoonafterbounce, andlow-modeconvection begins todominate the flow between theneutron star and thestrongly deformed supernova shock.The“face”onthetoprightdoesnotneedtolooksosad,becausethemodelcontinues todevelopaweakexplosion.Thescaleoftheplotsis1200kminbothdirections. Core-CollapseSupernovae 5 meeting by G. Mart´ınez-Pinedo. Previously these reactions were described rather schematically (7) and were switched off above a few 1010gcm−3. Therefore e− capturesonp determinedthe subsequentevolution.Inthenewmodels,incontrast, nuclei dominate the ν production by far. This leads to a significant shrinking of e the homologouslycollapsinginnercoreandshockformationata smaller mass co- ordinate(15). Despite of this conceptuallyand quantitativelyimportantchangethe subsequentshockpropagationandexpansionremainsastonishinglysimilarbecause ofdifferentialchangesofthecorestructureandcancellationsofeffects(16). 3.2 ...foranewgenerationofmulti-dimensionalmodels... Runningsimulationsforprogenitorswithdifferentmainsequencemasses(Woosley etal.’s11.2,15,and20M models(17))in1Dand2D,wecouldconfirmthefinding ⊙ of previousmulti-dimensionalmodelswith simplerneutrinotransport,namelythat twospatiallyseparatedregionsexistinthesupernovacorewhereconvectionsetsin onatimescaleofsometenmillisecondsafterbounce(18). Theoneregionischaracterizedbyanegativeentropygradientwhichisleftbe- hindbytheweakeningshockandenhancedbytheonsetofneutrinoheatingbetween gain radius and shock. Despite of a positive gradient of the electron fraction, this region is Ledoux unstable and Rayleigh-Taylor mushrooms start to grow between 40msand80mspostbounce(slowerforhigher-massprogenitors).Theviolentcon- vectiveoverturnthatdevelopsinthisregionsupportstheshockexpansionandallows forlargershockradii.Twoeffectsseemtobemainlyresponsibleforthishelpfulin- fluence on the neutrino-heatingmechanism. On the one hand bubbles of neutrino- heated matter can rise, which pushes the shock farther out and reducesthe energy loss by the reemission of neutrinos.On the other hand, cold, lower-entropymatter is carriedby narrowdownflowsfromthe shockto near the gainradius, where it is heatedbyneutrinosatveryhighrates. Thisenhancestheefficiencyofneutrinoen- ergy transfer. Fully developed, the convective overturncan become so violent that downflowspenetratewithsupersonicvelocitiesthroughtheelectronneutrinosphere, therebyincreasingtheluminosityofν andν¯ . e e The second region of convectiveactivity lies beneath the neutrinosphere.Con- vectionthereisdrivenbyanegativeleptongradientandsetsinbetweenabout20ms postbounceandabout60mspostbounce(againlaterforthemoremassiveprogen- itors).Despite of thetransportofenergyandleptonnumberandthe corresponding changeoftheouterlayersoftheprotoneutronstar,theeffectontheluminositiesof ν andν¯ israthersmall.Theneutrinosphereofheavy-leptonneutrinos,however,is e e located within the convectivelayer and an enhancementof muon-and tauneutrino luminosities (10–20%) is visible at times somewhat later than 100ms. The influ- enceontheshockpropagationandtheexplosionmechanismismarginalandmostly indirectbymodifyingtheneutronstarstructureandν andν emission. µ τ Althoughconvectiveoverturnbehindtheshockstronglyaffectsthepost-bounce evolution,weweredisappointedbynotobtainingexplosionsinarecentlypublished firstsetofsimulations(18).Theseresultsseemtoconfirmthesuspicion(13)thata 6 H.-Th.Janka,R.Buras,K.Kifonidis,A.Marek,andM.Rampp moreaccuratetreatmentofneutrinotransportmightnotallowonetoreproducethe convectivelysupportedneutrino-drivenexplosionsseenpreviously. 3.3 ...withultimatesuccess? Butthereislightattheendofthelongtunnelandthesituationismorefavorablethan itlooksatfirstglance.Therearereasonstobelievethatourmodelsareverycloseto explosions,infactgrazethethresholdofconditionswhicharerequiredtodrivemass ejectionbytheoutwardaccelerationofthesupernovashock. One of our models (a 15M star) included rotation at a rate that is consistent ⊙ withpre-collapsecorerotationofmagnetizedstars(19).Theassumedinitialangular velocitywaschosentobeslightlyfaster(Ω =0.5rads−1)thanpredictedbyHegeret al.(19).Itwouldleadtoaneutronstarspinningwithaperiodof1–2msiftheangular momentum in the protoneutron star is conserved after the end of our simulations. We intentionally did not consider more extreme rotation rates which are expected forcollapsarsandneededforgamma-rayburstmodels,butwhichareprobablynot genericforsupernovae. Rotationmakesabigdifference!Centrifugalforcesreducetheinfallvelocitynear the equatorialplane and help to support the shock at a larger radius. Enhanced by rotationally induced vortex motion extremely violentconvectiveoverturndevelops behindtheshock.Powerfulnon-radialoscillationsareinitiatedanddrivetheshock temporarilytodistancesnear300kmalongtherotationaxiswherethemorerapidly decreasingdensityfavorsstrongshockexpansion. Hugeglobaldeformationwasalsoobservedincaseofthe(non-rotating)11.2M ⊙ star when we increased the angular grid from a ∼90o wedge (±46.8o around the equatorial plane of the coordinate grid with periodic boundary conditions) to full 180o.The11.2M modelischaracterizedbyasmallironcore(∼1.25M )andan ⊙ ⊙ abruptentropyjumpat the edgeof the Si shell(at∼1.3M ). A strongdipolarex- ⊙ pansionoccursandtheshockisslowlypushedoutwardbythepulsationalexpansion oftwohugebubbleswhicharealternatelyfedbyneutrinoheatedmatterthatcomes from a single (due to the assumed symmetry,toroidal), waving downflow near the equatorialplaneofthecoordinategrid(Fig.1).Theshockhasreachedamaximum radiusofmorethan600kmwithnosignofreturnuntilwehadtostopthesimulation 226msafterbounce. Weconsideritasverylikelythataweakexplosiondevelopsinthismodel.Itis excitingtoimaginehowtheevolutionmighthaveproceededwiththeadditionalhelp from rotation.Patience, however,is necessary when results for longerpost-bounce periods or other progenitors are desired. The computations require far more than 1017floatingpointoperationsandtakeseveralmonthsonmachinesavailabletous. We actuallyhave hintsof howan explosioncan emergein a 15M star which ⊙ was computed with omitted velocity-dependent terms in the neutrino momentum equation. The resulting 20–30% change of the neutrino density between neutri- nosphereand shock was sufficientto initiate an explosion,thus demonstratingthat notmuchwasmissingfortheconvectivelysupportedneutrino-heatingmechanismto work.Theexplosionhadanenergyofabout6×1050ergandleftbehindaneutronstar Core-CollapseSupernovae 7 150 500 100 L&S shock Shen Wolff s] 400 80 s] g/ g/ 100 er er m] 5110 300 60 5110 r [k 0km [ 200 40 0km [ 50 L&S 50 50 @ @ Shen L 100 20 L Wolff 0 0 0 0 50 100 150 200 0 50 100 150 200 t [ms] t [ms] pb pb Fig. 2. Shock radii and electron neu- Fig. 3. Luminosities for ν , ν¯ , and heavy- e e trinospheresforsimulationsofa15M⊙ leptonneutrinos(νµ,ντ,ν¯µorν¯τ individually), star in spherical symmetry with three measured by an observer comoving with the different nuclear EoSs (20), namely infalling stellar plasma at a radius of 500km, thoseof Lattimer&Swesty((12);bold forthethreesphericallysymmetricsimulations lines),whichisthewidelyusedstandard shown inFig.2(20).Theleftpanel displaysa for supernova simulations these days, time interval around the prompt ν burst, the e Shenetal.((21);medium),andWolff& right panel a longer period of the post-bounce Hillebrandt ((22); thin). Timesaresyn- evolution.Notethedifferentscalesontheverti- chronizedatthemomentofcorebounce. calaxesofbothframes. withaninitialbaryonicmassof∼1.4M .Theneutrino-heatedejectadidnotshow ⊙ thedramaticoverproductionofN = 50closedneutronshellnucleiwhichsignaled aproblemwiththeneutrinotransportapproximationsusedinpreviousmodels. These resultssuggestthatwe are onthe righttrack.Once the critical threshold for explosions can be overcome, the subsequent evolution seems to proceed very favorablywithrespecttoobservablefacts. 4 Longing formore What can provide or support the ultimate kick beyond the explosion threshold? Is itthree-dimensionaleffects?Veryfastrotation?Truelymulti-dimensionaltransport that accounts for lateral neutrino flow and neutrino shear? Full general relativity instead of approximations? Or yet to be improved microphysics, e.g. reactions of neutrinos with nuclei? Or the uncertain high-density equation of state which has notbeenextensivelyvarieduptonowbutcancausesizabledifferences(Figs.2,3)? Or so far ignored or unresolved modes of instability that could boost the neutrino luminosity or drive accretion shock instability? Or magnetohydrodynamiceffects? Orisitthecombinationofall? 8 H.-Th.Janka,R.Buras,K.Kifonidis,A.Marek,andM.Rampp Muchworkstillneedstobedoneforcompletingthesupernovacodesandtesting these possibilities. A numberof groupsaroundthe world have set out to meet this challenge! Acknowledgements.SupportbytheSonderforschungsbereichSFB-375“Astro-Teilchenphy- sik”of theDeutsche Forschungsgemeinschaft isacknowledged. Thesimulations weredone ontheIBM“Regatta”supercomputeroftheRechenzentrumGarching. References [1] M.Herant,W.Benz,S.A.Colgate:Astrophys.J.395,642(1992) [2] J.R.Wilson,R.Mayle:Phys.Rep.163,63(1988);Phys.Rep.227,97(1993);T.Totani, K.Sato,H.E.Dalhed,J.R.Wilson:Astrophys.J.496,216(1998) [3] S.W.Bruenn,T.Dineva:Astrophys.J.Lett.458,L71(1996) [4] R.W.Mayle,M.Tavani,J.R.Wilson:Astrophys.J.418,398(1993) [5] M. Herant, W. Benz, W.R. Hix et al: Astrophys. J. 435, 339 (1994); A. Burrows, J.Hayes, B.A.Fryxell:Astrophys. J.450, 830(1995); C.L.Fryer:Astrophys. J. 522, 413(1999);C.L.Fryer,A.Heger:Astrophys.J.541,1033(2000) [6] C.L.Fryer,M.S.Warren:Astrophys.J.Lett.574,L65(2002) [7] S.W.Bruenn:Astrophys.J.Suppl.58,771(1985) [8] S.W.Bruenn:Numericalsimulationsofcorecollapsesupernovae.In:NuclearPhysics intheUniverse,edbyM.W.Guidry,M.R.Strayer(IOP,Bristol1993)pp31–50 [9] M. Rampp, H.-Th. Janka: Astrophys. J. Lett. 539, L33 (2000); A. Mezzacappa, M.Liebendo¨rfer,O.E.B.Messeretal:Phys.Rev.Lett.86,1935(2001);T.A.Thompson, A.Burrows,P.A.Pinto:Astrophys.J.592,434(2003) [10] M.Rampp,H.-Th.Janka:Astron.Astrophys.396,361(2002) [11] M.Liebendo¨rfer,A.Mezzacappa,F.Thielemannetal:Phys.Rev.D.63,3004(2001) [12] J.M.Lattimer,F.D.Swesty:Nucl.Phys.A535,331(1991) [13] A.Mezzacappa,A.C.Calder,S.W.Bruennetal:Astrophys.J.495,911(1998) [14] H.-Th. Janka, R. Buras, K. Kifonidis et al: Explosion mechanisms of massive stars. In: Core Collapse of Massive Stars, ed by C.L. Fryer (Kluwer, Dordrecht) in press (astro-ph/0212314) [15] K. Langanke, G. Mart´ınez-Pinedo, J.M. Sampaio et al: Phys. Rev. Lett. 90, 241102 (2003) [16] W.R.Hix,O.E.B.Messer,A.Mezzacappaetal:Phys.Rev.Lett.91,201102(2003) [17] S.E.Woosley,A.Heger,T.A.Weaver:Rev.Mod.Phys.74,1015(2002) [18] R.Buras,M.Rampp,H.-Th.Janka,K.Kifonidis:Phys.Rev.Lett.90,241101(2003) [19] A.Heger,S.E.Woosley,N.Langer,H.Spruit:Presupernovaevolutionofrotatingmas- sivestarsandtherotationrateofpulsars.In:StellarRotation,edbyA.Maeder,P.Ee- nens,inpress(astro-ph/0301374) [20] A.Marek:Theeffectsofthenuclearequationofstateonstellarcorecollapseandsu- pernovaevolution.DiplomaThesis,TechnicalUniversityMunich(2003) [21] H.Shen,H.Toki,K.Oyamatsu,K.Sumiyoshi:Nucl.Phys.A637,435(1998); Prog. Theor.Phys.100,1013(1998) [22] W.Hillebrandt,R.G.Wolff:ModelsoftypeIIsupernovaexplosions.In:Nucleosynthe- sis:ChallengesandNewDevelopments,edbyD.Arnett,J.W.Truran(Univ.ofChicago Press,Chicago1985)pp131–150