ebook img

Concentrations of inertial particles in the turbulent wake of an immobile sphere PDF

0.89 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Concentrations of inertial particles in the turbulent wake of an immobile sphere

Concentrations of inertial particles in the turbulent wake of an immobile sphere HolgerHomannandJe´re´mieBec LaboratoireJ.-L.LagrangeUMR7293,Universite´deNice-SophiaAntipolis,CNRS,ObservatoiredelaCoˆted’Azur, Bd.del’Observatoire,06300Nice,France (Dated:28January2015) Directnumericalsimulationsareusedtostudytheinteractionofastreamofsmallheavyinertialparticleswith thelaminarandturbulentwakesofanimmobilespherefacinganincompressibleuniforminflow. Particles that do not collide with the obstacle but move past it, are found to form preferential concentrations both 5 1 in the sphere boundary layer and in its wake. In the laminar case, the upstream diverging flow pattern is 0 responsibleforparticleclusteringonacylinderthatextendsfardownstreamthesphere. Theinteriorofthis 2 surfacecontainsnoparticlesandcanbeseenasashadowofthelargeobstacle. Suchconcentrationprofiles arealsopresentinthecaseofturbulentwakesbutshowafiniteextension. Thesphereshadowisfollowed n a by a region around the axis of symmetry where the concentration is higher than the average. It originates J fromaresonantcentrifugalexpulsionofparticlesfromshedvortices. Theconsequenceofthisconcentration 7 mechanism on monodisperse inter-particle collisions is also briefly discussed. They are enhanced by both 2 theincreasedconcentrationandthepresenceoflargevelocitydifferencesbetweenparticlesinthewake. ] n PACSnumbers: 52.30.-q,52.65.-y,52.30.Cv y d - I. INTRODUCTION u l f . Industrialandenvironmentalproblemsoftenrequiremodelingthehydrodynamicinteractionsbetweenparticlessus- s pendedinaturbulentflow. Sometimesitisnecessarytoaccuratelymodelthecollisionefficienciesbetweendroplets. c i Instancesareraintriggeringbydropletcoalescencesinwarmclouds1orplanetformationbydustaccretionincircum- ys stellar disks.2 In such problems one encounters different regimes: For very tiny particles associated to small values h of the Reynolds number, the flow surrounding the particles is purely viscous and evolves according to the Stokes p equation. Whendealingwithalargenumberofparticles,thisapproachleadstomodelthecollectivehydrodynamic [ interactionsintermsofStokesiandynamics.3 Inturbulentcarrierflows,onethengenerallyapproximatestheflowas thesuperpositionofthesmall-scaleeffectsofparticlesandtheinertial-rangeNavier-Stokesdynamics.4 However,for 1 v largerparticleswithnon-negligibleReynoldsnumbers,theboundarylayerandwakecanbecomerathercomplicated, 5 sothatforexampleeventhedragforceexperiencedbysuchparticlesisuptonowonlyheuristicallymodeled. There- 5 foreverylittleisknownonthechallengingproblemofmodelingthehydrodynamicinteractionsbetweentwoparticles 7 withReynoldsnumbersimplyingthatatleastoneparticlehasaturbulentwake. 6 In this work we focus on the asymptotic case of particles with very different sizes and investigate how a fixed 0 sphere developing either a laminar or turbulent wake interacts with a stream of very small heavy particles. Inertia . 1 makes the trajectories of the small heavy particles deviate from fluid element trajectories and this possibly leads to 0 particle-sphere collisions. One question is then to understand the rate at which such collisions occur and how it is 5 acceleratedordepletedasafunctionoftheobstacleReynoldsnumber. Thisproblemhasimportantapplicationsinthe 1 determinationofdustaccretionbyplanetesimalsinearlystellarsystemsorinthewetdepositionoftinyaerosolsby : v raindropsandisstudiedelsewhere. Inthepresentwork,weareconcernedwiththedynamicsofthoseparticleswhich i X pass the obstacle and interact with its wake. Using direct numerical simulations, we study their spatial distribution anddynamicsdownstreamthesphericalobstacle. r a It is well known, that inertial particles do not exactly follow the trajectories of fluid elements and distribute with aninhomogeneousdensity.5–7 Heavyparticlesareejectedfromcoherentrotatingstructuresoftheflowbycentrifugal forcesandconcentrateinstretchingregions. Thecreationofconcentrationsandvoidsiscorrelatedtothelocalstruc- tureofthefluidvelocitygradienttensor;particlesconcentrateinregionswhereithasrealeigenvaluesandvoidsappear inplaceswheretwoeigenvaluesarecomplex.8Figure1showsasnapshotfromoneofoursimulationsdisplayingsmall inertialparticlesintheturbulentwakeofasphere. Detachedcoherentvorticesthatareadvecteddownstreambythe meanflowejectparticlesandcreatevoids. Attheborderofthesevoids,clumpsofparticlescanbeobserved. These clusterstriggercollisionsthatmightbeimportantinapplications. Cloudwaterdropletscanbethiswayconcentrated byafallingraindrop,eventuallycoalesce,growinsizeandinfluencetherainformationprocess. Tangetal.9andYangetal.10studiednumericallyandexperimentallytheinfluenceofadvectedlargescalestructures onparticledispersioninplanemixinglayersandwakes. Theyshowthatthedevelopmentofhighlyorganizedpatterns of inertial particles is determined by the evolution and interaction of these structures. Via the measurement of the 2 U −−−−−−C−−→ FIG.1. Snapshotofthepositionofparticles(withSt = τU /d = 3.2,whereU isthehomogeneousinflowvelocityandd is C C thediameterofthesphericalobstacle)inasmallslicepassingthroughtheaxisofsymmetry.ThesphereReynoldsnumberishere Re = U d/ν = 400. Thebackgroundshowsthevaluesofthediscriminant∆ = (det[σ]/2)2−(tr[σ2]/6)3 whichispositivein s C rotatingregionsandnegativeinstretchingregions. fractalcorrelationdimensiontheyfoundthatparticleswithacertainmassarethemostinfluenced. Ourworkisalso relatedtoanexperimentalstudyofJacoberandMatteson.11Inawindtunneltheymeasuredaverageconcentrationsof inertialparticlesintheturbulentwakeofaspherewithReynoldsnumbersrangingfrom23000to110000. Despitethe factthattheseReynoldsnumbersareoutofreachbydirectnumericalsimulationswefindgoodqualitativeagreement withtheirdata. This article is organized as follows. Section II gives a short description of the numerical method applied. Sec- tionIIIisdedicatedtothemeanconcentrationsofsmallparticlesintheturbulentwake,whileSectionIVpresentsan estimationofinter-particlecollisions. SectionVencompassesconcludingremarks. II. THENUMERICALMETHOD In order to conduct direct numerical simulations of a three-dimensional hydrodynamic flow around a spherical object with no-slip boundary conditions at its surface, we use a combination of a standard pseudo-Fourier-spectral methodwithapenaltymethod.12Moreprecisely,wesolvetheincompressibleNavier-Stokesequations 1 ∂u+u·∇u=− ∇p+ν∇2u+f, ∇·u=0, (1) t ρ f for the fluid velocity u, where ρ is the fluid density, ν its kinematic viscosity and f a force maintaining a uniform f andconstantinflow. Thismeanflowisimposedbykeepingconstantthezeromodeofthestream-wisecomponentof thevelocity;themeanvelocityisdenotedbyU . Equation(1)isassociatedtotheno-slipboundaryconditiononthe C surfaceofthelargeparticleatrest u(x,t)=0 for |x−X |≤d/2. (2) S HereX denotesthepositionoftheparticlecenterandditsdiameter. Homogeneousinflowconditionsareachieved S byusingagainthepenaltymethodtoremovethevelocityfluctuationsoriginatingfromthespherewakeattheexitof thecomputationaldomain,beforetheyareinjectedupstreambyperiodicboundaryconditions.Forthetimeintegration of(1)weuseathirdorderRunge–Kuttascheme. Thegridresolutionischosentoresolveallsmallscales:thoseofthe boundarylayerofthesphereandallturbulentscalesinthewake. Detailsofthemethodandbenchmarkscanbefound inHomannetal.12 Forthesmallinertialparticles,weconsidersphericalparticleswitharadiusamuchsmallerthanboththeviscous boundary layer and the smallest active scale of the sphere turbulent wake (the local Kolmogorov dissipative scale η = (ν3/(cid:15))1/4, where (cid:15) is the local energy dissipation rate). In this limit, particles can be approximated by point particles. Further,weassumethattheseparticlesmovesufficientlyslowlywithrespecttothefluidandthattheirmass densityρ ismuchhigherthanthefluiddensityρ . Withtheseassumptionsthedominanthydrodynamicforceexerted p f bythefluidisaStokesviscousdrag,whichisproportionaltothevelocitydifferencebetweentheparticleandthefluid flow13,14 1(cid:104) (cid:105) X¨ = u(X,t)−X˙ , (3) τ where the dots stand for time derivatives. The quantity τ = 2ρ a2/(9ρ ν) is called the particle response time and is p f ameasureoftheparticleinertia. Itisthetypicalrelaxationtimeoftheparticlevelocitytothatofthefluid. Wealso assumethattheparticlesaresufficientlydilutedtoneglectanyinteractionamongthemandanyback-reactiononthe flow. Usually,particleinertiaismeasuredintermsoftheStokesnumberSt =τ/τ definedbynon-dimensionalizing f theirresponsetimebyacharacteristictimescaleτ ofthecarrierflow. Thedifferenttimescalesinvolvedhereplay f a role depending on which aspect of the problem we are interested in. In most cases, we use τ = d/U , which f C 3 corresponds to expressing the particle response time in units of the time needed to be swept over a distance d by thelarge-scalefluidvelocityU . ParticleswithsmallSt arecloselycorrelatedtotheflowandaresweptaroundthe C obstacle. LargeSt-particleswillpreferentiallycollidewithit. Onlywhenconcernedwiththeparticledynamicsinthe turbulentwakewewilluseSt =τ/τ withτ =τ =(ν/(cid:15))1/2(thelocalKolmogorovtimescale). η f f η We report results of three simulations corresponding to three different values of the obstacle Reynolds number Re = U d/ν = 100, 400, and1000. Withthischoicewecovervariouswaketypes. ForthesmallestRe thewake s C s is steady and laminar. The intermediate value is slightly above the onset of chaotic shedding of vortices and thus slightly turbulent. For Re = 1000 the wake is fully turbulent. In all cases, we consider streams of heavy particles s withresponsetimesτbetween0.04and40.96, correspondingtoStokesnumbersintherange0.05 ≤ St ≤ 63. The mainparametersofthesimulationsaresummarizedinTab.I. Res UC d ν (cid:96)x×(cid:96)y×(cid:96)z Nx×Ny×Nz Np 100 1 0.8 8·10−3 2π×2π×16π 256×256×2048 ≈106 400 1 0.8 2·10−3 2π×2π×16π 256×256×2048 ≈106 1000 1 0.65 6.5·10−4 2π×2π×16π 512×512×4096 ≈106 TABLE I. Parameters of the numerical simulations. Re = U d/ν: Reynolds number of the obstacle, U : inflow velocity, d: s C C diameter of the spherical obstacle, ν: kinematic viscosity, (cid:96) , (cid:96) and (cid:96): edge lengths of the computational domain (z being in x y z thedirectionofthemeanflow), N , N ,and N: numberofcollocationpointsintherespectivedirections, N : numberofsmall x y z p particles. Thesimulationsaresetupinthefollowingway. First,weintegratetheNavier-Stokesequations(1)withasphere locatedatX =(π,π,2π)whileimposingahomogeneousinflowwithU =1untila(statistically)stationarystateis S c reached. Wetheninjectastreamofinertialparticlesbyplacingrandomlymanyparticlespertimestepattheentrance of the domain. They are initialized with the velocity U = 1 of the fluid. During the simulation we remove all the C particles that are touching the sphere or reaching the end of the computational domain. On average the domain is filledwithapproximatelyonemillionparticles. Thefluidandparticletrajectoriesarethenstoredandanalyzedduring fourtimesthetimeneededforthefluidtotravelacrossthenumericaldomain. III. DENSITYINHOMOGENEITIESINTHEWAKE A. Averageconcentrationsandvoids Smallinertialparticlesthatpassoverthesphericalobstacleareinfluencedbybothitsboundarylayeranditswake. Therotatingstructuresinthewakeejectparticlesandcreatevoidsandconcentrations(seeagainFig.1). Themean (temporal average) particle number density is shown in Fig. 2 for the three different Reynolds numbers we have considered. Duetotheaxialsymmetryoftheproblem,weadoptacylindricalcoordinatesystem(r,z,φ)(wherezisin thedirectionoftheinflowU )andaverageovertheangleφ. Oneobservesregionswheretheparticleconcentration C iseithersignificantlyoverorunderitsvalueintheinflowstream. Let us outline the main findings: A cylindrical region where small particles concentrate is emerging at the sur- face of the obstacle while a shadow with a very low concentration extends downstream. In the case of the two highestReynoldsnumbers(turbulentwakes),thisshadowregionisdrasticallyreducedand,moreover,anotherover- concentration is created further downstream. This second high-concentration region around the axis of symmetry is accompanied by a conic region of reduced concentration spreading outwards. Both the high as well as the low concentrationsaremorepronouncedforthehigherReynoldsnumber. ForSt = 3.9andRe = 1000,weobservefor s exampleanover-concentrationinthewakethatisapproximately1.5timeslargerthanthemeanconcentration. B. Stream-wiseandradialprofiles The spatial dependence of these concentrations can be seen with more details in Fig. 3 (left). Particles with a small Stokes number St only create a short shadow (a few times the obstacle diameter d for St = 0.12) where the concentrationissignificantlydepleted. Rapidly,atonlyseveraldiametersfurtherdownstream,thedensityexceedsthe inflowdensityandreachesamaximum. Beyondthispoint,theover-concentrationslowlyreduces. Thisisbecauseτ η increases (and therefore St = τ/τ reduces) as a function of the distance from the sphere so that small-St particles η η 4 FIG. 2. Mean particle concentration for St = 0.4 and Re = 100 (top), St = 0.4 and Re = 400 (middle) and St = 0.49 and s s Re =1000(bottom). s FIG.3. Left: Meanparticleconcentrationontheaxisofsymmetryasafunctionofthedistancefromthesphericalobstaclefor severalStandRe = 1000. Datahasbeensmoothedbyaslidingwindowaveragewithawindowsizeapproximatelyequaltod. s Right: Positioninthewakewherethesmallparticledensityrecoverstheinflowdensity,correspondingtothetransitionbetween theshadowedregionandtheover-concentration. behavemoreandmoreliketracersandsticktofluidelements. Theyaretransportedandmixedbythewaketurbulent fluctuationsandthisevensoutpossibleconcentrations. The density profile for particles with a larger Stokes number St is similar but shifted further downstream due to higher inertia. The concentrations might persist in the far wake as turbulence decays downstream so that heavy particles do not diffuse anymore and their density might just be advected by a quasi-uniform flow. Also, it seems that the maximum of concentration increases with St. However, these two observations cannot be unquestionably confirmedfromoursimulations,giventhelimitedspaninthestreamwisedirection. Amorepreciseinvestigationof theseaspectswouldrequireamuchlongercomputationaldomainandiskeptforafuturestudy. Thestartingpointoftheover-concentrationregion(wheretheparticledensityexceedthatoftheinflow)isshownin 5 Fig.3(right)asafunctionofSt. Itfollowsapower-lawwithanexponentwhichisclosetothatmeasuredbyJacober andMatteson.11 Thedecreaseoftheover-concentrationasafunctionofthedistancefromtheobstacleisreportedin Fig.4. Here,onlysmall-Stparticleareconsideredasthepositionofthemaximaldensityliesoutsidethedomainfor largeSt. Thedecayfollowsapower-lawwithanexponentcloseto−2/3. FIG.4. Left: Meanparticleconcentrationdeficitontheaxisofsymmetryasafunctionofthedistancefromtheobstaclecenter forseveralSt. Datahasbeensmoothedbyaslidingwindowaveragewithawindowsizeofapproximatelyd. Dataisshownfor Re =1000.Theblacklinecorrespondstoadecay∝z−2/3. s FIG.5. Radialdensityprofilesforvariousdistancesdownstreamthesphericalobstacle(Re =1000)andforSt=0.12(left)and s St=3.94(right) TheradialprofilesoftheparticledensityareshowninFig.5fortwodifferentStokesnumbers. Atsmalldistances zfromtheobstacle,thehigh-concentrationjetemergesataradialdistancer ≈ dfromtheaxisofsymmetry. Further downstream,thetransitionfromregionsofreducedtoincreasedparticleconcentrationsarealsosituatedatr≈d. C. Concentrationmechanisms ForallReynoldsnumbersofthesphericalobstacle,ahigh-concentrationcylindricaljetofparticlesemergesdirectly fromthesurface ofthesphere. Thereasonforthis istheconvergingflowin frontoftheobstacle(see thesketchin Fig. 6). Particle trajectories that start upstream at locations close to the axis of symmetry (small r’s) come close to 6 thosestartingwithalargerr. Thisisduetoreducedaccelerationsoftheinertialparticlescomparedtofluidelements. The observed number densities in the jet region decrease with increasing Stokes number St. This is because the collisionrateofsmallparticleswiththesphereincreaseswithSt. Theparticleswhichhavecollidedareremovedfrom theflowandarethusmissingdownstreamandinthejetregion. FIG.6. Sketchshowingthemechanismsleadingtoover-andunder-concentrationsofsmallparticlesinthewakeofaspherical obstacle (red half-disk). The upper half shows the situation for laminar wakes while the lower part relates to turbulent wakes. Streamlinesareshowninblack.Inthecaseofaturbulentwake,thestreamlinesofthemeanflowareshownasdashedlines.Blue lines correspond to trajectories of heavy particles. In the turbulent wake particle positions are indicated by blue points. Green spiralssketchthepositionandrotationofdetachedvortices. The low-concentration shadow behind the obstacle originates from the fact that the dynamics of inertial particles lies behind that of the fluid. Fluid streamlines converge downstream the recirculation region but inertial particles overshoot. Theresultingshadowpersistsfarawayinthewake(inthelaminarcase), becauseoftheturbulentdecay downstreamandtheassociateddecreaseofthefluidradialacceleration. Particlesgetlessandlessdriventowardthe centeraxisofsymmetry. Howcanoneunderstandtheemergenceoftheover-concentrationregionsinthefarturbulentwakes? Jacoberand Matteson11 suggestedthattheyoriginatefromthejetregionthatisdrawnaroundthesphereandcollapsesbehindit. However,ifthiswasthecase,alaminarwakewouldalsoproducesimilarconcentrationsandwedonotobservethis effect. Themeanflowintheturbulentwakeisnotresponsiblefortheseconcentrationseither. Weindeedintegrated trajectoriesofinertialparticlesaccordingto(3)buttransportedbythemeanvelocityfieldu¯(x), i.e. thetemporally averagedvelocityfieldoftheRe = 400simulation(notshown). Uptoseveraldiametersdownstreamfromthefixed s sphere, the concentration profile is very similar to the time dependent simulations. Notably, the jet is reproduced. However,thisapproachdoesnotproducethehigh-concentrationregioninthefarwake. FIG.7. MeanparticleconcentrationinpseudocolorsforSt=1.6(τ=1.28)particlesandRe =400. Positionofthemaximal∆ s asafunctionofthedownstreamdistancezisshownasadashedline. SolidblacklinesindicatecontoursofthelocalKolmogorov time-scaleτ . η Wesuggestthattheconcentrationmechanismisprovidedbytherotatingstructuresintheturbulentwake. Yaoet al.15alreadyobservedinstantaneousconcentrationsinatwodimensionalflowpastadiskandfoundthatparticlescon- centratebetweenperiodicallyshadedvortices. Tangetal.9 andYangetal.10 studiednumericallyandexperimentally theinfluenceofadvectedlargescalestructureonparticledispersioninplanemixinglayersandwakes. Theyfound thatthedevelopmentofhighlyorganizedpatternsofinertialparticlesisdeterminedbytheevolutionandinteraction of these structures. Via fractal correlation dimension measurements they showed that particles with St = 1 are the mostinfluenced. Inordertostudywithmoredetailstheeffectsofthewakerotatingstructuresonparticleconcentrations,wecom- 7 puted the temporally averaged Okubo–Weiss parameter ∆ (defined in the caption of Fig. 1). It is a measure of the strengthofrotationvs. stretchinginthefluidvelocityfield. ∆ispositiveinregionswherethevelocitygradientsare dominated by vorticity and negative in those where strain is dominant. In a turbulent flow, heavy inertial particles tendtomovefromregionswhere∆ispositivetothosewhereitisnegative.7 Themaximumof∆asafunctionofthe streamwisepositionisshownasthedashedlineinFig.7. Oneclearlyobservesthatitcorrelateswellwiththeregion ofunder-concentration. Anotherobservationisthat,whentheparticleinertiaisincreased,thestartingpointoftheconcentrationregionis shifted downstream (compare Fig. 3). This change can be explained by the fact that particle ejection from rotating regions is the most effective for particles with a Stokes number St = τ/τ around unity. The local Kolmogorov η η timescaleτ increasesdownstream(seesolidblackcontourlinesinFig.7). Hence,thepositionwhereSt ≈ 1shifts η downstreamwhenparticleinertiaincreases. IV. INTER-PARTICLECOLLISIONS The goal of this section is to qualitatively estimate the occurrence and position of possible collisions between particles with equal inertia. We will limit the discussion to the flow Re = 400 and we focus on mean quantities, s leavingtheinfluenceoffluctuationsforafuturework. Basedonthemeanpairdensityandonthemeanapproaching velocity between particles with the same Stokes number, one can estimate the collision rate is proportional to the product p (z,r)=−(cid:104)n (z,r)2(cid:105)(cid:104)w (z,r)(cid:105), (4) c − − wheren2 isthecoarse-grainedpairdensityofapproachingparticlesandw theassociatedmeanlongitudinalvelocity − − difference. Forbothn2 andw ,onlyparticleswithnegativelongitudinalvelocitydifferencesaretakenintoaccount. − − Such an estimate for collision rates relies on the ghost-particle approximation16 where possible particle encounters arecountedbutnotperformed. Itreliesonprovidinganarbitraryradiustotheparticlesthatwehaveherechosento be0.2d. Allthecoarse-grainedquantitiesusedin(4)arethusdefinedforthatscale. Weobservefromoursimulations that the pair density (cid:104)n2(cid:105) has the same structure as the mean single particle concentrations (not shown): A high − concentrationjetregioninthevicinityofthelargesphereforparticleswithasmallinertiaandahighconcentration regiondownstream,morepronouncedforparticleswithalargeinertia. FIG.8. Top:Averagevelocitydifference(cid:104)w (z,r)(cid:105)ofapproachingparticleswithSt=3.2,coarse-grainedatascale0.2d.Bottom: − Estimate p ,definedin(4),forbinarycollisionsofparticleswiththesameSt=3.2. Itisrepresentedinlogarithmicunitsinorder c toemphasizeitsvariationratherthanonlyitsmaximuminthejetregion. The average longitudinal velocity differences are shown in Fig. 8 (top). The highest approaching velocities are located in the jet region, where particle trajectories are compressed. In the wake region where vortices detach, one still observes some non-vanishing values of the approaching velocities, which are much less strong than in the jet region. Furtherinthewake,thevelocitydifferencesbecomeweakduetothedecayofturbulentfluctuations. The estimate p for collision rates is shown in Fig. 8 (bottom). The jet region provides the highest probability c for particle encounters. There, both the particle density as well as the particle approaching speed are enhanced. Withincreasingdistancefromtheobstacletheparticlecollisionregionmovestowardstheaxisofsymmetryandthe probability of collisions decreases. The dependence of the collision probability as a function of the distance from theobstaclecanbeseenmoreclearlyinFig.9, whereweshowthesumof p overplanes(r,θ)asafunctionofthe c streamwise direction z. One clearly observes that the particles with a small inertia collide preferentially in the jet 8 region,inthevicinityofthesphere. Thecollisionsbetweenparticleswithalargerinertiaareratherenhancedinthe wake. We indeed see in Fig. 9 that non-vanishing values of p persist at downstream distances as far as tens of the c obstaclediameter. FIG.9. Sumof p overplanes(r,θ)indirectionsperpendiculartothestream,asafunctionofthedownstreamdistancetothe c obstacle.Threedifferentstrengthsofparticleinertiaareshown,aslabeled. V. SUMMARYANDOUTLOOK Inthisworkwehaveanalyzedhowastreamofinertialparticlesisinfluencedbytheboundarylayerandthewakeof asphericalobstacle. WemakeuseoftheresultsofthreedirectnumericalsimulationsoftheincompressibleNavier– Stokes equations using a combination of a Fourier-spectral method and a penalty technique. We considered three different Reynolds numbers for the sphere, Re = 100, Re = 400, and Re = 1000. The average concentration of s s s smallinertialparticlesshowsdifferentcharacteristicsinthewakeofthesphericalobstacle,dependingontheparticle StokesnumberStandonthesphereReynoldsnumberRe : ForallRe wefindthatparticleswithweakormoderate s s inertiaclusterattheouteredgeoftheobstaclecreatinganarrowcylindricaljetofparticles.Behindtheobstacle,inertia isresponsiblefortheformationofashadowwhereparticleconcentrationisstronglyreduced. Whenthewakeofthe obstacleislaminar,theseover-andunder-concentrationspersistfardownstreamwhiletheyarerapidlydissipatedby fluctuationsforaturbulentwake. Moreover,wefindthatintheturbulentcase,thereisaregionappearingacoupleof diametersdownstreamthespherewheretheparticleconcentrationexceedsthatintheinflow. Thiscanbeexplained byresonantejectionsofparticlesfromdetachedandadvectedvorticeswithalocalturn-overtimeτ oftheorderof η theparticleresponsetimeτ. Estimatesoftheprobabilityofcollisionsbetweenidenticalparticlesshowthatparticleswithaweakinertiatendto collideinthejetregionnearthespherewhilethosewithastronginertiacollidepreferentiallyfurtherdownstream. In afutureworkitwillbeinterestingtoexaminesuchcollisionstatisticsinthepolydispersecase,i.e. betweenparticles with different sizes and response times. We expect that in the turbulent wake the relative velocity of particles with different inertia will be larger than for particles of the same type. We also plan to take coagulation or coalescences intoaccountandanalyzehowtheparticlesizedistributionisaffectedbythewakeofthesphericalobstacleandhowit dependsontheReynoldsnumberofthelatterandonthedownstreamdistance. Thiscanhaveimportantapplications, forinstanceinplanetformation. Itseemswellfoundedtoassumethatlargebodies,suchasplanetesimalsorplanetary embryos,willconcentratedustintheirwakeandwillthusfosteraccretionandtheformationofotherobjects. Acknowledgments WethankP.TangaandT.Guillotforusefuldiscussions. MostofthesimulationsweredoneusingHPCresources fromGENCI-IDRIS(Grant i2011026174). Partofthemwere performedonthe¢me´socentrede calculSIGAMM¢. TheresearchleadingtotheseresultshasreceivedfundingfromtheAgenceNationaledelaRecherche(Programme BlancANR-12-BS09-011-04). 1H.PruppacherandJ.Klett,MicrophysicsofCloudsandPrecipitation.Dordrecht:KluwerAcademic,1997. 2J.J.Lissauer,“Planetformation,”Annu.Rev.Astron.Astrophys.,vol.31,pp.129–174,1993. 3J.BradyandG.Bossis,“Stokesiandynamics,”AnnualReviewofFluidMechanics,vol.20,pp.111–157,1988. 4L.-P.Wang,B.Rosa,H.Gao,G.He,andG.Jin,“Turbulentcollisionofinertialparticles:Point-particlebased,hybridsimulationsandbeyond,” InternationalJournalofMultiphaseFlow,vol.35,pp.854–867,2009. 9 5K.SquiresandJ.Eaton,“Preferentialconcentrationofparticlesbyturbulence,”Phys.FluidsA,vol.3,pp.1169–1178,1991. 6M.Wood,W.Hwang,andK.Eaton,“Preferentialconcentrationofparticlesinhomogeneousandisotropicturbulence,”InternationalJournalof MultiphaseFlow,vol.31,pp.1220–1230,2005. 7J.Bec,L.Biferale,M.Cencini,A.Lanotte,S.Musaccio,andF.Toschi,“Heavyparticleconcentrationinturbulenceatdissipativeandinertial scales,”Phys.Rev.Lett.,no.98,p.84502,2007. 8J.Bec,“Multifractalconcentrationsofinertialparticlesinsmoothrandomflows,”J.FluidMech.,vol.528,pp.255–277,2005. 9L.Tang,F.Wen,Y.Yang,C.T.Crowe,J.N.Chung,andT.R.Troutt,“Selforganizingparticledispersionmechanisminaplanewake,”Physics ofFluidsA:FluidDynamics(1989-1993),vol.4,p.2244,1992. 10Y.Yang,C.Crowe,J.Chung,andT.Troutt,“Experimentsonparticledispersioninaplanewake,”InternationalJournalofMultiphaseFlow, vol.26,pp.1583–1607,2000. 11D.E.JacoberandM.J.Matteson, “ParticleMixingandDiffusionintheTurbulentWakeofaSphereParticleMixingandDiffusioninthe TurbulentWakeofaSphere,”AerosolScienceandTechnology,no.12,pp.335–363,1990. 12H.Homann,J.Bec,andR.Grauer,“Effectofturbulentfluctuationsonthedragandliftforcesonatowedsphereanditsboundarylayer,”J.Fluid Mech,vol.721,pp.155–179,2013. 13M.R.MaxeyandJ.Riley,“Equationofmotionforasmallrigidsphereinanonuniformflow,”Phys.Fluids,vol.26,no.4,p.883,1983. 14R.Gatignol,“TheFaxe´nformulaeforarigidsphereinanunsteadynon-uniformStokesflow,”J.Me´c.The´or.Appl.,vol.1,pp.143–160,1983. 15J.Yao,Y.Zhao,N.Li,Y.Zheng,G.Hu,J.Fan,andK.Cen,“MechanismofParticleTransportinaFullyDevelopedWakeFlow,”Industrial& EngineeringChemistryResearch,pp.10936–10948,Aug.2012. 16S.SundaramandL.R.Collins,“Collisionstatisticsinanisotropicparticle-ladenturbulentsuspension.Part1.Directnumericalsimulations,”J. FluidMech.,vol.335,pp.75–109,1997.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.