ebook img

Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018 PDF

376 Pages·2019·14.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018

Mathematics and Visualization Elisenda Bonet-Carne · Francesco Grussu · Lipeng Ning · Farshid Sepehrband · Chantal M. W. Tax Editors Computational Diffusion MRI International MICCAI Workshop, Granada, Spain, September 2018 Mathematics and Visualization Series Editors Hans-Christian Hege, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Berlin, Germany David Hoffman, Department of Mathematics, Stanford University, Stanford, CA, USA Christopher R. Johnson, Scientific Computing and Imaging Institute, Salt Lake City, UT, USA KonradPolthier, AGMathematical GeometryProcessing, Freie UniversitätBerlin, Berlin, Germany Martin Rumpf, Bonn, Germany The series Mathematics and Visualization is intended to further the fruitful relationship between mathematics and visualization. It covers applications of visualization techniques in mathematics, as well as mathematical theory and methodsthatareusedforvisualization.Inparticular,itemphasizesvisualizationin geometry, topology, and dynamical systems; geometric algorithms; visualization algorithms; visualization environments; computer aided geometric design; compu- tational geometry; image processing; information visualization; and scientific visualization.Threetypesofbookswillappearintheseries:researchmonographs, graduate textbooks, and conference proceedings. More information about this series at http://www.springer.com/series/4562 Elisenda Bonet-Carne Francesco Grussu (cid:129) (cid:129) Lipeng Ning Farshid Sepehrband (cid:129) (cid:129) Chantal M. W. Tax Editors Computational Diffusion MRI International MICCAI Workshop, Granada, Spain, September 2018 123 Editors ElisendaBonet-Carne Francesco Grussu Centrefor Medical Image Computing Queen SquareInstitute of Neurologyand University CollegeLondon Centrefor Medical Image Computing London,UK University CollegeLondon London,UK LipengNing Psychiatry Neuroimaging Laboratory, Farshid Sepehrband Brigham andWomen’sHospital Laboratory of NeuroImaging (LONI) Harvard Medical School StevensNeuroimaging andInformatics Boston, MA, USA Institute, Keck Schoolof Medicine University of SouthernCalifornia ChantalM. W.Tax LosAngeles, CA, USA Cardiff University BrainResearch Imaging Centre(CUBRIC) Cardiff University Cardiff, UK ISSN 1612-3786 ISSN 2197-666X (electronic) Mathematics andVisualization ISBN978-3-030-05830-2 ISBN978-3-030-05831-9 (eBook) https://doi.org/10.1007/978-3-030-05831-9 LibraryofCongressControlNumber:2018964925 Mathematics Subject Classification (2010): 00B25, 00A66, 00A72, 42B35, 60J60, 60J65, 62P10, 65CXX,65DXX,65Z05,68R10,68T99,92BXX ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. CoverillustrationprovidedbyFrancescoGrussu.Imagesproducedbymergingthe Alhambraazulejo patternwitha3DT1-weightedMPRAGEMRIscanofahealthycontrolat3Tesla.Imagesproduced withthestyletransfertechniqueasimplementedintheneural-stylepythonpackagebasedonTensorFlow (https://github.com/anishathalye/neural-style). ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Programme Committee Nagesh Adluru University of Wisconsin-Madison, USA Manisha Aggarwal Johns Hopkins University, USA Dogu Baran Aydogan University of Southern California, USA Dafnis Batalle King's College London, UK Sylvain Bouix Harvard Medical School, USA Ryan Cabeen University of Southern California, USA Emmanuel Caruyer IRISA, France Mara Cercignani University of Sussex, UK Suheyla Cetin Karayumak Harvard Medical School, USA Jian Cheng National Institutes of Health, USA Daan Christiaens King's College London, UK Alessandro Daducci University of Verona, Italy Tom Dela Haije University of Copenhagen, Denmark Matt Hall University College London, UK; National Physical Laboratory, Teddington, UK Enrico Kaden University College London, UK Jan Klein Fraunhofer MEVIS, Germany Christophe Lenglet University of Minnesota, USA Damien McHugh University of Manchester, UK Dorit Merhof RWTH Aachen University, Germany Marco Palombo University College London, UK Torben Schneider Philips Healthcare, UK Thomas Schultz University of Bonn, Germany Filip Szczepankiewicz Harvard Medical School, Brigham and Women´s Hospital, USA Pew-Thian Yap University of North Carolina at Chapel Hill, USA Fan Zhang Harvard Medical School, USA v Preface It is our great pleasure to present the proceedings of the 2018 International Workshop on Computational Diffusion MRI (CDMRI’18) and the main results of the Multi-shell Diffusion MRI Harmonization and Enhancement Challenge (MUSHAC).BothwereheldundertheauspicesoftheInternationalConferenceon Medical Image Computing and Computer Assisted Intervention (MICCAI), which took place in Granada, Spain, on 20 September 2018. CDMRI’18 and MUSHAC were sponsored by MICCAI, Siemens Healthineers, NVIDIA and Restaurante OliverGranadaandendorsedbytheInternationalSocietyfor Magnetic Resonance in Medicine (ISMRM). This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions cov- ering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniquesfor theinvivo recoveryofmicrostructural andconnectivity features, as well as harmonization and frontline applications in research and clinical practice. Thiseditionincludesinvitedchaptersfromhigh-profileresearcherswiththespecific focusonfournewimportanttopicsthataregainingmomentumwithinthediffusion MRI community: (i) diffusion MRI signal acquisition and processing strategies; (ii) machine learning for diffusion MRI; (iii) diffusion MRI signal harmonization; and(iv)diffusionMRIoutsidethebrainandclinicalapplications.Additionally,the volume also includes contributions in the field of tractography and connectivity mapping, which continue being relevant and popular topics across all editions of CDMRI. Thisvolumeofferstheopportunitytosharenewperspectivesonthemostrecent research challenges for those currently working in the field, but also offering a valuablestartingpointforanyoneinterestedinlearningcomputationaltechniquesin diffusion MRI. The book includes rigorous mathematical derivations, a large numberofrich,full-colourvisualisationsandclinicallyrelevantresults.Assuch,it willbeofinteresttoresearchersandpractitionersinthefieldsofcomputerscience, MRI physics and applied mathematics. vii viii Preface Each contribution in this volume has been peer-reviewed by multiple members oftheInternationalProgramCommittee.Wewouldliketoexpressourgratitudeto allCDMRI’18authorsandreviewersforensuringthequalityofthepresentedwork andtoalltheteamswhoparticipatedinMUSHAC.WearegratefultotheMICCAI 2018 chairs for providing a platform to present and discuss the work collected in this volume, to our sponsors and to ISMRM for the endorsement. We also would liketothanktheeditorsoftheSpringerbookseriesMathematicsandVisualization aswellasMartinPetersandRuthAllewelt(Springer,Heidelberg)fortheirsupport to publish this collection as part of their series. Finally, we express our sincere congratulations to the winners of the prizes that were awarded during CDMRI’18 for the first time this year. The prizes were awardedfollowingcarefulevaluationbyapanelofjudges,madebytheCDMRI’18 andMUSHACorganisersandbytheCDMRI’18andMUSHACkeynotespeakers. (cid:129) Prizeforthebestpaper:SimonKoppersetal.with“Sphericalharmonicresidual network for diffusion signal harmonization”. (cid:129) Prize for the best MUSHAC method: Jaume Coll-Font et al. with the “DIAMOND2” method. (cid:129) Prize for the best oral presentation: Daniel Moyer et al. with “Measures of tractography convergence”. (cid:129) Prize for the best poster presentation: Santiago Aja-Fernandez et al. with “Return-to-plane probability calculation from single-shell acquisitions”. (cid:129) Prize for the best MUSHAC team presentation: Suheyla Cetin-Karayuma et al. with the “LinearRISH” method. Granada, Spain Elisenda Bonet-Carne, Ph.D. September 2018 Research Associate Francesco Grussu, Ph.D. Research Associate Lipeng Ning, Ph.D. Instructor Farshid Sepehrband, Ph.D. Assistant Professor Chantal M. W. Tax, Ph.D. Research Fellow Contents Part I Diffusion MRI Signal Acquisition and Processing Strategies Towards Optimal Sampling in Diffusion MRI . . . . . . . . . . . . . . . . . . . . 3 Hans Knutsson Joint Image Reconstruction and Phase Corruption Maps Estimation in Multi-shot Echo Planar Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Iñaki Rabanillo, Santiago Sanz-Estébanez, Santiago Aja-Fernández, Joseph Hajnal, Carlos Alberola-López and Lucilio Cordero-Grande Return-to-Axis Probability Calculation from Single-Shell Acquisitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Santiago Aja-Fernández, Antonio Tristán-Vega, Malwina Molendowska, Tomasz Pieciak and Rodrigo de Luis-García A Novel Spatial-Angular Domain Regularisation Approach for Restoration of Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Alessandro Mella, Alessandro Daducci, Giandomenico Orlandi, Jean-Philippe Thiran, Maria Deprez and Merixtell Bach Cuadra Dmipy, A Diffusion Microstructure Imaging Toolbox in Python to Improve Research Reproducibility. . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Abib Alimi, Rutger Fick, Demian Wassermann and Rachid Deriche TissueSegmentationUsingSparseNon-negativeMatrixFactorization of Spherical Mean Diffusion MRI Data . . . . . . . . . . . . . . . . . . . . . . . . . 69 Peng Sun, Ye Wu, Geng Chen, Jun Wu, Dinggang Shen and Pew-Thian Yap A Closed-Form Solution of Rotation Invariant Spherical Harmonic Features in Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Mauro Zucchelli, Samuel Deslauriers-Gauthier and Rachid Deriche ix x Contents Orientation-Dispersed Apparent Axon Diameter via Multi-Stage Spherical Mean Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Marco Pizzolato, Demian Wassermann, Rachid Deriche, Jean-Philippe Thiran and Rutger Fick Part II Machine Learning for Diffusion MRI Current Applications and Future Promises of Machine Learning in Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Daniele Ravi, NooshinGhavami,DanielC. Alexander andAndradaIanus q-Space Learning with Synthesized Training Data. . . . . . . . . . . . . . . . . 123 Chuyang Ye, Yue Cui and Xiuli Li Graph-Based Deep Learning for Prediction of Longitudinal Infant Diffusion MRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Jaeil Kim, Yoonmi Hong, Geng Chen, Weili Lin, Pew-Thian Yap and Dinggang Shen Supervised Classification of White Matter Fibers Based on Neighborhood Fiber Orientation Distributions Using an Ensemble of Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . 143 Devran Ugurlu, Zeynep Firat, Ugur Ture and Gozde Unal Part III Diffusion MRI Signal Harmonisation Challenges and Opportunities in dMRI Data Harmonization. . . . . . . . . 157 Alyssa H. Zhu, Daniel C. Moyer, Talia M. Nir, Paul M. Thompson and Neda Jahanshad Spherical Harmonic Residual Network for Diffusion Signal Harmonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Simon Koppers, Luke Bloy, Jeffrey I. Berman, Chantal M. W. Tax, J. Christopher Edgar and Dorit Merhof Longitudinal Harmonization for Improving Tractography in Baby Diffusion MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Khoi Minh Huynh, Jaeil Kim, Geng Chen, Ye Wu, Dinggang Shen and Pew-Thian Yap Inter-Scanner Harmonization of High Angular Resolution DW-MRI Using Null Space Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Vishwesh Nath, Prasanna Parvathaneni, Colin B. Hansen, Allison E. Hainline, Camilo Bermudez, Samuel Remedios, JustinA.Blaber,KurtG.Schilling,IlwooLyu,VaibhavJanve,YuruiGao, Iwona Stepniewska, Baxter P. Rogers, Allen T. Newton, L. Taylor Davis, Jeff Luci, Adam W. Anderson and Bennett A. Landman

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.