ebook img

Complete monotonicity of a family of functions involving the tri- and tetra-gamma functions PDF

0.13 MB·English
by  Feng Qi
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complete monotonicity of a family of functions involving the tri- and tetra-gamma functions

COMPLETE MONOTONICITY OF A FAMILY OF FUNCTIONS INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS 3 FENGQI 1 0 2 Abstract. Thepsifunctionψ(x)isdefined byψ(x)= Γ′(x) and ψ(i)(x)for Γ(x) n i∈Ndenotepolygammafunctions,whereΓ(x)isthegammafunction. Inthis a paper,weprovethatthefunction J 2 [ψ′(x)]2+ψ′′(x)− x2+λx+12 12x4(x+1)2 ] iscompletely monotonic on(0,∞)ifandonly ifλ≤0, and soisits negative A ifandonlyifλ≥4. Fromthis,someinequalitiesarerefinedandsharpened. C . h t a 1. Introduction m We recall from [8, Chapter XIII] and [16, Chapter IV] that a function f is said [ to be completely monotonic on an interval I if f has derivatives of all orders on I 1 and v 0≤(−1)nf(n)(x)<∞ (1) 6 for x ∈I and n ≥ 0. The class of completely monotonic functions may be charac- 5 1 terized by the famous Bernstein-Widder Theorem[16, p. 161,Theorem 12b]which 0 reads that a necessary and sufficient condition that f(x) should be completely 1. monotonic for 0<x<∞ is that 0 ∞ 3 f(x)= e−xtdα(t), (2) Z 1 0 : where α(t) is non-decreasing and the integral converges for 0<x<∞. v We also recall that the classical Euler’s gamma function Γ(x) is defined by i X ∞ r Γ(x)= tx−1e−tdt, x>0. (3) a Z 0 The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x), is called the psi or Γ(x) di-gammafunction, andthe derivativesψ(i)(x) fori∈N arerespectivelycalledthe polygamma functions. In particular, the functions ψ′(x) and ψ′′(x) are called the tri- and tetra-gamma functions. In [2, p. 208, (4.39)], it was established that the one-sided inequality p(x) [ψ′(x)]2+ψ′′(x)> (4) 900x4(x+1)10 holds for x>0, where p(x)=75x10+900x9+4840x8+15370x7+31865x6+45050x5 (5) +44101x4+29700x3+13290x2+3600x+450. 2010 Mathematics Subject Classification. Primary 26A48, 33B15; Secondary 26A51, 26D10, 44A10. Key words and phrases. necessary and sufficient condition; completely monotonic function; in- equality;polygammafunction;Descartes’SignRule. ThispaperwastypesetusingAMS-LATEX. 1 2 F.QI By the same technique as in [2, p. 208, (4.39)], we can easily obtain 36+180x+408x2+504x3+352x4+132x5+21x6 [ψ′(x)]2+ψ′′(x)< (6) 36x4(1+x)6 for x>0. In [17], the function p(x) [ψ′(x)]2+ψ′′(x)− (7) 900x4(x+1)10 was proved to be completely monotonic on (0,∞). In [18], the following results were obtained: (1) The two-sided inequality x2+12 x+12 <[ψ′(x)]2+ψ′′(x)< (8) 12x4(x+1)2 12x4(x+1) holds on (0,∞). (2) The functions x2+12 f(x)=[ψ′(x)]2+ψ′′(x)− (9) 12x4(x+1)2 and x+12 g(x)= − [ψ′(x)]2+ψ′′(x) (10) 12x4(x+1) (cid:8) (cid:9) are completely monotonic on (0,∞). The inequalities (4) and (6) and the ones in (8) are not included each other. For more information on results related to the function [ψ′(x)]2+ψ′′(x), please refer to [3,4, 5, 6, 11, 12,13, 15, 17], the expositoryandsurvey article[10,14] and the literature listed therein. Theaimofthispaperistoestablishnecessaryandsufficientconditionsonλ∈R for the function x2+λx+12 f (x)=[ψ′(x)]2+ψ′′(x)− (11) λ 12x4(x+1)2 to be completely monotonic on (0,∞). Our main results may be stated as the following theorem. Theorem 1. Let λ∈R. (1) The function f (x) defined by (11) is completely monotonic on (0,∞) if λ and only if λ≤0; (2) Thefunction−f (x)iscompletelymonotonicon(0,∞)ifandonlyifλ≥4; λ (3) The double inequality x2+µx+12 x2+νx+12 <[ψ′(x)]2+ψ′′(x)< (12) 12x4(x+1)2 12x4(x+1)2 holds on (0,∞) if and only if µ≤0 and ν ≥4. In next section we supply several proofs for Theorem 1. In the final section we derive some corollaries and pose a double inequality of [ψ′(x)]2+ψ′′(x) on (0,∞). MONOTONIC FUNCTIONS INVOLVING POLYGAMMA FUNCTIONS 3 2. Proofs of Theorem 1 In this section we provide several proofs for Theorem 1 by different approaches. First proof of Theorem 1. By the recursion formula (−1)n−1(n−1)! ψ(n−1)(x+1)=ψ(n−1)(x)+ (13) xn for x>0 and n∈N, see [1, pp. 258 and 260, 6.3.5 and 6.4.6], we have ′ ′ ′ ′ f (x)−f (x+1)= ψ (x)−ψ (x+1) ψ (x)+ψ (x+1) λ λ (cid:2) x2+λx+(cid:3)(cid:2)12 (x+1)2+λ(cid:3)(x+1)+12 ′′ ′′ + ψ (x)−ψ (x+1) − − (cid:20)12x4(x+1)2 12(x+1)4(x+2)2 (cid:21) (cid:2) (cid:3) 1 1 2 x2+λx+12 (x+1)2+λ(x+1)+12 ′ = 2ψ (x)− − − − x2(cid:20) x2(cid:21) x3 (cid:20)12x4(x+1)2 12(x+1)4(x+2)2 (cid:21) 2 1 1 x2+λx+12 x2[(x+1)2+λ(x+1)+12] ′ = ψ (x)− − − + x2(cid:26) 2x2 x 24x2(x+1)2 24(x+1)4(x+2)2 (cid:27) (14) 2 1 λ 37−2λ 9λ−172 28−λ ′ = ψ (x)− − + + + x2(cid:20) x2 24x 6(x+2) 24(x+1) 8(x+1)2 13−λ λ−48 1 + + + 6(x+2)2 24(x+1)3 2(x+1)4(cid:21) 2 , h (x). x2 λ Using the formula ∞ 1 1 = tr−1e−xtdt (15) xr Γ(r)Z 0 for r >0 and x>0, see [1, p. 255, 6.1.1], and the integral representations ∞ tn ψ(n)(x)=(−1)n+1 e−xtdt (16) Z 1−e−t 0 for n∈N and x∈(0,∞), see [1, p. 260, 6.4.1], yields ∞ t λ 37−2λ 13−λ h (x)= −t− + e−2t+ te−2t λ Z (cid:18)1−e−t 24 6 6 0 9λ−172 28−λ λ−48 1 + e−t+ te−t+ t2e−t+ t3e−t e−xtdt 24 8 48 12 (cid:19) ∞ 1 4P(t) = −λ Q(t)e−(x+2)tdt, 48Z (cid:20) Q(t) (cid:21) 0 where e2t t3−12t2+54t−86 −et t3−12t2+16t−160 −26t−74 P(t)= (cid:0) (cid:1) e(cid:0)t−1 (cid:1) and Q(t)=2e2t−et t2−6t+18 +8(t+2) on (0,∞). (cid:0) (cid:1) By expanding the function Q(t) into power series at t=0, we have ∞ 2k+1−(k−9)(k+2) Q(t)= tk >0, t>0. k! Xk=3 Direct differentiation gives d P(t) θ(t) =− , dt(cid:20)Q(t)(cid:21) (et−1)2[Q(t)]2 4 F.QI where θ(t)=2e5t t3−15t2+78t−140 +e4(cid:0)t t4−16t3+132t2−4(cid:1)20t+1236 −2e3(cid:0)t 5t4−26t3+125t2−132t+101(cid:1)8 +e2t 1(cid:0)7t4−88t3+356t2−228t+1660(cid:1) −et (cid:0)8t4−38t3+40t2−228t+756 +1(cid:1)76 (cid:0) (cid:1) for t>0. Straightforwarddifferentiating leads to θ′(t)=2et e4t 5t3−72t2+360t−622 +2(cid:2)e3t (cid:0)1131−354t+120t2−15(cid:1)t3+t4 −e2t 2(cid:0)922−146t+297t2−58t3+15t(cid:1)4 +et (cid:0)1546+128t+224t2−54t3+17t4 (cid:1) −26(cid:0)4+74t+37t2+3t3−4t4 (cid:1) ,2etθ (t), (cid:3) 1 θ′(t)=e4t 20t3−273t2+1296t−2128 1 +2(cid:0)e3t 3039−822t+315t2−41(cid:1)t3+3t4 −2e2t(cid:0)2849+151t+210t2−28t3+15t(cid:1)4 +et 1(cid:0)674+576t+62t2+14t3+17t4 (cid:1) +74(cid:0)+74t+9t2−16t3, (cid:1) θ′′(t)=2e4t 40t3−516t2+2319t−3608 1 +6e(cid:0)3t 2765−612t+274t2−37t3(cid:1)+3t4 −2e2t(cid:0)5849+722t+336t2+4t3+30t4(cid:1) +et 2(cid:0)250+700t+104t2+82t3+17t4 (cid:1) +74(cid:0)+18t−48t2, (cid:1) θ(3)(t)=2e4t 160t3−1944t2+8244t−12113 1 +6e(cid:0)3t 7683−1288t+711t2−99t3+(cid:1)9t4 −8e2t(cid:0)3105+529t+171t2+32t3+15t4(cid:1) +et 2(cid:0)950+908t+350t2+150t3+17t4 (cid:1) +18(cid:0)−96t, (cid:1) θ(4)(t)=32e4t 40t3−456t2+1818t−2513 1 +6e3(cid:0)t 21761−2442t+1836t2−2(cid:1)61t3+27t4 −8e2t(cid:0)6739+1400t+438t2+124t3+30t4 (cid:1) +et 3(cid:0)858+1608t+800t2+218t3+17t4 −(cid:1) 96, θ(5)(t)=et 6(cid:0)4e3t 80t3−852t2+3180t−4117 (cid:1) 1 +(cid:2)18e2t (cid:0)20947−1218t+1575t2−225(cid:1)t3+27t4 −16et (cid:0)7439+1838t+624t2+184t3+30t4 (cid:1) +5466(cid:0)+3208t+1454t2+286t3+17t4 (cid:1) ,etθ (t), (cid:3) 2 MONOTONIC FUNCTIONS INVOLVING POLYGAMMA FUNCTIONS 5 θ′(t)=2 96e3t 80t3−772t2+2612t−3057 2 +(cid:2)9e2t 4(cid:0)0676+714t+2475t2−342t(cid:1)3+54t4 −8et (cid:0)9277+3086t+1176t2+304t3+30t4 (cid:1) +160(cid:0)4+1454t+429t2+34t3 , (cid:1) θ′′(t)=4 48e3t 240t3−2076t2+6292(cid:3)t−6559 2 +(cid:2)9e2t 4(cid:0)1033+3189t+1962t2−234t3(cid:1)+54t4 −4et (cid:0)12363+5438t+2088t2+424t3+30t4 (cid:1) +727(cid:0)+429t+51t2 , (cid:1) θ(3)(t)=4 48e3t 720t3−550(cid:3)8t2+14724t−13385 2 +(cid:2)9e2t 8(cid:0)5255+10302t+3222t2−252t3+(cid:1)108t4 −4et (cid:0)17801+9614t+3360t2+544t3+30t4 (cid:1) (cid:0) (cid:1) +429+102t , θ(4)(t)=8 72e3t 720t3(cid:3)−4788t2+11052t−8477 2 +(cid:2)18e2t(cid:0)45203+6762t+1422t2−18t3+(cid:1)54t4 −2et 2(cid:0)7415+16334t+4992t2+664t3+30t4(cid:1) +51 , θ(5)(t)=16et (cid:0)108e2t 720t3−4068t2+7860t−4793 (cid:1) (cid:3) 2 +18(cid:2)et 4858(cid:0)4+8184t+1395t2+90t3+54t(cid:1)4 −4374(cid:0)9−26318t−6984t2−784t3−30t4 (cid:1) ,16etθ (t), (cid:3) 3 θ′(t)=2 108e2t 720t3−2988t2+3792t−863 3 +(cid:2)9et 56(cid:0)768+10974t+1665t2+306t3(cid:1)+54t4 −131(cid:0)59−6984t−1176t2−60t3 , (cid:1) θ′′(t)=6 72e2t 1033+804t−1908t2+7(cid:3)20t3 3 +(cid:2)3et 6(cid:0)7742+14304t+2583t2+522t(cid:1)3+54t4 −4 5(cid:0)82+196t+15t2 , (cid:1) θ(3)(t)=6 1(cid:0)44e2t 1435−1104t(cid:1)−(cid:3) 828t2+720t3 3 +(cid:2)3et 82(cid:0)046+19470t+4149t2+738t3(cid:1)+54t4 (cid:0) (cid:1) −8(98+15t) , θ(4)(t)=18 96e2t 720t(cid:3)3+252t2−1932t+883 3 +e(cid:2)t 54t4(cid:0)+954t3+6363t2+27768t+(cid:1)101516 −40 >18 9(cid:0)6e2t 720t3+252t2−1932t+883 (cid:1) (cid:3) +((cid:2)1+t)(cid:0)54t4+954t3+6363t2+277(cid:1)68t+101516 −40 =e2t e−2t (cid:0)101476+129284t+34131t2+7317t3+10(cid:1)08t4+(cid:3) 54t5 +9(cid:2)6 883(cid:0)−1932t+252t2+720t3 . (cid:1) (cid:0) (cid:1)(cid:3) In the light of Descartes’ Sign Rule, the function u(t)=883−1932t+252t2+720t3 6 F.QI has at most two zeros on [0,∞). Since u(0) = 883, u(1) = −77 and u(2) = 3787, these two zeros are all less than 2, which implies that the function u(t) is positive on [2,∞), and so θ(4)(t)>0 on [2,∞). 3 In [7, p. 269, 3.6.6] and [9], it was listed that 2+x ex ≤ , 0≤x<2. (17) 2−x Hence, for t∈(0,2), we have 2−t 2 θ(4)(t)≥e2t 101476+129284t+34131t2+7317t3 3 (cid:20)(cid:18)2+t(cid:19) (cid:0) +1008t4+54t5 +96 883−1932t+252t2+720t3 (cid:21) (cid:1) (cid:0) (cid:1) e2t = 54t7+792t6+72621t5+309567t4 (t+2)2 (cid:0) +209804t3−839488t2−291584t+744976 e2t (cid:1) = 54t7+792t6+72621t5 (t+2)2 (cid:2) + 309567t2+828938t+508821 (t−1)2−102880t+236155 23(cid:0)6155−102880t (cid:1) (cid:3) > e2t (t+2)2 >0. In conclusion, the function θ(4)(t) is positive on (0,∞). 3 A direct calculation yields ′ ′ θ(0)=0, θ (0)=0, θ (0)=0, 1 θ′′(0)=0, θ(3)(0)=0, θ(4)(0)=0, 1 1 1 θ(5)(0)=0, θ (0)=0, θ′(0)=0, 1 2 2 θ′′(0)=22960, θ(3)(0)=216160, θ(4)(0)=1188248, 2 2 2 θ(5)(0)=5009904, θ (0)=313119, θ′(0)=809098, 2 3 3 θ′′(0)=1651644, θ(3)(0)=2711964, θ(4)(0)=3352392. 3 3 3 This implies that ′ ′ θ(t)>0, θ (t)>0, θ (t)>0, 1 θ′′(t)>0, θ(3)(t)>0, θ(4)(t)>0, 1 1 1 θ(5)(t)>0, θ (t)>0, θ′(t)>0, 1 2 2 θ′′(t)>22960, θ(3)(t)>216160, θ(4)(t)>1188248, 2 2 2 θ(5)(t)>5009904, θ (t)>313119, θ′(t)>809098, 2 3 3 θ′′(t)>1651644, θ(3)(t)>2711964, θ(4)(t)>3352392 3 3 3 on (0,∞). As a result, the function P(t) is decreasing on (0,∞), with Q(t) P(t) P(t) lim =1 and lim =0. t→0Q(t) t→∞Q(t) Hence, (1) when λ≤0, the function h (x) is completely monotonic on (0,∞); λ MONOTONIC FUNCTIONS INVOLVING POLYGAMMA FUNCTIONS 7 (2) when λ≥4, the negative of h (x) is completely monotonic on (0,∞). λ Since 2 is completely monotonic on (0,∞) and the product of finitely many com- x2 pletely monotonic functions is also completely monotonic, (1) when λ ≤ 0, the difference f (x)−f (x+1) is completely monotonic on λ λ (0,∞), that is, 0≤(−1)i[f (x)−f (x+1)](i) =(−1)i[f (x)](i)−(−1)i[f (x+1)](i), i≥0. λ λ λ λ By virtue of induction, we obtain (−1)i[f (x)](i) ≥(−1)i[f (x+1)](i) ≥(−1)i[f (x+2)](i) ≥··· λ λ λ ≥(−1)i[f (x+k)](i) ≥ lim (−1)i[f (x+k)](i) =0 λ λ k→∞ for i ≥ 0. So the function f (x) for λ ≤ 0 is completely monotonic on λ (0,∞). (2) when λ ≥ 4, a similar argument leads to the complete monotonicity of f (x) on (0,∞). λ The sufficiency is proved. Multiplying by xn on both sides of (13) yields lim xnψ(n−1)(x) =(−1)n(n−1)!, n∈N. (18) x→0+ (cid:2) (cid:3) Using L’Hoˆspital’s rule, the limit (18), and the formula (13), we have 12x4(x+1)2 [ψ′(x)]2+ψ′′(x) −x2−12 lim x→0+ (cid:8) x (cid:9) = lim 24(x+1)x4 [ψ′(x)]2+ψ′′(x) x→0+ (cid:10) (cid:8) (cid:9) +12(x+1)2x4 2ψ′(x)ψ′′(x)+ψ(3)(x) +48(x+1)2x3(cid:2)[ψ′(x)]2+ψ′′(x) −2x(cid:3) =24 lim x2ψ′(x(cid:8)) 2+12 lim x4ψ(cid:9)(3)(x)(cid:11) +48 lim x3ψ′′(x) x→0+ x→0+ x→0+ (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) +24 lim x4ψ′′(x) +24 lim x4ψ′(x)ψ′′(x)+2x3[ψ′(x)]2 x→0+ x→0+ (cid:2) (cid:3) (cid:8) (cid:9) =24 lim x2ψ′(x) x2ψ′′(x)+2xψ′(x) x→0+ (cid:8) (cid:2) (cid:3)(cid:9) =24 lim x2ψ′′(x)+2xψ′(x) x→0+ (cid:2) (cid:3) (−1)3−1(3−1)! =24 lim x2 ψ′′(x)+ x→0+(cid:26) (cid:20) x3 (cid:21) (−1)2−1(2−1)! ′ +2x ψ (x)+ (cid:20) x2 (cid:21)(cid:27) =24 lim x2ψ′′(x+1)+2xψ′(x+1) x→0+ (cid:2) (cid:3) =0. In [1, p. 260, 6.4.12 and 6.4.13], it was listed that 1 1 1 1 1 1 ′ ψ (z)∼ + + − + − +··· (19) z 2z2 6z3 30z5 42z7 30z9 and 1 1 1 1 1 3 5 ′′ ψ (z)∼− − − + − + − +··· (20) z2 z3 2z4 6z6 6z8 10z10 6z12 as z →∞ in |argz|<π. Therefore, we have 12x4(x+1)2 [ψ′(x)]2+ψ′′(x) −x2−12 82 14 29 ∼4− + − +··· (cid:8) x (cid:9) 15x 3x2 35x3 8 F.QI as x→∞. Hence 12x4(x+1)2 [ψ′(x)]2+ψ′′(x) −x2−12 lim =4. x→∞ (cid:8) x (cid:9) If the function f (x) is completely monotonic on (0,∞), then λ x2+λx+12 [ψ′(x)]2+ψ′′(x)− >0 12x4(x+1)2 which can be rearrangedas 12x4(x+1)2 [ψ′(x)]2+ψ′′(x) −x2−12 λ< →0 (cid:8) x (cid:9) as x→0+, which means that λ≤0. If −f (x) is completely monotonic on (0,∞), λ then 12x4(x+1)2 [ψ′(x)]2+ψ′′(x) −x2−12 λ> →4 (cid:8) x (cid:9) as x→∞, so λ≥4. The necessity is proved. Thedoubleinequality (12)andits bestpossibilityfollowfromthe necessaryand sufficient conditions for the function f (x) to be completely monotonic on (0,∞). λ The proof of Theorem 1 is complete. (cid:3) Second proof for the first part of Theorem 1. It is easy to see that f (x)=f(x)−λh(x), (21) λ where f(x) is defined by (9) and 1 h(x)= . (22) 12x3(x+1)2 From[18] it is knownthat the function f(x) is completely monotonic on(0,∞), as mentionedonpage2. Since h(x)is completelymonotonicon(0,∞),itfollowsthat the function f (x) is completely monotonic on (0,∞) when λ ≤ 0. Utilizing (13) λ for n=1 and n=2 yields that 1 2 2 x2+λx+12 ′ ′′ f (x)= ψ (x+1)+ + ψ (x+1)− − λ (cid:20) x2(cid:21) (cid:20) x3(cid:21) 12x4(x+1)2 λ 1 2 3 4+3x 37 25 63+50x =− − + − − + − 12(cid:20)x3 x2 x (1+x)2(cid:21) 12x2 6x 12(1+x)2 2 ′ ′ 2 ′′ + ψ (x+1)+ ψ (x+1) +ψ (x+1). x2 (cid:2) (cid:3) Therefore,ifλ>0thenlimx→0+fλ(x)=−∞. Thisimpliesthatthefunctionfλ(x) is completely monotonic on (0,∞) if and only if λ≤0. (cid:3) Second proof for the necessity of the second part of Theorem 1. Fromtheasymptotic expansions in (19) and (20) it is not difficult to obtain that 4−λ 1 f (x)= +O λ 12x5 (cid:18)x6(cid:19) as x → ∞. This implies that the function f (x) is positive for small positive λ number x whenλ<4. So the necessaryconditionin the secondpartofTheorem1 follows. (cid:3) Second proof for a part of the sufficiency in the second part of Theorem 1. Itisclear that λ−13 −f (x)=g(x)+ , λ 12x3(1+x)2 MONOTONIC FUNCTIONS INVOLVING POLYGAMMA FUNCTIONS 9 whereg(x)isdefinedby(10). Fromthecompletemonotonicityofthefunctiong(x) mentioned on page 2, it follows that if λ ≥ 13 the function −f (x) is completely λ monotonic on (0,∞). This gives an alternative proof for a part of the sufficiency in the second part of Theorem 1. (cid:3) Remark 1. ThefirstproofofTheorem1isdirectandindependent,butotherpartial proofs are based on the main result in [18]. 3. More remarks In this section we derive some corollaries from the first proof of Theorem 1 and pose a double inequality for bounding the function [ψ′(x)]2+ψ′′(x) on (0,∞). Remark 2. It is easy to see that the double inequality (12) for µ = 0 and ν = 4 recovers the left-hand side inequality and refines the right-hand side inequalities in (6) and (8). It is clear that the bounds in (8) and (12) are simpler than (4) and (6). Remark 3. From the proof of Theorem 1, it is easy to deduce that the function λ 4+8x+5x2 ′ ψ (x)− 24x(cid:0)(1+x)3(2+x(cid:1))2 24+120x+283x2+399x3+345x4+181x5+51x6+6x7 − (23) 6x2(1+x)4(2+x)2 is completely monotonic on(0,∞) if andonly if λ≤0, andso is its negativeif and only if λ≥4. Remark 4. Integrating the function (23) and considering its positivity, it is imme- diate to see that the double inequality lnx−9ln(1+x)+8ln(2+x) 18+33x+14x2 ξ − (cid:20) 24 48(1+x)2(2+x)(cid:21) 28x4+87x3+73x2+3x−12 43ln(x+1)−37ln(x+2) <ψ(x)− − 6x(x+1)3(x+2) 6 lnx−9ln(1+x)+8ln(2+x) 18+33x+14x2 <η − (24) (cid:20) 24 48(1+x)2(2+x)(cid:21) holds on (0,∞) if and only if ξ ≥4 and η ≤0. Remark 5. We note that the function 1 λ−48 H (x) λ G (x)=lnΓ(x)+x+ + + (25) λ 12(1+x)2 48(1+x) 24 (1) is completely monotonic on (0,∞) if and only if λ≤0; (2) satisfies (−1)k+1[G (x)](k) >0 for k ∈N on (0,∞) if and only if λ≥4; λ (3) has limits 488ln2−44+λ(1−24ln2) lim G (x)= (26) λ x→0+ 48 and 124+12ln(2π)−7λ lim G (x)= , (27) λ x→∞ 24 where H (x)=(24−λx)lnx+[(9λ−172)x+12λ−256]ln(x+1) λ (28) +4[(37−2λ)x−3λ+61]ln(x+2). 10 F.QI In particular, we have 1 1 G (x)=lnΓ(x)+lnx+x+ − 0 12(1+x)2 1+x (29) (61+37x)ln(2+x)−(64+43x)ln(1+x) + 6 and 1 11 G (x)=lnΓ(x)+lnx+x+ − 4 12(1+x)2 12(1+x) (30) (49+29x)ln(2+x)−2(26+17x)ln(1+x)−xlnx + 6 on (0,∞). Remark 6. We conjecture that the double inequality 1 x2+4x+12 α 1 x2+4x+12 β <[ψ′(x)]2+ψ′′(x)< (31) x4(cid:20) 12(x+1)2 (cid:21) x4(cid:20) 12(x+1)2 (cid:21) holds on (0,∞) if and only if α≥ 6 and β ≤1. 5 References [1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formu- las, Graphs, and Mathematical Tables,NationalBureauofStandards,AppliedMathematics Series55,9thprinting,Washington, 1970. [2] H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), no.2,181–221; Availableonlineathttp://dx.doi.org/10.1515/form.2004.009. [3] B.-N.GuoandF.Qi,Aclassofcompletelymonotonicfunctionsinvolvingdivideddifferences of the psi and tri-gammafunctions and some applications,J.KoreanMath.Soc.48(2011), no.3,655–667; Availableonlineathttp://dx.doi.org/10.4134/JKMS.2011.48.3.655. [4] B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Appl.Math. Comput. 218(2012), no. 19, 9890–9897; Availableonline athttp://dx.doi.org/10.1016/j.amc.2012.03.075. [5] B.-N. Guo and F. Qi, Refinements of lower bounds for polygamma functions, Proc. Amer. Math. Soc. (2012), in press; Available online at http://dx.doi.org/10.1090/ S0002-9939-2012-11387-5. [6] B.-N. Guo, F. Qi, and H. M. Srivastava, Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related func- tions, Integral Transforms Spec. Funct. 21 (2010), no. 11, 103–111; Available online at http://dx.doi.org/10.1080/10652461003748112. [7] D.S.Mitrinovi´c,Analytic Inequalities,Springer-Verlag,1970. [8] D.S.Mitrinovi´c,J.E.Peˇcari´c,andA.M.Fink,Classical and New Inequalities in Analysis, KluwerAcademicPublishers,Dordrecht-Boston-London, 1993. [9] F. Qi, A method of constructing inequalities about ex, Univ. Beograd. Publ. Elektrotehn. Fak.Ser.Mat.8(1997), 16–23. [10] F.Qi,Bounds for the ratio of two gamma functions,J.Inequal. Appl.2010(2010), Article ID493058, 84pages;Availableonlineathttp://dx.doi.org/10.1155/2010/493058. [11] F. Qi, P. Cerone, and S. S. Dragomir, Complete monotonicity of a function involving the divided difference of psi functions, Bull. Aust. Math. Soc. (2013), inpress; Availableonline athttp://dx.doi.org/10.1017/S0004972712001025. [12] F. Qi and B.-N. Guo, Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Commun. Pure Appl. Anal. 8 (2009), no.6,1975–1989; Availableonlineathttp://dx.doi.org/10.3934/cpaa.2009.8.1975. [13] F. Qi and B.-N. Guo, Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic,Adv.Appl.Math.44(2010), no.1, 71–83; Availableonlineathttp://dx.doi.org/10.1016/j.aam.2009.03.003. [14] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions—From Wendel’s and relatedinequalitiestologarithmicallycompletelymonotonicfunctions,BanachJ.Math.Anal. 6(2012), no.2,132–158. [15] F.Qi,Q.-M.Luo,andB.-N.Guo,Completemonotonicityofafunctioninvolvingthedivided difference of digamma functions,Sci.ChinaMath.(2013), inpress.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.