ebook img

Computational Systems Biology of Cancer PDF

456 Pages·2012·30.157 MB·\456
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Systems Biology of Cancer

Systems Biology C o m p Computational “An up-to-date, comprehensive and very readable overview, this book has u plenty for everyone interested in computational systems biology of cancer. t a … Think of this as your guide book to the field, as well as a way to get t i Systems Biology of started in it.” o —Terry Speed, University of California, Berkeley, and Walter and Eliza Hall n Institute of Medical Research a Cancer l “This book deals with an important and very timely topic … The authors S have made a substantial and useful effort to describe the state of the art of y these computational methods in an accessible and clear way. The book is a s t much-needed contribution to modern cancer analysis and to the emerging e m discipline of systems biology.” —Ron Shamir, Tel Aviv University, Israel s B “This is the first book specifically focused on computational systems i biology of cancer with a coherent and proper vision on how to tackle this o formidable challenge. I would like to congratulate the authors for their vision l o and dedication.” g —Hiroaki Kitano, The Systems Biology Institute, Sony Computer Science y Laboratories, Inc., and Okinawa Institute of Science and Technology o Drawn from the authors’ decade-long work in the cancer computational f systems biology laboratory at Institut Curie (Paris, France), Computational C Systems Biology of Cancer explains how to apply computational a n systems biology approaches to cancer research. Suitable for readers in c both computational and life sciences, this self-contained guide provides e proven techniques and tools for cancer bioinformatics and systems biology r research. It explores how computational systems biology can help fight cancer in three essential aspects: categorising tumours, finding new targets, and designing improved and tailored therapeutic strategies. Barillot Calzone Hupé Emmanuel Barillot Laurence Calzone Vert Philippe Hupé Jean-Philippe Vert Zinovyev K11531 Andrei Zinovyev K11531_Cover.indd 1 7/24/12 3:16 PM Computational Systems Biology of Cancer K11531_FM.indd 1 7/18/12 12:34 PM CHAPMAN & HALL/CRC Mathematical and Computational Biology Series Aims and scope: This series aims to capture new developments and summarize what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged. Series Editors N. F. Britton Department of Mathematical Sciences University of Bath Xihong Lin Department of Biostatistics Harvard University Hershel M. Safer School of Computer Science Tel Aviv University Maria Victoria Schneider European Bioinformatics Institute Mona Singh Department of Computer Science Princeton University Anna Tramontano Department of Biochemical Sciences University of Rome La Sapienza Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press, Taylor & Francis Group 4th, Floor, Albert House 1-4 Singer Street London EC2A 4BQ UK K11531_FM.indd 2 7/18/12 12:34 PM Published Titles Algorithms in Bioinformatics: A Practical Dynamics of Biological Systems Introduction Michael Small Wing-Kin Sung Engineering Genetic Circuits Bioinformatics: A Practical Approach Chris J. Myers Shui Qing Ye Exactly Solvable Models of Biological Biological Computation Invasion Ehud Lamm and Ron Unger Sergei V. Petrovskii and Bai-Lian Li Biological Sequence Analysis Using Gene Expression Studies Using the SeqAn C++ Library Affymetrix Microarrays Andreas Gogol-Döring and Knut Reinert Hinrich Göhlmann and Willem Talloen Cancer Modelling and Simulation Genome Annotation Luigi Preziosi Jung Soh, Paul M.K. Gordon, and Christoph W. Sensen Cancer Systems Biology Edwin Wang Glycome Informatics: Methods and Applications Cell Mechanics: From Single Scale- Kiyoko F. Aoki-Kinoshita Based Models to Multiscale Modeling Arnaud Chauvière, Luigi Preziosi, Handbook of Hidden Markov Models and Claude Verdier in Bioinformatics Martin Gollery Clustering in Bioinformatics and Drug Discovery Introduction to Bioinformatics John D. MacCuish and Norah E. MacCuish Anna Tramontano Combinatorial Pattern Matching Introduction to Bio-Ontologies Algorithms in Computational Biology Peter N. Robinson and Sebastian Bauer Using Perl and R Introduction to Computational Gabriel Valiente Proteomics Computational Biology: A Statistical Golan Yona Mechanics Perspective Introduction to Proteins: Structure, Ralf Blossey Function, and Motion Computational Hydrodynamics of Amit Kessel and Nir Ben-Tal Capsules and Biological Cells An Introduction to Systems Biology: C. Pozrikidis Design Principles of Biological Circuits Computational Neuroscience: Uri Alon A Comprehensive Approach Kinetic Modelling in Systems Biology Jianfeng Feng Oleg Demin and Igor Goryanin Computational Systems Biology of Knowledge Discovery in Proteomics Cancer Igor Jurisica and Dennis Wigle Emmanuel Barillot, Laurence Calzone, Meta-analysis and Combining Philippe Hupe, Jean-Philippe Vert, and Information in Genetics and Genomics Andrei Zinovyev Rudy Guerra and Darlene R. Goldstein Data Analysis Tools for DNA Microarrays Methods in Medical Informatics: Sorin Draghici Fundamentals of Healthcare Differential Equations and Mathematical Programming in Perl, Python, and Ruby Biology, Second Edition Jules J. Berman D.S. Jones, M.J. Plank, and B.D. Sleeman K11531_FM.indd 3 7/18/12 12:34 PM Published Titles (continued) Modeling and Simulation of Capsules Spatial Ecology and Biological Cells Stephen Cantrell, Chris Cosner, and C. Pozrikidis Shigui Ruan Niche Modeling: Predictions from Spatiotemporal Patterns in Ecology Statistical Distributions and Epidemiology: Theory, Models, David Stockwell and Simulation Horst Malchow, Sergei V. Petrovskii, and Normal Mode Analysis: Theory and Ezio Venturino Applications to Biological and Chemical Systems Statistics and Data Analysis for Qiang Cui and Ivet Bahar Microarrays Using R and Bioconductor, Second Edition Optimal Control Applied to Biological Models Sorin Dra˘ghici Suzanne Lenhart and John T. Workman Stochastic Modelling for Systems Biology, Second Edition Pattern Discovery in Bioinformatics: Darren J. Wilkinson Theory & Algorithms Laxmi Parida Structural Bioinformatics: An Algorithmic Approach Python for Bioinformatics Forbes J. Burkowski Sebastian Bassi The Ten Most Wanted Solutions in Quantitative Biology: From Molecular to Protein Bioinformatics Cellular Systems Anna Tramontano Sebastian Bassi K11531_FM.indd 4 7/18/12 12:34 PM Computational Systems Biology of Cancer Emmanuel Barillot Laurence Calzone Philippe Hupé Jean-Philippe Vert Andrei Zinovyev K11531_FM.indd 5 7/18/12 12:34 PM Cover illustration © 2012 Philippe Hupé. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120615 International Standard Book Number-13: 978-1-4398-3145-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Figures xv List of Tables xix List of Acronyms xxi Preface xxvii Acknowledgements xxix 1 Introduction: Why systems biology of cancer? 1 1.1 Cancer is a major health issue . . . . . . . . . . . . . . . . . 1 1.1.1 Bit of history . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Definition of cancer . . . . . . . . . . . . . . . . . . . 2 1.1.3 Few facts about a killer . . . . . . . . . . . . . . . . . 3 1.1.4 Progress in cancer treatment is real, but insufficient . 3 1.1.5 Progress in cancer drug development needs a qualitative evolution . . . . . . . . . . . . . . . . . . . 4 1.2 From genome to genes to network . . . . . . . . . . . . . . . 5 1.2.1 Accumulation of alterations . . . . . . . . . . . . . . . 5 1.2.2 Cancer is a gene disease . . . . . . . . . . . . . . . . . 6 1.2.3 Cancer is a network disease . . . . . . . . . . . . . . . 7 1.3 Cancer research as a big science . . . . . . . . . . . . . . . . 7 1.3.1 Cancer research is technology-driven . . . . . . . . . . 7 1.3.2 Microarray era . . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 Next-generation sequencing era . . . . . . . . . . . . . 8 1.3.4 Cancer research and international data provider consortia . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Cancer is a heterogeneous disease . . . . . . . . . . . . . . . 9 1.4.1 Cancer heterogeneity . . . . . . . . . . . . . . . . . . . 9 1.4.2 Sorting out tumour heterogeneity: Classifying tumours 10 1.5 Cancer requires personalised medicine . . . . . . . . . . . . . 11 1.5.1 Definition of personalised medicine . . . . . . . . . . . 11 1.5.2 Choosing the adequate treatment: Prediction and prognosis . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.3 Designing a personalised treatment . . . . . . . . . . . 12 vii viii Contents 1.6 What is systems biology? . . . . . . . . . . . . . . . . . . . . 13 1.6.1 Operational definition for systems biology . . . . . . . 14 1.6.2 Systems biology: Is it data-driven or model-driven? . . 15 1.6.3 Systems biology: Yet another definition . . . . . . . . 17 1.6.4 Systems biology of cancer . . . . . . . . . . . . . . . . 18 1.7 About this book . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.7.1 What does this book try to achieve? . . . . . . . . . . 20 1.7.2 Who should read this book? . . . . . . . . . . . . . . . 20 1.7.3 How is this book organised? . . . . . . . . . . . . . . . 21 2 Basic principles of the molecular biology of cancer 25 2.1 Progressive accumulation of mutations . . . . . . . . . . . . 26 2.2 Cancer-critical genes . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 Oncogenes. . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Tumour suppressor genes . . . . . . . . . . . . . . . . 30 2.2.3 Non-protein-coding cancer-critical genes . . . . . . . . 33 2.3 Evolution of tumour cell populations . . . . . . . . . . . . . 33 2.3.1 Clonal origin . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Stemness of cancer cells . . . . . . . . . . . . . . . . . 33 2.4 Alterations of gene regulation and signal transduction mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.1 Modification of transcription factor activity . . . . . . 35 2.4.2 Epigenetic modifications . . . . . . . . . . . . . . . . . 37 2.4.3 Modification of the post-transcriptional regulations . . 38 2.4.4 Disruption of signal transduction . . . . . . . . . . . . 38 2.5 Cancer is a network disease . . . . . . . . . . . . . . . . . . . 39 2.6 Tumour microenvironment . . . . . . . . . . . . . . . . . . . 40 2.7 Hallmarks of cancer . . . . . . . . . . . . . . . . . . . . . . . 41 2.7.1 Hallmark capabilities. . . . . . . . . . . . . . . . . . . 41 2.7.2 Emerging hallmarks . . . . . . . . . . . . . . . . . . . 44 2.7.3 Enabling characteristics . . . . . . . . . . . . . . . . . 45 2.8 Chromosome aberrations in cancer . . . . . . . . . . . . . . . 45 2.8.1 Abnormal karyotype in cancer . . . . . . . . . . . . . 46 2.8.2 Impact of chromosome aberrations on cancer-critical genes . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Experimental high-throughput technologies for cancer research 53 3.1 Microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.1 General principles and microarray design . . . . . . . 54 3.1.2 DNA copy number study based on microarray experiment . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1.3 LOH study based on microarray experiment . . . . . . 62 3.1.4 RNA study based on microarray experiment. . . . . . 67 Contents ix 3.1.5 DNA–protein interaction study . . . . . . . . . . . . . 69 3.1.6 DNA methylation . . . . . . . . . . . . . . . . . . . . 71 3.2 Emerging sequencing technologies . . . . . . . . . . . . . . . 73 3.2.1 General principles of high-throughput sequencing . . . 74 3.2.2 Principles of high-throughput sequencing based on amplification . . . . . . . . . . . . . . . . . . . . . . . 75 3.2.3 Principles of single-molecule sequencing . . . . . . . . 78 3.2.4 Targeted sequencing . . . . . . . . . . . . . . . . . . . 81 3.2.5 Application of high-throughput sequencing in oncology 84 3.2.6 Towards single-cell sequencing . . . . . . . . . . . . . 85 3.3 Chromosome conformation capture . . . . . . . . . . . . . . 85 3.4 Large-scale proteomics . . . . . . . . . . . . . . . . . . . . . 89 3.4.1 Microarray-based proteomics . . . . . . . . . . . . . . 89 3.4.2 Mass spectrometry proteomics . . . . . . . . . . . . . 91 3.4.3 Protein–protein interactions . . . . . . . . . . . . . . . 95 3.5 Cellular phenotyping . . . . . . . . . . . . . . . . . . . . . . 100 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4 Bioinformatics tools and standards for systems biology 105 4.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . 106 4.1.1 Choosing the optimal set of experiments . . . . . . . . 107 4.1.2 Efficient statistical inference . . . . . . . . . . . . . . . 108 4.1.3 Specific aspects in systems biology . . . . . . . . . . . 111 4.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3 Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Quality management and reproducibility in computational systems biology workflow . . . . . . . . . . . . . . . . . . . . 114 4.5 Data annotations and ontologies . . . . . . . . . . . . . . . . 115 4.5.1 A priori biological knowledge . . . . . . . . . . . . . . 116 4.5.2 Standards for data and knowledge sharing . . . . . . . 118 4.6 Data management and integration . . . . . . . . . . . . . . . 119 4.7 Public repositories for high-throughput data . . . . . . . . . 120 4.8 Informatics architecture and data processing . . . . . . . . . 121 4.9 Knowledge extraction and network visualisation . . . . . . . 122 4.9.1 Charting a map of knowledge . . . . . . . . . . . . . . 122 4.9.2 Example of a map of knowledge: RB pathway . . . . . 123 5 Exploring the diversity of cancers 127 5.1 Traditional classification of cancer . . . . . . . . . . . . . . . 127 5.2 Towards a molecular classification of cancers . . . . . . . . . 129 5.3 Clustering for class discovery . . . . . . . . . . . . . . . . . . 131 5.3.1 Choosing a distance between samples . . . . . . . . . 133 5.3.2 Hierarchical clustering methods . . . . . . . . . . . . . 135 5.3.3 Partitioning methods. . . . . . . . . . . . . . . . . . . 137 5.3.4 Choosing the number of groups . . . . . . . . . . . . . 139

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.