Computational Approaches in Physics Computational Approaches in Physics Maria Fyta Institute for Computational Physics, Universität Stuttgart Morgan & Claypool Publishers Copyrightª2016Morgan&ClaypoolPublishers Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright ClearanceCentreandotherreproductionrightsorganisations. Rights&Permissions Toobtainpermissiontore-usecopyrightedmaterialfromMorgan&ClaypoolPublishers,please [email protected]. ISBN 978-1-6817-4417-9(ebook) ISBN 978-1-6817-4416-2(print) ISBN 978-1-6817-4419-3(mobi) DOI 10.1088/978-1-6817-4417-9 Version:20161001 IOPConcisePhysics ISSN2053-2571(online) ISSN2054-7307(print) AMorgan&ClaypoolpublicationaspartofIOPConcisePhysics PublishedbyMorgan&ClaypoolPublishers,40OakDrive,SanRafael,CA,94903USA IOPPublishing,TempleCircus,TempleWay,BristolBS16HG,UK To my high-school and university teachers who taught me how to learn. To my beloved ones. Contents Preface xi Acknowledgements xii About the author xiii Glossary xiv 1 Introduction 1-1 1.1 Computational physics 1-1 1.1.1 Length-scales and efficiency 1-2 1.1.2 Approaches and milestones 1-4 1.1.3 Setting-up the simulations 1-6 References 1-8 2 Quantum-mechanical methods 2-1 2.1 General remarks 2-1 2.1.1 Two descriptions for the electronic structure methods 2-2 2.2 The Hartree–Fock method 2-3 2.3 Post HF schemes 2-5 2.3.1 Coupled cluster 2-5 2.3.2 Møller–Plesset perturbation theory 2-6 2.3.3 Configuration interaction 2-7 2.4 Density functional theory (DFT) 2-8 2.4.1 Exchange and correlation functionals 2-10 2.4.2 Pseudopotentials 2-12 2.4.3 Basis sets 2-14 2.4.4 Quantum transport calculations (DFT + 2-15 non-equilibrium Green’s functions) 2.5 Time-dependent density functional theory (TDDFT) 2-15 2.5.1 Computational scaling 2-18 2.6 Ab initio MD and electronic structure 2-19 2.6.1 Calculation of forces in electronic structure simulations 2-19 2.6.2 Car–Parrinello MD 2-21 2.7 Semi-empirical methods 2-22 2.7.1 The tight-binding scheme 2-23 References 2-24 vii ComputationalApproachesinPhysics 3 Atomistic methods 3-1 3.1 Classical molecular dynamics 3-1 3.1.1 Basics of MD simulations 3-1 3.1.2 Boundary conditions 3-3 3.1.3 Forces in molecular dynamics 3-4 3.2 Setting environment conditions 3-5 3.2.1 Thermostats 3-5 3.2.2 Barostats 3-8 3.3 Integration schemes 3-9 3.4 General remarks on MD 3-11 References 3-13 4 Classical potentials and force fields 4-1 4.1 Classical pair potentials 4-2 4.1.1 Simple pair potentials 4-3 4.1.2 Bond-order potentials 4-4 4.2 Multi-body reactive force fields 4-5 4.2.1 Reactive force field (ReaxFF) 4-5 4.3 Force fields for biomolecules 4-6 4.4 Embedded atom method (EAM) 4-8 4.5 Water models 4-9 4.5.1 Explicit water models 4-10 4.5.2 Implicit water models 4-11 References 4-13 5 Mesoscopic particle methods 5-1 5.1 Simulation of fluids 5-2 5.2 Continuum methods 5-3 5.2.1 Brownian dynamics 5-3 5.2.2 Langevin approach 5-3 5.3 Dissipative particle dynamics 5-5 5.3.1 Stochastic rotation dynamics 5-5 5.3.2 Smoothed particle hydrodynamics 5-6 5.4 Lattice methods 5-7 5.4.1 Lattice Boltzmann method 5-7 References 5-9 viii ComputationalApproachesinPhysics 6 The Monte Carlo method 6-1 6.1 Random numbers 6-2 6.2 Classical Monte Carlo 6-2 6.2.1 Sampling of the phase space 6-2 6.2.2 Markov chains 6-3 6.2.3 Detailed balance 6-4 6.2.4 Umbrella sampling 6-4 6.2.5 Metropolis algorithm 6-6 6.2.6 More on acceptance probabilities 6-6 6.2.7 An example: solving the Ising model with MC 6-7 6.3 Quantum Monte Carlo (QMC) 6-8 References 6-9 7 Multiscale, hybrid, and coarse-grained methods 7-1 7.1 Coarse-graining 7-1 7.2 Multiscale or hybrid schemes 7-2 7.2.1 Examples: sequential (serial) schemes 7-4 7.2.2 Examples: concurrent (parallel) schemes 7-8 7.2.3 Quantum-mechanics molecular-mechanics (QM/MM) 7-9 7.2.4 Coupling the lattice Boltzmann method with MD 7-11 7.2.5 Other MS examples 7-12 References 7-14 8 Other common aspects 8-1 8.1 Search and sampling of the configuration space, energy 8-1 minimization 8.2 Free energy methods 8-4 8.2.1 Free energy differences 8-4 8.2.2 Free energy perturbation 8-5 8.2.3 Thermodynamic integration 8-5 8.2.4 Umbrella sampling 8-6 8.2.5 Metadynamics 8-6 8.2.6 Other free energy methods 8-7 8.3 Dealing with electrostatics/electrokinetics 8-8 8.3.1 Charges and electrostatic interactions 8-8 ix