ebook img

Constraining the thermal history of the Warm-Hot Intergalactic Medium PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constraining the thermal history of the Warm-Hot Intergalactic Medium

Astronomy&Astrophysicsmanuscriptno.zappacosta February2,2008 (DOI:willbeinsertedbyhandlater) Constraining the thermal history of the Warm–Hot Intergalactic Medium L.Zappacosta1,R.Maiolino2,A.Finoguenov3,F.Mannucci4,R.Gilli2, A.Ferrara5 5 1 DipartimentodiAstronomiaeScienzadelloSpazio,LargoE.Fermi2,I-50125Firenze,Italy, 0 2 OsservatorioAstrofisicodiArcetriLargoE.Fermi5,I-50125Firenze,Italy 0 3 Max-Planck-Institutfu¨rextraterrestrischePhysik,Giessenbachstraße,D-85748Garching,Germany 2 4 IstitutodiRadioastronomia,SezionediFirenze-CNRLargoE.Fermi5,I-50125FirenzeItaly n 5 SISSA/InternationalSchoolforAdvancedStudiesViaBeirut,434014Trieste,Italy a J Received;accepted 9 1 Abstract. We have identified a large-scale structure traced by galaxies at z=0.8, within the Lockman Hole, by means of multi-objectspectroscopicobservations. ByusingdeepXMMimageswehaveinvestigatedthesoftX-rayemissionfromthe 1 Warm-Hot IntergalacticMedium (WHIM) expected tobe associated withthislarge-scale structureand we set atight upper v limittoitsfluxintheverysoft0.2–0.4keVband.Thenon-detectionrequirestheWHIMattheseredshiftstobecoolerthan 2 0.1keV.CombinedwiththeWHIMemissiondetectionsatlowerredshift,ourresultindicatesthattheWHIMtemperatureis 0 4 rapidlydecreasingwithredshift,asexpectedinpopularcosmologicalmodels. 1 0 Keywords. Large-scalestructureofUniverse-X-rays:diffusebackground 5 0 / h 1. Introduction and Milky Way Halo are strong. Nevertheless, several inde- p pendent detections of WHIM emission were obtained by de- - Bothobservationsandcosmologicalmodelssuggestthatmost tailed analysis of soft X-ray maps (ROSAT and XMM) in re- o of the baryonic matter is located in the intergalactic medium r gions characterized by galaxy overdensities and by the spec- t (IGM). Cosmological models have also shown that the evo- s tral analysis of clusters of galaxies and of their surroundings a lution of the baryonic matter is driven by progressive gravi- (Wangetal. 1997; Sołtanetal. 2002; Zappacostaetal. 2002, : tational heating in the potential field of dark matter filaments v 2004;Kaastraetal.2003;Finoguenovetal.2003). i (Cen&Ostriker1999;Dave´etal.2001).Inparticular,athigh X AllWHIMdetectionsdiscussedabovehavebeenobtained redshifts (z >2–3) the baryonic gas is relatively cold (T < r 105 K), and is identifiedwith Lyα absorbersalongthe line of for gas in the local universe or at low redshift. The most dis- a tant WHIM emission detected so far was obtained at z∼0.45 sightofquasars,whileatlowerredshifts(z<1)theshocksdue byZappacostaetal.(2002).Athigherredshiftthedetectionis totheinfallofthegasonthedarkmatterfilaments(tracedby moredifficultbecauseof bothtechnicalandphysicalreasons. theregionsofhighgalaxynumberdensities)graduallyheatthe gastotemperaturesintherangeT∼105−107K. Indeed,thelackofbright,highredshiftquasarspreventsthede- tectionofWHIMfeaturesinabsorption,whilethethermalcut- TheidentificationofsuchWarm-HotIntergalacticMedium offisredshiftedtolowerenergiesmakingmoredifficulttode- (WHIM)inthelocaluniversehasreceivedgrowinginterestin tecttheWHIMemissioneveninthesoftX-rays.Anadditional thelastfewyears.Thedetectionofabsorptionlinesfromhighly issue is that, according to cosmological models, the WHIM ionized species (OVI, OVII, OVIII), both in the UV and in should be cooler at higher redshift, implying a lower ioniza- the softX-rays,hasallowedto unambiguoslyidentifyWHIM tionstateofthegas(i.e.loweropticaldepthofhighionization along the line of sight of a few bright quasars (Nicastroetal. absorbers) and a thermal cutoff further moved to lower ener- 2002; Mathuretal. 2003). The detection of emission due to gies.Yet,itwouldbemostusefultoobtainsomeconstraintson WHIM is quite challenging. Indeed, the WHIM is expected the WHIM properties at high redshift since, when compared to emit weak and diffuse radiation mostly in the softest X- withtheWHIMdetectionsinthelocaluniverse,itwouldpro- ray bands (<∼ 1keV), where both the Galactic absorption and videcontraintsonthecosmologicalmodelsoftheevolutionof the foreground emission from the Local Hot Bubble (LHB) baryons. Send offprint requests to: L. Zappacosta, e-mail: To pursue the latter goal we started a detailed inves- [email protected] tigation of the Lockman Hole, which is one of the fields 2 Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM 36:00 0.782 0.782 0.805 0.780 57:30:00 0.788 0.792 0.784 0.8 (phot) 24:00 0.807 30 10:54:00 30 53:00 52:30 Fig.1. Spatial distributionof objects reportedin the literature inthenarrowredshiftrange0.78<z<0.81withintheLockman Hole (see Table 1). Each object is labelled with its redshift. Theobjectmarkedwithadiamondhasaphotometricredshift. Boxesindicatetheregionscoveredbyourspectroscopicsurvey Fig.2. Upper panel: redshift distribution of the objects for with10masks. which we have obtained high quality (shaded histogram) and lowquality(hollowhistogram)spectroscopicredshiftmeasure- ments. Lower panel: zoom of the redshift distribution around where the Galactic absorption is minimum (N ∼ 5.6 × H thethreemainconcentrationsofobjects. 1019cm−2) and where deep X-ray observationshave been ob- tained(Hasingeretal. 1998a, 2001;Hasinger2003). We have searched for superstructures by analyzing the redshift distri- isstronglysuggestiveoftheexistenceofalarge-scalestructure bution of sources already identified in this field and found atthisredshiftinthisregionoftheLockmanHole. 8 sources in a narrow redshift range at about z∼0.8, located Toconfirmthistentativeindicationwehaveobtainedmulti- within a regionofabout20arcmin.We obtainedmulti-object object spectroscopy of 215 galaxies in the same area. We spectroscopyinthesameareaand,asdiscussedinSect.2,we usedthemulti-objectspectroscopicmode(MOS)oftheoptical haveconfirmedthepresenceofasuperstructureatz∼0.8.Then spectrometerDOLORES,attheTelescopioNazionaleGalileo wehaveanalyzedanXMMmapoftheLHinthesoftestband (TNG),withtheLR–Rgrating,whichcoversthe4470–10360 and,asdiscussedinSect.3,wehaveobtainedtightconstraints Årangeataresolutionof11Å.Thisspectralrangeallowsthe onthepossiblediffuseemissionduetoWHIMassociatedwith identification of Hβ+[OIII] and [OII] at z∼0.8. The observa- the large-scale structure. In Sect. 4 we discuss these observa- tionswereperformedduringfournightsinMarch2003. tionalconstraintsontheevolutionoftheWHIMwithredshift. We selected two samples of galaxies within the subarea of interest of the Lockman Hole. In particular, we selected 2. Opticalobservations:detectionofalarge-scale a shallow sample, made of galaxies in the magnitude range structureatz∼0.8 20.0 ≤ R < 21.3, and a deep sample, containing galaxies in themagnituderange21.3 ≤ R < 22.Theshallowsamplewas As mentioned in the Introduction, an analysis of the redshift observedwithsevenmasksandwithanintegrationof1.5hours distributionofthesourcespreviouslyidentifiedintheLockman foreachmask,whilethedeepsamplewasobservedwiththree Hole(mostofwhichareopticalcounterpartsofX-raysources masksandwithanintegrationof3hourspermask.Mostofthe detectedbyROSATandXMM)hasrevealedtheexistenceof8 masks(7ofthem)werelocatedalongtheN–Sdirectiontraced sourcesinthenarrowredshiftrange0.780–0.807(∼74Mpc1). bythe4sourcesatz=0.78,whilethreemaskswerelocatedto Thesesources(listedintable1)aremarkedwithacircleinFig. thewestandtotheeasttocheckpossibleextensionsofthepu- 1 and are located within a region of about 20 arcmin. In the tative large scale structure. The location of the variousmasks sameregionwe havefoundanotherobject(markedwith adi- isshownbytheboxesinFig.1. amond)withaphotometricallyestimatedredshiftof0.8±0.1. The MOS spectra were reduced following the standard Note that 4 of such objects (distributed along the N–S direc- threads(darkandbiassubtraction,flatfielding,wavelengthcal- tion)haveredshiftsinthenarrowerinterval0.780–0.784.This ibration).Thedeepsamplewasobservedusingaditheringof6 1 InthewholepaperweassumeacosmologywithΩ =0.3,Ω = arcsec along the slit axis to enable a better subtractionof sky m Λ 0.7andH =70kms−1Mpc−1 andallthedistanceswillbeexpressed lines and an easiest detection of the weak emission lines. We 0 inthecomovingrestframe. observed215 sources in total. We measuredredshifts for 103 Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM 3 Table1.Objectsinthenarrowredshiftrange0.78<z<0.81locatedwithintheLockmanHolereportedintheliterature. Object RA(J2000) DEC(J2000) Type z Reference RDS117Q 10h53m48.8s +57◦30′34′′ AGN 0.780 Lehmannetal.(2001) [HGG98]5 10h53m44.9s +57◦35′15′′ Galaxy 0.782 Hasingeretal.(1998b) [HGG98]8 10h53m42.3s +57◦35′41′′ Galaxy 0.782 Hasingeretal.(1998b) RXJ105335.1+572542 10h53m35.1s +57◦25′42′′ QSO 0.784 Mainierietal.(2002) RXJ105303.9+572925 10h53m03.9s +57◦29′25′′ QSO 0.788 Mainierietal.(2002) [MBH2002]41 10h53m05.4s +57◦28′10′′ X–raysource 0.792 Mainierietal.(2002) [FFH2002]105 10h53m15.80s +57◦24′50.0′′ X–raysource 0.8(phot) Faddaetal.(2002) LOCK-6cmJ105304+573055 10h53m04.83s +57◦30′55.9′′ Radiosource 0.805 Ciliegietal.(2003) RXJ105225.3+572246 10h52m25.3s +57◦22′46′′ AGN 0.807 Mainierietal.(2002) objects(see AppendixA for thecatalog)with typicalrandom perstructure outlined by our survey and the archival objects errors of ±0.002, as inferred by the uncertainty on the gaus- cover a region of ∼ 7.5Mpc (at the mean redshift z=0.791). sianfittotheemissionlines2.For47sourcestheredshiftcould Thiscouldbeconsideredas a lowerlimitto the dimensionof be determined unambiguously thanks to the detection of two the structure because its size is limited by the extent of our or more emission lines. We assigned unambiguouslythe red- observations. However, we note that other spectroscopic sur- shiftalsoincaseofdetectionofonlyonestrongemissionline veyscoveringtheentireXMMandROSAT-HRIfieldshavenot identified as [OII] line at high redshift 3 (in Appendix A the found additional objects in the narrow redshift range outside qualityoftheseredshiftsismarkedas“high”).Forother56ob- theareaconsideredbyus,suggestingthatthelarge-scalestruc- jectsthe redshiftdeterminationwasless secure,based online ture isnotfurtherextendedatleast inthe XMM andROSAT- detections with low signal to noise ratio (in Appendix A the HRIfields. qualityoftheseredshiftsismarkedas“low”).For112sources the spectrum was too weak and without bright lines, and we 3. X-raydata:constraintsontheWHIMemission couldnotrecoveranyinformationontheirredshifts. The redshift distribution is shown in the top panel of Once demonstrated that large-scale structures at high redshift Fig. 2, where a prominent peak (6σ significant with respect exist within the Lockman Hole, we have then investigated to the mean histogram level) is seen at the expected red- whether the associated WHIM emission could be detected. shift of z=0.78, demonstrating beyond any doubt the pres- Such investigation requires sensitive maps at soft energies ence of a large-scale structure at this redshift in this region. E<0.5 keV, both because of the low temperatures typical of As for the archivalobjects, thisspike showstwo distinct sub- WHIMandbecauseofasignificantDopplershiftoftheemis- concentrationsoneatz∼0.78andoneatz∼0.807.Theformer sion to lower energies. Several deep X-ray observations have is further splitted into a main peak at z∼ 0.784 and a nearby been carried outin the LockmanHole area, mostimportantly spikeatz∼ 0.776,asshowninthebottompanel.Fig.3shows withROSATandXMM-Newton(Hasingeretal.1998a,2001). the distribution projected on the sky of the sources for which ROSAT maps would have the required field of view and theredshiftcouldbedetermined,andinparticularforthosein sensitivityatlowenergiestoproperlyconstrainthepresenceof the redshift spikes. Although this redshift survey is not com- diffusewarmgasathighredshifts.However,theregionwhich plete,ourdatasuggestthatthesestructuresatslightlydifferent we are investigating is also characterized by a high density redshiftstend also to be distributed in differentregionsof the of X-ray point sources (a fraction of which belonging to the sky.Inparticular,galaxiesontheredtailofthemainspike,and large-scalestructureatz=0.78)andbyafewclustersofgalax- specificallyatz∼ 0.776arelocatedinthesouthernpartofthe ies(Hasingeretal.1998b).Afterthesubtractionoftheinstru- field, while galaxies in the main spike at z∼ 0.784 are pref- mental backgroundand the point source removalthrough the erentially distributed in the northern part. The distribution of proceduresdescribedin Zappacostaetal. (2002), we find dif- thegalaxiesin thefartherspike atz∼ 0.807overlapswiththe fuseemissioncoincidentwiththesuperstructure.However,the previoustwo,butthepresenceofanothersourceat0.807(the relatively extended wings of the ROSAT PSF from the point onelocatedmosttothewestinFig.3),previouslyidentifiedby sources probably contribute significantly to the diffuse emis- Lehmannetal. (2001), suggests thatthis substructureextends sion. Indeed, this apparently extended emission elongated in towardsthewest.Wehavetentativelyencircledthethreemain the direction N–S is also found in the harder maps (R45 and substructureswiththreeellipsesinFig.3.Onthewholethesu- R67).Thespectralshapeofsuchextendedemissionisthesame asforthepointsources,associatingthisemissionwithresidual 2 Theonlysourceofpossiblesystematicerrorsisspectralcalibra- wings of point sources as well as a possible detection of un- tion.However,suchsystematicerrorsaresmallerthantheestimated resolved AGNs associated with the large-scale structure (e.g. randomerrors. 3 AlternativelyitwouldbetheHαoflocalobjects(z∼0),butinthe Gillietal.2003).Theobservedhardnessoftheemissionisalso lattercasetheobjectsshouldbeextendedandbright,unliketheones atvariancewithwhatfoundinotherfieldswherediffuseemis- inoursamples. sionhasamuchsofterspectrum(e.g.Zappacostaetal.2002). 4 Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM 0.7840 36:00 0.782 0.782 0.7840 0.7848 0.7833 0.805 0.780 57:30:00 0.7756 0.8061 0.788 0.7932 0.7871 0.792 0.8069 0.7848 0.8077 0.7825 0.784 0.8069 0.8092 0.8 (phot) 24:00 0.7764 0.7779 0.7772 0.807 0.7764 18:00 30 10:54:00 30 53:00 52:30 Fig.3. Spatial distribution of the various spectroscopically identified sources and in particular of those at the redshift corre- spondingtothespikesatz≈0.8.Crossesmarkthepositionofallthegalaxieswithredshiftsmeasuredbyus(thethickonesare thesourcesbelongingtothesuperstructure).Thecirclesandthediamondarethearchivalobjectsatthesameredshiftofthespike (as in Fig. 1). For all the galaxiesbelongingto the superstructurewe havereportedtheir measuredredshift. The largeellipses tentativelyindicatetheregionswhichmaybemostlypopulatedbythethreesubspikes. The presence of such N-S unresolved AGN emission further XMM(Hasingeretal.2001;Hasinger2003).Inparticular,the suggeststhepresenceofanoverdenseregionofgalaxiesinthis 100 ksec observation obtained by Hasingeretal. (2001) was areaoftheLockmanHole. performedwiththe“thin”filter,whichallowsthedetectionof photons down to 0.2 keV. Additional 800 ksec of integration Chandrahasamuchbetterangularresolutionwhichallows (Hasinger2003)wereobtainedwiththe“medium”filter,which theremovalofthecontributionfrompointsourceswithamuch absorbsphotonswithE<0.5keV.Thelatterobservationcannot higheraccuracy.However,itssensitivitydropsdrasticallyaten- beusedtoconstraintheWHIMemissionbecauseofitsenergy ergiesE<0.5keV, preventingusto studythe levelof soft dif- cutoffat0.5keV,howeveritcanbeefficientlyusedtosubtract fuse X-ray emission. The small field of view of ACIS-S (the spuriouscontributionto the diffuse emission by hardsources, Chandrachipwhichhashighersensitivityinthesoftbandthan asweshalldiscusslateron.Inthefollowingwewillfocuson ACIS-I)isalsoproblematictodetectextendedemission. theanalisysoftheXMMdatatakenwiththe“thin”filter. XMM has the appropriate compromise between angu- lar resolution, good sensitivity in the softest X-ray band The major difficulty in using the soft energy band is the at E<0.5 keV, and extension of the field of view. The presence of the electronic noise that dominates the emission Lockman Hole has been subject of deep observations with (Lumbetal. 2002; Read&Ponman 2003). The spectrum of Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM 5 theelectronicnoiseisverystable,anditsstatisticalnoisecon- 42:00 sists in a number of small-amplitude events occurring during every frame exposure. There are no fluctuations in a number of events, so the removal of these has no major influence on 36:00 thedetectionstatisticsfortheX-rayemission.Electronicnoise hasasimilarspatialdistributionforthesamedetectorread-out mode,butits spectrumvariesasa functionofframetime and 57:30:00 issubjecttoanenergyoffsetonthe10eVscaleforeachindi- vidualpixel.Thisenergyoffsetappliesto allevents,resulting in a decreaseof theenergyresolutionforanextendedsource. 24:00 Investigationsof the electronic noise by the EPIC calibration team at the Max-Planck Institut fu¨r Extraterrestrische Physik 18:00 showedthatitispossible,byusingtheshapeoftheelectronic noise,toactuallydeterminetheenergyoffsetineachpixelfor eachobservationandthenefficientlyandaccuratelyremovethe 10:55:00 54:00 53:00 52:00 00 electronicnoisefromtheeventlists.Thesoftwareandprocess- Fig.4.XMM-NewtonEPIC-pnwaveletreconstructedimagein ingrecipesaremadeavailabletoageneraluserasanewtask, the0.2–0.4keVband.Crosses,smallcirclesandthediamond epreject,withinSAS6.0release.InthisPaperwedescribethe arethegalaxiesbelongingtothesuperstructuredetectedinop- resultsobtainedfor a single LockmanHole pointingas a part ticalasinFig.3.Bigcirclesaretheregionswherewemeasured ofsoftwaretestingstagebyKonradDennerl(seeDennerletal. theresidualsoftX-rayflux.Thethinlineshowsthepositionof (2004)andeprejecttaskdescription).Forfurtherdetailsofthe theEPIC-pncamera. noiseremovalandadiscussionofassociateduncertaintiessee epnrejecttaskdescription.WeselectedthelongestEPIC-pnob- servation, made with the “thin” filter and detector full frame mode (for a description of EPIC-pn see Stru¨deretal. 2001), which yields 35 ksec of useful exposure.For purposesof our move instrumental scattering effect, two clusters located near analysis,asubtractionofout-of-timeevents(OOTE)isnotnec- the superstructure, as well as the contribution by unresolved essary,giventhepositionofbrightsourceswithrespecttothe AGNs(whichhaveamuchharderspectrumthantheWHIM). superstructureand an orientationof CCDs in the selected ob- Wethenusedthe0.2–0.4keVbandtoextractthecountsfrom servation. The sensitivity reached by this observation is good theobservationwiththethinfilter.Wealsoselectedtwoaddi- enoughtosetrelativelytightconstraintsonthepresenceofdif- tional regions, closer to the center of the pointing and at the fusesoftX-rayemissionintheregionoftheLockmanHole. edge of the CCD to estimate both a level of the foreground The image in the softest available band 0.2–0.4 keV was andbackgroundemissionclosetothepositionofourmeasure- extractedandprocessedthroughavariablewaveletfilterdetec- ment and to estimate the possible contributionof the induced tionalgorithm(Vikhlininetal.1998)toidentifybothpointand background,asduetothesoftprotons.Todothat,wemakea extendedsources(seeZappacostaetal.2002, fordetails).We reasonableassumption,basedonourbestknowledge,thatthe set the wavelet peak detection threshold to 4σ, and followed sky components and X-ray foreground components (such as theextensionofthedetectedfluxdownto1.7σ.Weperformed ten iterations at wavelet kernel scales ranging from 4′′ to 4′. the LocalHotBubble, LHB) haveflatdistributionon thesky, atleastwithintheXMMfieldofview,andthusarevignettedby We started from the smallest scale and removed the detected thetelescope,whiletheinducedbackgroundcomponentshave sources prior to proceeding with the next larger scale. “Point aflatdistributionoftheirintensityoverthedetector(e.g.Lumb sources” were identified as sources detected with kernels of size4′′ (centralpartofthefieldofview)and8′′ (outerregion, etal.2002). wherethePSFislarger).Theresultingwaveletmap(thesumof After subtraction of these in-field estimated background allwaveletorders)isshowninFig.4.Severalpointsourcesare components,theresidualsoftX-rayfluxisF0.2−0.4keV = 1.5± detectedaswellasafewknownclusters.However,wedonot 1.4×10−16ergs−1cm−2arcmin−2,thatincreasesby∼30%after findanyevidencefordiffuseextendedemissiondowntoalimit thecorrectionforHIabsorption.Thisisaverymarginaldetec- of2σofconfidencefromthehighorderwaveletmaps,particu- tion and could be explained by statistical fluctuations around larlyintheregionwherethelarge-scalestructureatz=0.78has thezerovalue.Therefore,weconsidersuchafluxasanupper beendetected. limittothesoftdiffuseX-rayemissioninthisregion.Itshould Toplacelimitsonthepresenceofasoftdiffusecomponent benotedthattheLockmanHoleistheclearestwindowforthis associatedwiththeopticalstructure,identifiedabove,wehave kindofX–raystudies,beingtheregionwiththelowestGalactic selectedanumberofcirclesalongthesuperstructuretracedby hydrogencolumndensity.Thismeansthatasuperstructure,as galaxies (see in Fig. 4 the big circles). We masked out from the one we have found in optical, should clearly show X–ray finalanalysisallthe partswhereX-rayemission hasbeende- diffuseemissionduetothecollapsedgasinthedarkmatterpo- tectedinthe0.5–2keVandinthe2–7.5keVbandsinthefull tential welltraced by the galaxies, unlessthe gastemperature ∼ 800 ksec XMM-Newton exposure on the Lockman Hole, is verylow. This issue will be discussed more in detail in the obtained with the “medium” filter; in this way we could re- nextsection. 6 Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM 4. TemperatureoftheWHIMatz∼0.8 offinour0.2–0.4keVband,buttheconsequent K–correction stillchangestheobservedfluxsignificantly,andmorespecifi- Inthissectionwediscusstheupperlimitobtainedforthedif- callybyafactorof1.8.Summarizingalloftheseeffects,inab- fuseX-rayemissionandestimatewhetheritiscompatiblewith senceoftemperatureevolutionthesurfacebrightnessexpected the predictionsof the cosmologicalmodelsand/orconstraints forWHIMassociatedwithasuperstructureatz=0.8relativeto onthelattercanbeinferred. asuperstructureatz=0.1is Inthelocaluniverse(z <1)variousdetectionsofemission btoyaWboHuItM∼0i.n2dikceaVte(tWemanpgereattuarle.s19ra9n7g;iZngapfproacmos∼ta1ekteaVl. 2d0o0w2n, SS00..22−−00..44kkeeVV((00..81)) = nn00..18!2 11++00..18!−4 (1.8)−1=3.4 2004;Sołtanetal.2002;Kaastraetal.2003;Finoguenovetal. 2003).Thelowertemperaturelimitcouldbeascribedtoobser- combinedwiththesurfacebrightnessoftheWHIMobservedin vational issues, since the bulk of the emission from gas with theSculptorsupercluster,weobtainanexpectedsurfacebright- the temperatures below 0.1 keV is absorbed even in regions nessfortheWHIMatz=0.8of otefrilsotwicGofaltahcetiWcNHHIM.M(oCreenov&erO,lsotwrikOexry1g9e9n9;abFuinnodgaunecneocvhaertaacl-. S0.2−0.4keV(0.8)≈3.1×10−15ergs−1cm−2arcmin−2 2003) precludes WHIM detection through the OVII emission whichisroughlyanorderofmagnitudemore(morethanafac- lines. The situation will change, however, with advent of mi- torof8)thantheupperlimitobtainedbyusforthesuperstruc- crocalorimeters with ’large grasp’. The alternative technique tureintheLockmanHole. of using the OVII and OVIII X-ray absorption lines allowed One possibility could be that filaments are more rare at high the detection of Local WHIM at much lower temperatures redshift,andthatnoneispresentinourfield.However,cosmo- (Nicastroetal.2002).Forahomogeneouscomparison,herewe logical simulations predict that filamentary structures should focusonthepropertiesoftheWHIMdetectedinemission. alreadybeformedbyz∼1,andthatsuper-structures(tracedby We take as a reference for the local universe the WHIM overdensityof galaxies) are the locations where filaments are emission from the Sculptor supercluster (z=0.1) reported in most likely to be present. Since we are clearly investigating Zappacostaetal. (2004). In this region the median tempera- one of such super-structures (as demonstrated by the galaxy ture detected for the WHIM is about T∼0.4 keV (extending overdensity), the filaments expected by cosmological models up to 0.5 keV and also to <0.3 keV). The minimum average atsuchredshiftsaremuchmorelikelytobepresentinourre- WHIMemission(i.e.assumingthemaximumpossiblesubtrac- gion than in the field. Another, more likely possibility is that tionoftheLHBcontribution)is∼ 240×10−6ctss−1arcmin−2 baryonicfilamentsareindeedpresentinthislargescalestruc- in the 0.14–0.28 keV ROSAT band, corresponding to a flux ture, but that their temperature at z=0.8 is significantly lower F0.2−0.4keV = 9×10−16ergs−1cm−2arcmin−2. We assume that thaninthelocalUniverse(z≤0.1),makingthemundetectable. these values are roughly representative of the emission by Indeed a lower temperature moves the thermal cutoff of the WHIM in the superstructures of the local universe, however spectrumtolowerenergiesandspecificallybelowtheband0.2- wewillshowthatourconclusionsarenotcriticallydependent 0.4keVobservedbyus.Wehavecalculatedthatthemaximum onsuchassumptions.Ifwemovesuchamediumtoaredshift allowedtemperatureatz=0.8,whichwouldmaketheobserved of0.8,inabsenceofevolutionitsdensitywillincreasepropor- fluxconsistentwithourupperlimitinthe0.2–0.4keVband,is tionally to (1+z)3 due to the Hubble flow, andmore precisely about0.07–0.1keV.Itisimportanttonotethatthistemperature byafactor[(1+0.8)/(1+0.1)]3=4.4.However,wealsohaveto limitisweaklysensitiveonthedensityandemissivityassump- includetheintrinsicdensityevolutionexpectedfortheWHIM. tions discussed above. Indeed, the importantresult is that the From Dave´ etal. (2001, therein Fig. 4) we can estimate that expected flux is so much higher than our upper limit that the theWHIMathighredshift(z∼1)shouldbedenserbyafactor onlywayoutistorequirethetemperaturetobelowenoughto of ∼1.5 than locally4. When combined with the effect of the movethethermalcutoffbelowthe0.2–0.4keVband. Hubbleflow,thedensity increasesbya factorn /n = 6.6. 0.8 0.1 Thethermalemissionincreasesproportionallyton2,therefore 5. ThethermalhistoryoftheWHIM from z=0.1 to z=0.8 the WHIM emissivity is expected to in- creasebyafactorǫ0.8/ǫ0.1 = (n0.8/n0.1)2 = 43.6.Sinceweare AsummaryoftheconstraintsontheobservedWHIMtemper- observing(orconstraining)thesurfacebrightness,wehavealso atures as a function of redshiftis given in Fig. 5. We include toaccountforacosmologicaldimmingproportionalto(1+z)4, resultsbyotherworkslistedinTable2(bothemissionandab- i.e. [(1+0.8)/(1+0.1)]4 =7.2. Assuming that the temperature sorption detections). The points give either the median value doesnotchange(ourworkinghypothesis)thespectralshapere- or the best fitting value. As expected, imaging and statistical mainsunchanged,buttheredshiftmovesthethermalspectrum measurements,whichtendtodetectthebrightestWHIMemis- tolowerenergies,certainlynotenoughtopushthethermalcut- sions,obtainhighertemperaturevalues.Thisisaconsequence oftheWHIMemissivityperunitenergybeingproportionalto 4 These predictions refer to the bulk of the WHIM that virtually, the temperature5. On the contrary,absorptionsystems sample havingonaveragelowerdensitiesthantheWHIMinsuperclusteren- vironment,shouldnotbedetectablewiththepresentdayinstruments. 5 Thethermalemissivityperunitenergyisrelatedtothetempera- ItispossiblethatthedenserWHIMphaseinthesuperclusterenviron- tureT andthedensitynasT−0.5n2(atenergiesbelowthethermalcut- mentevolveinadifferentway.Wearenotawareoftheoreticalworks off).OntheotherhandDave´etal.(2001)showedthattheWHIMtem- exploringtheevolutionofthisdenseWHIMphase. peratureanddensityaredirectlyproportional,andthereforeǫ ∝T1.5. Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM 7 Fig.5. Observed WHIM temperatures as a function of the redshift taken from the reference reported in Table 2. The solid linesarethepredictionsofequation4inCen&Ostriker(1999)andDave´etal.(2001).Theshadedregionshowstheintervalof temperatureswhichincludes50%oftheWHIMasreportedinFig.5ofDave´ etal.(2001). random regions of the WHIM, including the very low tem- It is possible to go beyond this qualitative statement and perature regions. Soft excess around clusters also tend to be investigate the quantitative agreement with the model predic- biased against high temperatures,because the latter would be tions.Cen&Ostriker(1999)presentedintheirpaperasimple confusedwiththeclusteremissionitself.MoreovertheWHIM argumentthatcanreproducerepresentativevaluesforthetem- originofclustersoftexcesseshaverecentlybeenpartlybrought perature of the WHIM (see also Fig. 5 in Dave´etal. 2001). intoquestionbycosmologicalsimulations(Mittazetal.2004; Theyinferthepostshocktemperatureofacosmicgascollaps- Chengetal.2004). inginsideaslightlynonlinearlarge-scalestructureofsizeLas A homogeneous comparison should be limited to detec- T ∝ c2s ≈ K(Lt−H1(z))2, where cs is the gas sound speed and tions(andupperlimits)madewiththesametechnique.Inthis tH(z) the Hubbletime at the redshiftof interest and K is con- paperwehavesearchedforWHIMemission,andthereforeour stant(seeequation4inCen&Ostriker1999).Suchsimplees- upper limit must be compared with the other detections and timateisshowntocorrectlyreproducetheresultsfromnumer- upperlimits obtainedwith imagingor statistical detectionsof icalsimulations(Cen&Ostriker1999;Dave´etal. 2001).The WHIMemission(fullsymbolsinFig. 5).Suchmeasurements sameapproachwasusedbyDave´ etal.(2001)whoobtainsim- indicate that the observed WHIM temperature decreases with ilarresults.InFig.5weshowthetrendsoftheWHIMtempera- redshift(Fig. 5),justaspredictedbycosmologicalmodels.The tureasafunctionofredshiftobtainedbyCen&Ostriker(1999) numberofobservationaldataissmallandwithlargeerrorbars, andDave´etal.(2001)byusingtheargumentdiscussedabove however the plot in Fig. 5 is the first attempt of constraining (the shaded area indicates the interval of temperatures which theevolutionoftheWHIMtemperaturewithredshift,withthe includes ∼50% of the WHIM in the Dave´etal. (2001) distri- currentlyavailabledata. butions). Although the uncertaintiesof the theoreticalmodels 8 Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM Table2.WHIMtemperatures(sortedbyredsfhift)measuredsofarwithdifferentmethodsbyvariousauthors. Object z ObjectType Method kT(keV) Reference PKS2155-304 0a QSO SpectralAbsorption ∼0.043 Nicastroetal.(2002) Mkn421 0.0116a QSO SpectralAbsorption 0.06÷0.22 Nicastro(2003) Coma 0.0231 ClusterofGalaxies Softexcess 0.22±0.01b Finoguenovetal.(2003) Coma 0.0231 ClusterofGalaxies Softexcess 0.187±0.011 Kaastraetal.(2003) Abell2052 0.035 ClusterofGalaxies Softexcess 0.208±0.007 Kaastraetal.(2003) MKW3s 0.045 ClusterofGalaxies Softexcess 0.23±0.012 Kaastraetal.(2003) Sersic15903 0.058 ClusterofGalaxies Softexcess 0.18±0.006 Kaastraetal.(2003) Abell1795 0.0631 ClusterofGalaxies Softexcess 0.2±0.008 Kaastraetal.(2003) AbellClusters 0.068+0.102c ClustersofGalaxies Statistical <1 Sołtanetal.(2002) −0.023 SculptorScl 0.105±0.01 Supercluster Statistical 0.4+0.1c Zappacostaetal.(2004) −0.2 Abell2125 0.247 ClusterofGalaxies Imaging 0.85+0.45d Wangetal.(1997) −0.39 Warwickfield 0.45±0.15 Field Imaging 0.3±0.15c Zappacostaetal.(2002) LockmanHole 0.791±0.016 Superstructure Imaging <0.1 thispaper a redshiftoftheabsorptionsystem b 1σerror-bars c medianvalue d 90%levelofconfidence are large, both predictionsfit reasonablywell the data points, tiallysupported by the ItalianMinistryof Research (MIUR) and by and in particular the temperatures inferred from the imaging the Italian Institute of Astrophysics (INAF). We thank G. Hasinger, andstatisticalmethods. H. Boehringer, X. Barcons and A. Fabian for letting us to use the Lockman Hole image to remove point source contamination and Konrad Dennerl for his assistance withXMM data analysis. AF ac- knowledges support fromBMBF/DLRunder grant 50OR0207 and 6. Conclusions MPG. We have identified a large-scale structure of galaxies in the Lockman Hole at redshift z ∼ 0.79± 0.015 by means of an opticalspectroscopicsurvey.Thesuperstructureextendsovera References regionof more than 7.5 Mpc (in projection)and is structured Cen,R.&Ostriker,J.P.1999,ApJ,514,1 inthreesub-concentrationsatmedianredshiftsof0.776,0.784 Cheng, L.-M., Borgani, S., Tozzi, P., et al. 2004, in astro- and0.806.InthissuperstructuretheWHIMpredictedbycos- ph/0409707 mological models should have already formed. By analysing Ciliegi,P.,Zamorani,G.,Hasinger,G.,etal.2003,A&A,398, ROSATandXMMpointingswecouldsetatightupperlimiton 901 the WHIM emission associated with the superstructure.From Dave´,R.,Cen,R.,Ostriker,J.P.,etal.2001,ApJ,552,473 this flux limit we could estimate an upper limit of ∼0.1 keV Dennerl,K.,Aschenbach,B.,Briel,U.G.,etal.2004,inastro- on the WHIM temperature at z∼0.8. The combination of this ph/0407637 tightupperlimitwithotherpreviousWHIMtemperaturemea- Fadda,D.,Flores,H.,Hasinger,G.,etal.2002,A&A,383,838 surements(atlowerredshifts)stronglysuggeststhattheWHIM Finoguenov,A.,Briel,U.G.,&Henry,J.P.2003,A&A,410, temperature must be rapidly decreasing with redshift, as ex- 777 pectedbythecosmologicalmodels.Theagreementofthered- Gilli,R.,Cimatti,A.,Daddi,E.,etal.2003,ApJ,592,721 shift distribution of the observed WHIM temperatures with Hasinger,G.2003,inastro-ph/0310804 thecosmologicalpredictions(Cen&Ostriker1999;Dave´etal. Hasinger, G., Altieri, B., Arnaud,M., et al. 2001,A&A, 365, 2001) is reasonably good even from a quantitative point of L45 view. However furtherwork is requiredto improvethe statis- Hasinger,G.,Burg,R.,Giacconi,R.,etal.1998a,A&A,329, tics on the WHIM temperaturemeasurements(or constraints) 482 athighredshift. Hasinger, G., Giacconi, R., Gunn, J. E., et al. 1998b, A&A, 340,L27 Acknowledgements. Thepaperisbasedonobservationsobtainedwith Kaastra, J. S., Lieu, R., Tamura, T., Paerels, F. B. S., & den XMM-Newton,anESAsciencemissionwithinstrumentsandcontri- Herder,J.W.2003,A&A,397,445 butionsdirectlyfundedbyESAMemberStatesandtheUSA(NASA). Lehmann,I.,Hasinger,G.,Schmidt,M.,etal.2001,A&A,371, TheXMM-NewtonprojectissupportedbytheBundesministeriumfu¨r BildungundForschung/DeutschesZentrumfu¨rLuft-undRaumfahrt 833 (BMFT/DLR),theMax-PlanckSocietyandtheHeidenhain-Stiftung, Lumb,D.H.,Warwick,R.S.,Page,M.,&DeLuca,A.2002, and also by PPARC, CEA, CNES, and ASI. This work was par- A&A,389,93 Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM 9 Mainieri,V.,Bergeron,J.,Hasinger,G.,etal.2002,A&A,393, AppendixA: CatalogofObjects 425 Mathur,S.,Weinberg,D.H.,&Chen,X.2003,ApJ,582,82 Id RA(J2000) DEC(J2000) z Quality Mittaz,J.,Lieu,R.,Cen,R.,&Bonamente,M.2004,inastro- 1 10h53m41.77s +57◦21′29.56′′ 0.281 low ph/0409661 2 10h53m45.41s +57◦21′40.96′′ 0.085 high Nicastro,F.2003,inIAUSymposium Nicastro,F.,Zezas,A.,Drake,J.,etal.2002,ApJ,573,157 3 10h53m43.71s +57◦22′01.01′′ 0.608 low Read,A.M.&Ponman,T.J.2003,A&A,409,395 4 10h53m28.84s +57◦22′05.78′′ 0.776 low Sołtan, A. M., Freyberg, M. J., & Hasinger, G. 2002, A&A, 5 10h53m36.44s +57◦22′17.45′′ 0.482 low 395,475 6 10h53m33.12s +57◦22′34.99′′ 0.735 high Stru¨der,L.,Briel,U.,Dennerl,K.,etal.2001,A&A,365,L18 Vikhlinin,A.,McNamara,B.R.,Forman,W.,etal.1998,ApJ, 7 10h53m30.17s +57◦22′41.48′′ 0.863 low 502,558 8 10h53m30.86s +57◦22′48.10′′ 0.634 low Wang, Q. D., Connolly, A., & Brunner, R. 1997, ApJ, 487, 9 10h53m19.95s +57◦22′51.48′′ 0.528 low L13+ 10 10h53m34.39s +57◦23′06.16′′ 0.405 low Zappacosta, L., Maiolino, R., Mannucci, F., Gilli, R., & Schuecker,P.2004,MNRASaccepted,astro-ph/0402575 11 10h53m38.38s +57◦23′06.04′′ 0.419 high Zappacosta,L.,Mannucci,F.,Maiolino,R.,etal.2002,A&A, 12 10h53m44.53s +57◦23′26.43′′ 1.017 high 394,7 13 10h53m37.79s +57◦23′28.09′′ 0.436 low 14 10h53m41.86s +57◦23′53.08′′ 0.892 low 15 10h53m45.87s +57◦24′10.48′′ 0.777 high 16 10h53m38.60s +57◦24′08.85′′ 0.484 high 17 10h53m47.71s +57◦27′15.48′′ 0.785 high 18 10h53m43.83s +57◦26′59.82′′ 0.729 low 19 10h53m54.44s +57◦26′11.21′′ 0.644 low 20 10h53m40.40s +57◦26′36.23′′ 0.821 low 21 10h53m45.22s +57◦26′25.45′′ 0.808 high 22 10h53m26.84s +57◦26′30.70′′ 0.354 high 23 10h53m45.09s +57◦25′56.43′′ 0.783 high 24 10h53m23.87s +57◦27′29.10′′ 0.807 low 25 10h53m44.91s +57◦26′03.48′′ 0.619 high 26 10h53m39.80s +57◦25′05.50′′ 0.807 high 27 10h53m39.41s +57◦25′30.62′′ 0.335 high 28 10h53m44.89s +57◦27′27.74′′ 0.594 high 29 10h53m32.13s +57◦25′07.74′′ 0.479 high 30 10h53m44.77s +57◦24′45.67′′ 0.917 low 31 10h53m27.98s +57◦27′53.20′′ 0.146 low 32 10h53m42.73s +57◦27′51.53′′ 0.684 high 33 10h53m48.68s +57◦28′33.26′′ 0.279 low 34 10h53m58.52s +57◦28′37.64′′ 0.751 low 35 10h53m30.46s +57◦28′35.05′′ 0.531 low 36 10h53m30.22s +57◦28′55.08′′ 1.011 low 37 10h53m48.84s +57◦29′17.08′′ 0.889 high 38 10h53m56.29s +57◦29′25.65′′ 0.580 high 39 10h53m50.98s +57◦29′33.65′′ 0.776 low 40 10h53m40.91s +57◦29′42.15′′ 0.919 low 41 10h53m44.08s +57◦30′17.99′′ 0.490 low 42 10h53m26.96s +57◦31′10.83′′ 0.377 low 43 10h53m56.19s +57◦31′14.36′′ 0.701 low 10 Zappacostaetal.:ConstrainingthethermalhistoryoftheWHIM Id RA(J2000) DEC(J2000) z Quality Id RA(J2000) DEC(J2000) z Quality 44 10h53m32.85s +57◦31′52.09′′ 0.422 high 89 10h54m11.02s +57◦31′42.79′′ 0.396 high 45 10h53m48.02s +57◦32′05.64′′ 0.783 low 90 10h54m22.84s +57◦31′12.17′′ 0.343 high 46 10h53m40.31s +57◦32′09.61′′ 0.692 low 91 10h54m05.16s +57◦31′20.91′′ 0.977 low 47 10h53m42.17s +57◦32′25.60′′ 0.321 high 92 10h54m05.16s +57◦31′22.56′′ 1.062 low 48 10h53m49.23s +57◦35′39.75′′ 0.231 low 93 10h54m10.99s +57◦30′56.14′′ 0.226 low 49 10h53m49.31s +57◦34′28.74′′ 0.391 low 94 10h54m30.51s +57◦29′57.57′′ 0.619 high 50 10h53m40.12s +57◦36′19.28′′ 0.784 high 95 10h54m01.59s +57◦28′13.58′′ 0.890 low 51 10h53m33.68s +57◦36′10.40′′ 0.500 high 96 10h54m03.72s +57◦29′15.01′′ 0.806 high 52 10h53m37.67s +57◦36′04.33′′ 0.405 low 97 10h54m23.93s +57◦29′10.58′′ 0.410 low 53 10h53m40.23s +57◦35′50.81′′ 0.933 low 98 10h54m16.76s +57◦29′03.93′′ 0.589 low 54 10h53m44.73s +57◦36′08.73′′ 0.591 low 99 10h54m03.14s +57◦28′57.45′′ 0.793 low 55 10h54m01.68s +57◦35′34.23′′ 0.256 low 100 10h54m22.93s +57◦28′42.62′′ 0.787 high 56 10h53m41.03s +57◦35′12.77′′ 0.493 low 101 10h54m29.85s +57◦28′17.79′′ 0.711 high 57 10h53m44.76s +57◦35′15.24′′ 0.093 low 102 10h54m21.11s +57◦30′14.17′′ 0.965 low 58 10h53m42.62s +57◦34′03.58′′ 0.784 high 103 10h54m33.97s +57◦29′52.14′′ 0.276 high 59 10h53m41.48s +57◦34′28.55′′ 0.256 low 60 10h53m46.09s +57◦34′11.09′′ 1.084 low 61 10h53m42.87s +57◦34′03.80′′ 0.784 high 62 10h53m36.94s +57◦33′57.55′′ 0.420 high 63 10h53m36.32s +57◦33′13.74′′ 0.706 high 64 10h53m36.32s +57◦33′12.91′′ 0.784 high 65 10h53m45.19s +57◦33′42.05′′ 0.701 high 66 10h54m03.72s +57◦33′29.03′′ 0.662 low 67 10h53m37.33s +57◦32′52.90′′ 0.562 low 68 10h53m38.25s +57◦32′49.74′′ 0.785 high 69 10h53m29.13s +57◦36′41.92′′ 0.427 high 70 10h52m50.23s +57◦28′25.09′′ 0.536 low 71 10h52m49.71s +57◦28′41.56′′ 0.342 high 72 10h52m39.67s +57◦28′57.53′′ 0.669 low 73 10h52m48.20s +57◦29′54.99′′ 0.291 low 74 10h52m41.79s +57◦30′53.26′′ 0.206 high 75 10h52m42.14s +57◦31′23.02′′ 0.121 high 76 10h52m55.15s +57◦31′47.06′′ 0.343 low 77 10h52m53.80s +57◦33′11.11′′ 0.669 high 78 10h52m45.50s +57◦28′05.49′′ 0.606 high 79 10h52m41.35s +57◦27′21.95′′ 0.552 high 80 10h52m49.02s +57◦26′39.76′′ 0.322 low 81 10h52m42.18s +57◦26′02.02′′ 0.343 high 82 10h54m20.31s +57◦24′02.86′′ 0.778 low 83 10h54m29.59s +57◦24′11.82′′ 0.776 high 84 10h54m23.22s +57◦24′46.59′′ 0.809 low 85 10h54m17.46s +57◦25′02.44′′ 0.138 high 86 10h54m27.92s +57◦26′14.55′′ 0.578 high 87 10h54m14.04s +57◦27′24.94′′ 0.913 low 88 10h54m29.28s +57◦27′44.63′′ 0.306 low

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.