ebook img

Complex neutrosophic graphs PDF

2018·0.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex neutrosophic graphs

Bull. Comput. Appl. Math.,Vol.6,No.2,2018 ISSN2244-8659 www. ompama. o.usb.ve Complex neutrosophi graphs 12 3 Naveed Yaqoob , Muhammad Akram CompAMaVol.6,No.2,pp.85-109,2018-A epted De ember22,2018 Abstra t In this resear h arti le, we introdu e the notion of omplex neutrosophi graphs cn cn ( -graphs, for short) and dis uss some basi operations related to -graphs. We des ribe these operations with some examples. We also present energy of omplex neutrosophi graphs. Keywords: Complex neutrosophi sets, omplex neutrosophi graphs, energy. 1 Introdu tion Fuzzy set theory was introdu ed by Zadeh [1℄. Appli ations of these sets have been broadly studied in other aspe ts su h as ontrol [2℄, reasoning [1℄, pattern re ognition [2℄, engineering [3℄, et . Atanassov [4℄ proposed the extended form of fuzzy set by adding a new omponent, alled intuitionisti fuzzy sets (IFSs). The idea of IFSs is more meaningful as well as intensive due to the presen e of degree of truth and falsity membership. Smaranda he [5,6℄ introdu ed the thought of neutrosophi sets by ombining the non- standard analysis. Neutrosophi set theory is applied to image segmentation [7℄, topology [8℄, de ision making [9℄, roboti s [10℄, physi s [11℄ and in many more real life problems. See also [12(cid:21)16℄. 1 Department of Mathemati s, College of S ien e Al-Zul(cid:28), Majmaah University, Al- Zul2(cid:28), Saudi Arabia (na.yaqoobmu.edu.sa, nayaqoobymail. om). 3Correspondingauthor. Department of Mathemati s, University of the Punjab, New Campus, Lahore, Pakis- tan (m.akrampu it.edu.pk). 85 Complex neutrosophi graphs 86 Bu kley [17℄ and Nguyen et al. [18℄ ombined omplex numbers with fuzzy sets. On the other hand, Ramot et al. [19,20℄ extended the range of membership to (cid:16)unit ir le in the omplex plane(cid:17), unlike the others who [0,1] limitedthe range to . Further this on ept has been studied in IFSs [21℄ and Samaranda he's neutrosophi sets [22℄. Agraph isamathemati alobje t ontainingpoints(verti es) and onne - tions (edges), and is a onvenient way of interpreting information involving the relationship between di(cid:27)erent obje ts. However, due to some reasons, in pra ti al appli ations of graph theory, di(cid:27)erent types of un ertainties are frequently en ountered. To handle these un ertainties, Kaufmann [23℄ intro- du ed the theory of fuzzy graphs based on Zadeh's fuzzy relations. Later, Rosenfeld [24℄ put forward another elaborated de(cid:28)nition of fuzzy graph with fuzzy vertex and fuzzy edges and developed the stru ture of fuzzy graphs. Mordeson and Peng [25℄ de(cid:28)ned some operations on fuzzy graphs. All the on epts on risp graph theory do not have similarities in fuzzy graphs. Dhavaseelan et al. [26℄ de(cid:28)ned strong neutrosophi graphs. Akram and Shahzadi[27℄(cid:28)rst studied single-valuedneutrosophi graphs. Furtherseveral new on epts on neutrosophi graphs with their appli ations were dis ussed in [28(cid:21)31℄. On the other hand, Akram and Shahzadi [29℄ have shown that there are some (cid:29)aws in Broumi et al. [30℄'s de(cid:28)nitions. His de(cid:28)nitions are not useful for the study of applied network models. Re ently, Akram and Naz [32℄ determined the energy of Pythagorean fuzzy graphs. In this pa- per, we provide the new on ept of omplex neutrosophi graphs with some fundamental operations. We also des ribe energy of omplex neutrosophi graphs. 2 Preliminaries and basi de(cid:28)nitions U = ∅. De(cid:28)nition 1. [19℄ Let 6 A omplex fuzzy set (CFS) A, is an obje t of the form = (x,µ (x)) : x U = (x,u (x)eiωA(x)) : x U , A A A { ∈ } { ∈ } i = √ 1, u (x) [0,1] 0 < ω (x) < 2π. A A where − ∈ and U = ∅. cn De(cid:28)nition 2. [22℄ Let 6 A omplex neutrosophi set ( -set) A, is an obje t of the form = (x,T (x),I (x),F (x)) : x U A A A A { ∈ } = (x,s (x)eiαA(x),t (x)eiβA(x),u (x)eiγA(x)) : x U , A A A { ∈ } 87 Yaqoob, Akram i = √ 1, s (x),t (x),u (x) [0,1] α (x),β (x),γ (x) [0,2π] A A A A A A where − ∈ , ∈ 0− s (x)+t (x)+u (x) 3+. A A A and ≤ ≤ cn , De(cid:28)nition 3. [22℄ Let A and B be two -sets in X where = (x,T (x),I (x),F (x)) : x A A A A { ∈ X} = (x,T (x),I (x),F (x)) : x . B B B and B { ∈ X} x , Then for all ∈ X s (x) < s (x), t (x) > t (x), u (x) > u (x) A B A B A B (1) A ⊂ B if and only if for α (x) < α (x), β (x) > β (x), γ (x) > γ (x) A B A B A B amplitude terms and for phase terms. = s (x) = s (x), t (x) = t (x), u (x) = u (x) A B A B A B (2) A B if and only if for α (x) = α (x), β (x) = β (x), γ (x) = γ (x) A B A B A B amplitude terms and for phase terms. = (x,T (x),I (x),F (x)) : x A∪B A∪B A∪B (3) A∪B { ∈ X} where T (x) = s (x)eiαA∪B(x) = max s (x),s (x) eimax{αA(x),αB(x)}, A∪B A∪B A B { } I (x) = t (x)eiβA∪B(x) = min t (x),t (x) eimin{βA(x),βB(x)}, A∪B A∪B A B { } F (x) = u (x)eiγA∪B(x) = min u (x)u (x) eimin{γA(x),γB(x)}. A∪B A∪B A B { } = (x,T (x),I (x),F (x)) : x A∩B A∩B A∩B (4) A∩B { ∈ X} where T (x) = s (x)eiαA∩B(x) = min s (x),s (x) eimin{αA(x),αB(x)}, A∩B A∩B A B { } I (x) = t (x)eiβA∩B(x) = max t (x),t (x) eimax{βA(x),βB(x)}, A∩B A∩B A B { } F (x) = u (x)eiγA∩B(x) = max u (x)u (x) eimax{γA(x),γB(x)}. A∩B A∩B A B { } cn De(cid:28)nition 4. Let A and B be two -sets in X, where = (x,T (x),I (x),F (x)) : x A A A A { ∈ X} and = (x,T (x),I (x),F (x)) : x B B B B { ∈ X}. T (x) T (x) I (x) I (x) F (x) F (x) A B A B A B Then ≤ , ≥ , ≥ if and only if T (x) T (x) I (x) I (x) F (x) F (x) A B A B A B | | ≤ | |, | | ≥ | |, | | ≥ | | and α (x) α (x) β (x) β (x) γ (x) γ (x) A B A B A B ≤ , ≥ , ≥ . Complex neutrosophi graphs 88 3 Complex neutrosophi graphs cn = ∅ cn De(cid:28)nition 5. A -relation on X 6 , is a -subset of X ×X of the form = (xy,T (xy),I (xy),F (xy)) : xy B B B B { ∈ X ×X} su h that T (xy) = s (xy)eiαB(xy), I (xy) = t (xy)eiβB(xy), F (xy) = u (xy)eiγB(xy) B B B B B B x,y for all ∈ X. cn = ∅, G = ( , ) De(cid:28)nition 6. A -graph on X 6 is a pair A B where, A is a cn cn -set on X and B is a -relation in X su h that s (xy)eiαB(xy) min s (x),s (y) eimin{αA(x),αA(y)}, B A A ≤ { } t (xy)eiβB(xy) min t (x),t (y) eimin{βA(x),βA(y)}, B A A ≤ { } u (xy)eiγB(xy) max u (x),u (y) eimax{γA(x),γA(y)} B A A ≤ { } x,y for all ∈ X. A and B are alled thGe omplex neutrosophi vertex set and the omplex neutrosophi edge set of , respe tively. Here B is the omplex neutrosophi relation on A. G∗ = ( , ) = a,b,c = Example 1. Consider a graph V E su h that X { }, E ab,bc,ac cn cn { }. Let A be a -subset of X and let B be a -subset of E ⊆ X×X, as given: (0.2ei π/2,0.4ei 2π/5,0.5ei π/4), (0.5ei 3π/4,0.6ei π/2,0.1ei π/8), = a b . A (0.4ei π/2,0.5ei π,0.2ei π/3) ! c (0.1ei π/2,0.4ei π/3,0.3ei π/6), (0.2ei 2π/5,0.4ei 2π/5,0.1ei π/4), = ab bc . B (0.1ei π/4,0.3ei π/4,0.4ei 2π/7) ! ac By routine al ulations, it an be observed that the graph shown in Fig. 1 is cn a -graph. G G cn 1 2 De(cid:28)niGtion 7G. T=he( Cartesia,n produ )t × of two -graphs is de(cid:28)ned as 1 2 1 2 1 2 a pair × A ×A B ×B , su h that: 1. sA1×A2(x1,x2)eiαA1×A2(x1,x2) = min{sA1(x1),sA2(x2))}eimin{αA1(x1),αA2(x2)}, tA1×A2(x1,x2)eiβA1×A2(x1,x2) = min{tA1(x1),tA2(x2))}eimin{βA1(x1),βA2(x2)}, uA1×A2(x1,x2)eiγA1×A2(x1,x2) = max{uA1(x1),uA2(x2))}eimax{γA1(x1),γA2(x2)}, x x 1 2 for all , ∈ X, 89 Yaqoob, Akram cn Fig. 1: -graph 2. sB1×B2((x,x2)(x,y2))eiαB1×B2((x,x2)(x,y2)) = min{sA1(x),sB2(x2y2))}eimin{αA1(x),αB2(x2y2)}, tB1×B2((x,x2)(x,y2))eiβB1×B2((x,x2)(x,y2)) = min{tA1(x),tB2(x2y2))}eimin{βA1(x),βB2(x2y2)}, uB1×B2((x,x2)(x,y2))eiγB1×B2((x,x2)(x,y2)) = max{uA1(x),uB2(x2y2))}eimax{γA1(x),γB2(x2y2)}, x x y 1 2 2 2 for all ∈ X , and ∈ E , 3. sB1×B2((x1,z)(y1,z))eiαB1×B2((x1,z)(y1,z)) = min{sB1(x1y1),sA2(z))}eimin{αB1(x1y1),αA2(z)}, tB1×B2((x1,z)(y1,z))eiβB1×B2((x1,z)(y1,z)) = min{tB1(x1y1),tA2(z))}eimin{βB1(x1y1),βA2(z)}, uB1×B2((x1,z)(y1,z))eiγB1×B2((x1,z)(y1,z)) = max{uB1(x1y1),uA2(z))}eimax{γB1(x1y1),γA2(z)}, z x y 2 1 1 1 for all ∈ X , and ∈ E . cn Example 2. Consider the two G-grapGhs, as shown in Fig. 2. Then, their 1 2 orresponding Cartesian produ t × is shown in Fig. 3. cn cn Proposition 1. The Cartesian produ t of two -graphs is a -graph. Complex neutrosophi graphs 90 cn G G 1 2 Fig. 2: -graphs and cn G G 1 2 Fig. 3: -graph × 91 Yaqoob, Akram 1 2 Proof: The onditions for A × A are obvious, therefore, we verify only 1 2 onditions for B ×B . x x y 1 2 2 2 Let ∈ X , and ∈ E . Then sB1×B2((x,x2)(x,y2))eiαB1×B2((x,x2)(x,y2)) = min{sA1(x),sB2(x2y2))}eimin{αA1(x),αB2(x2y2)} ≤ min{sA1(x),min{sA2(x2),sA2(y2)}}eimin{αA1(x),min{αA2(x2),αA2(y2)}} min α (x),α (x ) , imin { A1 A2 2 }  min s (x),s (x ) ,  min α (x),α (y )  = min { A1 A2 2 } e { A1 A2 2 } min s (x),s (y )   (cid:26) { A1 A2 2 } (cid:27) = min{sA1×A2(x,x2),sA1×A2(x,y2)}eimin{αA1×A2(x,x2),αA1×A2(x,y2)}, tB1×B2((x,x2)(x,y2))eiβB1×B2((x,x2)(x,y2)) = min{tA1(x),tB2(x2y2))}eimin{βA1(x),βB2(x2y2)} ≤ min{tA1(x),min{tA2(x2),tA2(y2)}}eimin{βA1(x),min{βA2(x2),βA2(y2)}} min β (x),β (x ) , imin { A1 A2 2 }  min t (x),t (x ) ,  min β (x),β (y )  = min { A1 A2 2 } e { A1 A2 2 } min t (x),t (y )   (cid:26) { A1 A2 2 } (cid:27) = min{tA1×A2(x,x2),tA1×A2(x,y2)}eimin{βA1×A2(x,x2),βA1×A2(x,y2)}, uB1×B2((x,x2)(x,y2))eiγB1×B2((x,x2)(x,y2)) = max{uA1(x),uB2(x2y2))}eimax{γA1(x),γB2(x2y2)} ≤ max{uA1(x),max{uA2(x2),uA2(y2)}}eimax{γA1(x),max{γA2(x2),γA2(y2)}} max γ (x),γ (x ) , imax { A1 A2 2 }  max u (x),u (x ) ,  max γ (x),γ (y )  = max { A1 A2 2 } e { A1 A2 2 } max u (x),u (y )   (cid:26) { A1 A2 2 } (cid:27) = max{uA1×A2(x,x2),uA1×A2(x,y2)}eimax{γA1×A2(x,x2),γA1×A2(x,y2)}, z x y . ✷ 2 1 1 1 Similarly, we an prove it for ∈ X , and ∈ E G G cn 1 2 DGe(cid:28)nGiti=on(8. The omposit)ion ◦ of two -graphs is de(cid:28)ned as a pair 1 2 1 2 1 2 ◦ A ◦A , B ◦B , su h that: 1. sA1◦A2(x1,x2)eiαA1◦A2(x1,x2) = min{sA1(x1),sA2(x2))}eimin{αA1(x1),αA2(x2)}, Complex neutrosophi graphs 92 tA1◦A2(x1,x2)eiβA1◦A2(x1,x2) = min{tA1(x1),tA2(x2))}eimin{βA1(x1),βA2(x2)}, uA1◦A2(x1,x2)eiγA1◦A2(x1,x2) = max{uA1(x1),uA2(x2))}eimax{γA1(x1),γA2(x2)}, x x 1 2 for all , ∈ X, 2. sB1◦B2((x,x2)(x,y2))eiαB1◦B2((x,x2)(x,y2)) = min{sA1(x),sB2(x2y2))}eimin{αA1(x),αB2(x2y2)}, tB1◦B2((x,x2)(x,y2))eiβB1◦B2((x,x2)(x,y2)) = min{tA1(x),tB2(x2y2))}eimin{βA1(x),βB2(x2y2)}, uB1◦B2((x,x2)(x,y2))eiγB1◦B2((x,x2)(x,y2)) = max{uA1(x),uB2(x2y2))}eimax{γA1(x),γB2(x2y2)}, x x y 1 2 2 2 for all ∈ X , and ∈ E , 3. sB1◦B2((x1,z)(y1,z))eiαB1◦B2((x1,z)(y1,z)) = min{sB1(x1y1),sA2(z))}eimin{αB1(x1y1),αA2(z)}, tB1◦B2((x1,z)(y1,z))eiβB1◦B2((x1,z)(y1,z)) = min{tB1(x1y1),tA2(z))}eimin{βB1(x1y1),βA2(z)}, uB1◦B2((x1,z)(y1,z))eiγB1◦B2((x1,z)(y1,z)) = max{uB1(x1y1),uA2(z))}eimax{γB1(x1y1),γA2(z)}, z x y 2 1 1 1 for all ∈ X , and ∈ E . 4. sB1◦B2((x1,x2)(y1,y2))eiαB1◦B2((x1,x2)(y1,y2)) = min{sA2(x2),sA2(y2),sB1(x1y1)}eimin{αA2(x2),αA2(y2),αB1(x1y1)}, tB1◦B2((x1,x2)(y1,y2))eiβB1◦B2((x1,x2)(y1,y2)) = min{tA2(x2),tA2(y2),tB1(x1y1)}eimin{βA2(x2),βA2(y2),βB1(x1y1)}, uB1◦B2((x1,x2)(y1,y2))eiγB1◦B2((x1,x2)(y1,y2)) = max{uA2(x2),uA2(y2),uB1(x1y1)}eimax{γA2(x2),γA2(y2),γB1(x1y1)}, x ,y x = y x y 2 2 2 2 2 1 1 1 for all ∈ X , 6 and ∈ E . cn Example 3.GConGsider the two -graphs, as shown in Fig. 4. Then, their 1 2 omposition ◦ is shown in Fig. 5. cn cn Proposition 2. The omposition of two -graphs is a -graph. 93 Yaqoob, Akram cn G G 1 2 Fig. 4: -graphs and cn G G 1 2 Fig. 5: -graph ◦ Complex neutrosophi graphs 94 1 2 Proof: As in the previous proof, we verify the onditions for B ◦B only. We prove the 2nd ase: sB1◦B2((x,x2)(x,y2))eiαB1◦B2((x,x2)(x,y2)) = min{sA1(x),sB2(x2y2))}eimin{αA1(x),αB2(x2y2)} ≤ min{sA1(x),min{sA2(x2),sA2(y2)}}eimin{αA1(x),min{αA2(x2),αA2(y2)}} min α (x),α (x ) , imin { A1 A2 2 }  min s (x),s (x ) ,  min α (x),α (y )  = min { A1 A2 2 } e { A1 A2 2 } min s (x),s (y )   (cid:26) { A1 A2 2 } (cid:27) = min{sA1◦A2(x,x2),sA1◦A2(x,y2)}eimin{αA1◦A2(x,x2),αA1◦A2(x,y2)}, tB1◦B2((x,x2)(x,y2))eiβB1◦B2((x,x2)(x,y2)) = min{tA1(x),tB2(x2y2))}eimin{βA1(x),βB2(x2y2)} ≤ min{tA1(x),min{tA2(x2),tA2(y2)}}eimin{βA1(x),min{βA2(x2),βA2(y2)}} min β (x),β (x ) , imin { A1 A2 2 }  = min min{tA1(x),tA2(x2)}, e  min{βA1(x),βA2(y2)}  min t (x),t (y )   (cid:26) { A1 A2 2 } (cid:27) = min{tA1◦A2(x,x2),tA1◦A2(x,y2)}eimin{βA1◦A2(x,x2),βA1◦A2(x,y2)}, uB1◦B2((x,x2)(x,y2))eiγB1◦B2((x,x2)(x,y2)) = max{uA1(x),uB2(x2y2))}eimax{γA1(x),γB2(x2y2)} ≤ max{uA1(x),max{uA2(x2),uA2(y2)}}eimax{γA1(x),max{γA2(x2),γA2(y2)}} max γ (x),γ (x ) , imax { A1 A2 2 }  max u (x),u (x ) ,  max γ (x),γ (y )  = max { A1 A2 2 } e { A1 A2 2 } max u (x),u (y )   (cid:26) { A1 A2 2 } (cid:27) = max{uA1◦A2(x,x2),uA1◦A2(x,y2)}eimax{γA1◦A2(x,x2),γA1◦A2(x,y2)}, z x y . x y 2 1 1 1 2 2 2 Similarly, we an prove it for ∈ X , and ∈ E In the ase , ∈ X ,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.