ebook img

Compact Adaptive Planar Antenna Arrays for Robust Satellite Navigation Systems PDF

180 Pages·2016·8.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compact Adaptive Planar Antenna Arrays for Robust Satellite Navigation Systems

Compact Adaptive Planar Antenna Arrays for Robust Satellite Navigation Systems Doctoral thesis for attaining the academic degree of Doctor of Engineering (Dr. -Ing.) presented to the Faculty of Electrical Engineering and Information Technology Technische Universität Ilmenau by M.Sc. Safwat Irteza Butt (30. April 1983) 1. Reviewer: Univ.-Prof. Dr. rer. nat. habil. Matthias A. Hein 2. Reviewer: Prof. Dr.-Ing. habil. Reiner S. Thomä 3. Reviewer: Dr.-Ing. Achim Dreher Submitted on: 07.07.2015 Defended on: 13.10.2016 urn:nbn:de:gbv:ilm1-2016000659 Abstract Over the past two decades, humankind’s reliance on global navigation satellite systems for precise positioning, navigation and timing services has grown remarkably. Such ad- vanced applications vary from highly accurate surveying to intelligent transport systems, andfrommobilenetworktimingsynchronisationtoweatherandclimatemonitoring. This envisages new and higher standards of robustness, accuracy, coverage and integrity in modernnavigationreceivers. Recently,thishasbeenaccomplishedwiththeincorporation of the multi-element navigation antenna receiver. However, the industrialisation of this approach is limited due to the large antenna array size, hindered by the inter-element sep- aration of half of the free-space wavelength, i.e. ≈ 10 cm at L band (1−2 GHz). In this thesis, compact navigation antenna arrays with smaller inter-element separations are pro- posed for the miniaturisation of the overall size. However, these arrays become afflicted with the adverse effects of mutual coupling. Therefore, various figures-of-merit for the analysis and design of a compact planar navigation antenna array, such as performance diversity degrees-of-freedom, directional finding capabilities, and polarisation purity, in- cluding mutual coupling effects, have been presented. This provides a general framework for the selection and configuration of the optimum compact navigation antenna array. In ordertomitigatethemutualcoupling,integrationofthedecouplingandmatchingnetwork into customised compact navigation antenna array designs is performed. This is fostered by the correlated noise characterisation of the complete receiver. Furthermore, an analyti- calmodeloftheequivalentcarrier-to-interference-plus-noiseratioisderivedtoinvestigate the navigation performance in interference scenarios. In the end, this is complemented by theimplementationofthecompletenavigationreceiverforverificationandrobustnessval- idation of the derived compact antenna array concepts in indoor and outdoor interference scenarios. Zusammenfassung In den zurückliegenden zwei Jahrzehnten ist die Abhängigkeit der Industriegesellschaft von satellitengestützten Ortungssystemen, Navigationsdiensten und Zeitsignalen drama- tisch gewachsen. Darauf aufbauende moderne Anwendungen reichen von hochgenauen OrtungsgerätenbiszuintelligentenTransportsystemenundvonderSynchronisationmobi- lerNetzwerkezuWetter-undKlimabeobachtung.DiessetztneuehöhereStandardsinder Robustheit,Genauigkeit,VerfügbarkeitundVerlässlichkeitmodernerNavigationsempfän- ger voraus. Möglich werden diese Verbesserungen aktuell mit der Einführung von Mul- tiantennensystemen in den Navigationsgeräten. Jedoch wird die Nutzung dieses Ansat- zes durch die größeren Abmessungen der Antennenarrays erschwert, weil standardmäßig der Elementabstand zu einer halben Freiraumwellenlänge gewählt wird, was im L Band 3 ca.10cmbedeutet. In dieser Arbeit werden kompakte Antennenarrays für Navigationsempfänger mit ge- ringeremElementabstandvorgeschlagen,dieeineMiniaturisierungderEmpfängerabmes- sungenerlauben.DiesekompaktenArrayswerdeninihrerLeistungsfähigkeitjedochdurch die negativen Effekte der Verkopplung zwischen den Einzelelementen beeinträchtigt. Für die Beurteilung der Empfängerleistungsfähigkeit existieren verschiedene Qualitätspara- meter für Analyse und Entwurf der planaren Arrays. Damit werden z. B. Diversity Frei- heitsgrade,QualitätderRichtungsschätzung,Polarisationsreinheitunddiewechselseitigen Kopplungen gemessen und eine Entwurfsumgebung wird vorgestellt, in der das optimale kompakte Antennenarray für den jeweiligen Einsatzzweck ausgewählt und konfiguriert werden kann. Dieser Prozess wird durch eine Analyse des Rauschens und seiner Korre- lationseigenschaften für den gesamten Empfänger begleitet. Darüber hinaus wird ein ana- lytisches Modell des effektiven carrier-to-interference-plus-noise ratio abgeleitet, um die Leistungsfähigkeit der Navigationsempfänger in Szenarien mit Störsignalen zu untersu- chen.SchließlichwerdendieseBetrachtungendurchdenAufbaueineskomplettenSatelli- tennavigationsempfängers ergänzt, um mit ihm den Nachweis der Funktionsfähigkeit und derstabilenFunktiondesentworfenenSystemsmitkompaktemArrayunterStörereinfluss beiLaborbedingungenundimrealenAußeneinsatzzuerbringen. Theses of the Dissertation – Tomeetthemodernstandardsforsafety-of-lifecriticalapplicationslikeautonomous drivingandintelligenttransportsystems,futureglobalnavigationsatellitesystems can benefit from compact antenna arrays to achieve miniaturisation and robust- ness. – For any N-port antenna array, such that N > 1, the radiation process is defined by the superposition of N orthogonal modes of radiation or the diversity degrees-of- freedom. However,compactelectricalsizeorinter-elementseparationlessthanhalf offree-spacewavelengthgiverisetoincreasedmutualcouplingwhichdegradesthe efficiencyofthesedegrees-of-freedom. – Eigen-decomposition of the antenna array spatial covariance matrix, calculated using the scattering parameters or the far-field patterns, delivers the assessment of thefundamentalmodesofradiationortheeigenmodes. – The minimum eigenvalue or the eigenvector with least efficiency dominates the overallradiationorreceptionperformanceofthecompactantennaarrays. Primarily, this figure-of-merit can serve as a parameter for the selection and configuration of theoptimalcompactantennaarrayinthedesignprocess. – Compact planar antenna array configurations provide flexibility of geometrical optimisation for efficient degrees-of-freedom and achieving improved direction- findingcapabilities. – The polarisation purity of the compact antenna array eigenmodes is worsened by mutual coupling, particularly for the higher-order modes and must be taken into accountinthedesignprocessforoptimumperformance. – An optimum trade-off between miniaturisation and absolute radiation efficiencies is vital for application of these arrays in robust navigation receivers because the efficiencyenhancementprovidedbyrealisticdecouplingandmatchingislimited. – The decoupling and matching network integration with the antenna array demands miniaturisation of the network, and careful implementation for minimum ohmic losses. The decoupling and matching generally comes before the low-noise ampli- fier, and any additional losses, i.e. noise contribution, will adversely affect the system’sperformance. – The noise characterisation of the complete navigation antenna array receiver, in- cluding the network losses, yields the equivalent carrier-to-interference-plus- noise ratio by applying the conventional deterministic beamformer with null- constraints. Thisframeworkallowsforperformancemeasurepredictionsinrespect ofthenavigationreceiver. – The impact of the polarisation impurity in the higher-order modes on the receiver’s vulnerability to the arbitrary-polarised interferer is characterised in the equiv- alent carrier-to-interference-plus-noise ratio. This is useful in analysing compact antennaarrayrobustnessinworstinterferencescenariosbeforeitsintegrationwith thereceiver. – Low-cost, miniaturised, compact navigation antenna arrays, using off-the-shelf ce- ramicpatchantennasandquadraturecouplersarepossible. Thisishelpfulformass- production. – The developed compact navigation antenna array receiver incorporating decoupling and matching network integration allows for realistic measurements in real-world scenariostoverifyitsnavigationrobustness. – Thepracticalapplicabilityofdecouplingandmatchingforcompactantennaarrays becomescrucialandprominentintheinterference-limitedscenarios;therefore,its implementationisnecessaryforrobustcompactnavigationantennaarrayreceivers. Preface This work is a compilation of the research carried out at the RF and Microwave Research Laboratory of the Technische Universität Ilmenau. The research has been part of the project "Compact adaptive terminal antenna for robust satellite navigation" (KOMPAS- SION) and the on-going project "Compact satellite receiver systems for robust navigation applications" (KOSERNA). These projects and thus this work at the laboratory have been funded by the German Aerospace Center (grant no. 50NA1007 and 50NA1405) on be- halfoftheGermanFederalMinistryofEconomicsandTechnology,forwhichIamhighly obliged. I am grateful to the head of laboratory, Univ.-Prof. Dr. rer. nat. habil. Prof. Matthias Hein for his valuable support and guidance. The successful completion of this work has beenstimulatedbyhisvisionaryideasandsuggestions. I would also like to thank Prof. Dr.-Ing. habil. Reiner S. Thomä and Dr.-Ing. Achim Dreherforreviewingthiswork. IamthankfultoDr.-Ing. RalfStephanforhispreciousdiscussions,andprovidingvalu- able support into the practical aspects. I am humbly obliged to the friendly yet aspiring environment provided by my colleagues Dipl.-Ing. Hendrik Bayer, Dipl.-Ing. Alexander Krauss, Dipl.-Ing. Stephanie Kühn, M.Sc. Saqib Kaleem and Dipl.-Ing. Frank Wollen- schläger. IamthankfultothetechnicalassistanceprovidedbyMr. MichaelHuhnandMr. MatthiasZocher. Iamthankfultothecolleaguesintheprojectconsortium. Theseinclude: M.Sc. Matteo Sgammini, Dr.-Ing. Achim Hornbostel, and M.Sc. Lothar Kürz for their valuable support inconductingjointresearchcollaborations. IamdeeplygratefultoM.Sc. EricSchäferfor histechnicalinvestigationsandhissupportinwritingsofseveraljointpublications. I am thankful to be blessed with the emotional support of my lovely wife Maryiam. Herinsightsanddrivingforcemadethecompletionofthisworkeasierandcolourful. Iam thankfultomybrother,AnseIrteza,forhiseverpresenceandsupport. Finally, I am thankful to my parents for their motivational support. This work is a tributetotheirhardshipsandefforts. SafwatIrtezaButt Ilmenau,7th July2015 Contents 1 Introduction 12 2 RobustnessofGlobalNavigationSatelliteSystems 15 2.1 BasicprincipleofGNSS . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Characteristicsofthesatellitesignal . . . . . . . . . . . . . . . . 17 2.1.2 Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3 PerformancestandardsofGNSS . . . . . . . . . . . . . . . . . . 20 2.2 Receiverarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Basebandprocessing . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 State-of-the-artGNSSreceivers . . . . . . . . . . . . . . . . . . 22 2.3 Typesandfeaturesofantennas . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Antennagain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.3 Phasecentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4 CommercialGNSSantennas . . . . . . . . . . . . . . . . . . . . 31 2.4 Robustnessrequirementsandchallengingenvironments . . . . . . . . . . 32 2.4.1 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.2 Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.3 Atmosphericeffects . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Multiple-antennabasedGNSSreceivers . . . . . . . . . . . . . . . . . . 37 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 EvaluationMethodologiesofCompactPlanarAntennaArrays 41 3.1 Mutualcoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.1 Mutualimpedance . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.2 Consequenceofthemutualcoupling . . . . . . . . . . . . . . . . 45 3.1.3 Surfacewavesinplanarantennas . . . . . . . . . . . . . . . . . 45 3.2 Antennaarrayspatialcovariancematrix . . . . . . . . . . . . . . . . . . 47 3.2.1 Generalisationtomulti-portantennas . . . . . . . . . . . . . . . 47 8 Contents 9 3.2.2 Influenceofthecurrentexcitationontheefficiency . . . . . . . . 49 3.2.3 Beam-patternorthogonalityandportcoupling . . . . . . . . . . . 51 3.3 Thefundamentalmodesofradiation . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Theminimumeigenvalue . . . . . . . . . . . . . . . . . . . . . . 53 3.4 Diversityreception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1 Diversitygain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.2 Diversityloss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Compactceramicpatchantennaarrayconfigurations . . . . . . . . . . . 58 3.5.1 Optimalnumberofelements . . . . . . . . . . . . . . . . . . . . 59 3.5.2 Optimalinter-elementseparation . . . . . . . . . . . . . . . . . . 60 3.5.3 Optimalgeometry . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.4 Examples: Fabricatedfour-elementceramicpatchantennaarrays 62 3.6 Polarisationpurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6.1 Tiltedceramicpatchantennaarray . . . . . . . . . . . . . . . . . 69 3.6.2 Quadrafilarhelixantennaarray . . . . . . . . . . . . . . . . . . . 69 3.7 Direction-of-Arrivalestimationcapabilities . . . . . . . . . . . . . . . . 72 3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 CompactRobustGNSSAntennaArrayReceivers 81 4.1 Techniquesforantennaarraydecoupling . . . . . . . . . . . . . . . . . . 82 4.1.1 Radiationelementleveldecoupling . . . . . . . . . . . . . . . . 83 4.1.2 Network-baseddecoupling . . . . . . . . . . . . . . . . . . . . . 84 4.2 Techniquesformodalmatching . . . . . . . . . . . . . . . . . . . . . . . 89 4.2.1 Fundamentalbandwidthlimitations . . . . . . . . . . . . . . . . 89 4.2.2 Practicalimplementationsandimplications . . . . . . . . . . . . 92 4.3 Noisecharacterisationoftherobustreceiver . . . . . . . . . . . . . . . . 93 4.3.1 Antennaarraynoise . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3.2 Decouplingandmatchingnetworknoise . . . . . . . . . . . . . . 95 4.3.3 Low-noiseamplifiernoise . . . . . . . . . . . . . . . . . . . . . 97 4.4 Equivalentcarrier-to-interference-plus-noiseratio . . . . . . . . . . . . . 98 4.5 Design,implementation,andevaluationofcompactGNSSantennaarrays 100 4.5.1 Four-element λ/4 GNSS antenna arrays with integrated decou- plingandmatchingnetworks . . . . . . . . . . . . . . . . . . . . 100 4.5.2 Co-polarisedinterferencescenarios . . . . . . . . . . . . . . . . 109 4.5.3 Arbitrarypolarisedinterferencescenarios . . . . . . . . . . . . . 114 4.6 Low-costcompactGNSSantennaarray . . . . . . . . . . . . . . . . . . 114 4.6.1 Miniaturisationofdecouplingandmatchingnetwork . . . . . . . 116 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Description:
optimisation for efficient degrees-of-freedom and achieving improved direction- finding capabilities. are limited to GPS and GLONASS. Note, the mentioned chipsets operate only within the at the expense of reduced dynamic range or radiative diversity degrees-of-freedom [27],. [102]. Recently
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.