ebook img

Commutative Algebras of Toeplitz Operators on the Bergman Space PDF

436 Pages·2008·27.409 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Commutative Algebras of Toeplitz Operators on the Bergman Space

Operator Theory: Advances and Applications Vol. 185 Editor: I. Gohberg Editorial Office: V. Olshevski (Storrs, CT, USA) School of Mathematical M. Putinar (Santa Barbara, CA, USA) Sciences A.C.M. Ran (Amsterdam, The Netherlands) Tel Aviv University L. Rodman (Williamsburg, VA, USA) Ramat Aviv, Israel J. Rovnyak (Charlottesville, VA, USA) B.-W. Schulze (Potsdam, Germany) F. Speck (Lisboa, Portugal) I.M. Spitkovsky (Williamsburg, VA, USA) Editorial Board: S. Treil (Providence, RI, USA) D. Alpay (Beer Sheva, Israel) C. Tretter (Bern, Switzerland) J. Arazy (Haifa, Israel) H. Upmeier (Marburg, Germany) A. Atzmon (Tel Aviv, Israel) N. Vasilevski (Mexico, D.F., Mexico) J.A. Ball (Blacksburg, VA, USA) S. Verduyn Lunel (Leiden, The Netherlands) H. Bart (Rotterdam, The Netherlands) D. Voiculescu (Berkeley, CA, USA) A. Ben-Artzi (Tel Aviv, Israel) D. Xia (Nashville, TN, USA) H. Bercovici (Bloomington, IN, USA) D. Yafaev (Rennes, France) A. Böttcher (Chemnitz, Germany) K. Clancey (Athens, GA, USA) R. Curto (Iowa, IA, USA) K. R. Davidson (Waterloo, ON, Canada) Honorary and Advisory Editorial Board: M. Demuth (Clausthal-Zellerfeld, Germany) L.A. Coburn (Buffalo, NY, USA) A. Dijksma (Groningen, The Netherlands) H. Dym (Rehovot, Israel) R. G. Douglas (College Station, TX, USA) C. Foias (College Station, TX, USA) R. Duduchava (Tbilisi, Georgia) J.W. Helton (San Diego, CA, USA) A. Ferreira dos Santos (Lisboa, Portugal) T. Kailath (Stanford, CA, USA) A.E. Frazho (West Lafayette, IN, USA) M.A. Kaashoek (Amsterdam, The Netherlands) P.A. Fuhrmann (Beer Sheva, Israel) P. Lancaster (Calgary, AB, Canada) B. Gramsch (Mainz, Germany) H. Langer (Vienna, Austria) H.G. Kaper (Argonne, IL, USA) P.D. Lax (New York, NY, USA) S.T. Kuroda (Tokyo, Japan) D. Sarason (Berkeley, CA, USA) L.E. Lerer (Haifa, Israel) B. Silbermann (Chemnitz, Germany) B. Mityagin (Columbus, OH, USA) H. Widom (Santa Cruz, CA, USA) Commutative Algebras of Toeplitz Operators on the Bergman Space Nikolai L. Vasilevski Birkhäuser Basel · Boston · Berlin Author: Nikolai L. Vasilevski Departamento de Matemáticas CINVESTAV del I.P.N. Apartado Postal 14-740 07360 Mexico, D.F. Mexico e-mail: [email protected] 2000 Mathematical Subject Classification: 30C40, 46E22, 47A25, 47B10, 47B35, 47C15, 47L15, 81S10 Library of Congress Control Number: 2008930643 Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de ISBN 978-3-7643-8725-9 Birkhäuser Verlag AG, Basel -Boston- Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF∞ Printed in Germany ISBN 978-3-7643-8725-9 e-ISBN 978-3-7643-8726-6 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Highlights of the chapters . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Preliminaries 1 1.1 General local principle for C∗-algebras . . . . . . . . . . . . . . . . 1 1.2 C∗-Algebras generated by orthogonal projections . . . . . . . . . . 14 2 Prologue 33 2.1 On the term “symbol” . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Bergman space and Bergman projection . . . . . . . . . . . . . . . 34 2.3 Representation of the Bergman kernel function . . . . . . . . . . . 38 2.4 Some integral operators and representation of the Bergman projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5 “Continuous” theory and local properties of the Bergman projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Model discontinuous case . . . . . . . . . . . . . . . . . . . . . . . 50 2.7 Symbol algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.8 Toeplitz operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.9 Some further results on compactness . . . . . . . . . . . . . . . . . 61 3 Bergman and Poly-Bergman Spaces 65 3.1 Bergman space and Bergman projection . . . . . . . . . . . . . . . 66 3.2 Connections between Bergman and Hardy spaces . . . . . . . . . . 71 3.3 Poly-Bergman spaces, decomposition of L (Π) . . . . . . . . . . . . 73 2 3.4 Projections onto the poly-Bergman spaces . . . . . . . . . . . . . . 76 3.5 Poly-Bergman spaces and two-dimensional singular integral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Bergman Type Spaces on the Unit Disk 89 4.1 Bergman space and Bergman projection . . . . . . . . . . . . . . . 89 4.2 Poly-Bergman type spaces, decomposition of L (D) . . . . . . . . . 96 2 vi Contents 5 Toeplitz Operators with Commutative Symbol Algebras 101 5.1 Semi-commutator versus commutator . . . . . . . . . . . . . . . . . 102 5.2 Infinite dimensional representations . . . . . . . . . . . . . . . . . . 105 5.3 Spectra and compactness . . . . . . . . . . . . . . . . . . . . . . . 110 5.4 Finite dimensional representations . . . . . . . . . . . . . . . . . . 114 5.5 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Toeplitz Operators on the Unit Disk with Radial Symbols 121 6.1 Toeplitz operators with radial symbols . . . . . . . . . . . . . . . . 122 6.2 Algebras of Toeplitz operators . . . . . . . . . . . . . . . . . . . . . 132 7 Toeplitz Operators on the Upper Half Plane with Homogeneous Symbols 135 7.1 Representation of the Bergman space . . . . . . . . . . . . . . . . . 135 7.2 Toeplitz operators with homogeneous symbols . . . . . . . . . . . . 138 7.3 Bergman projection and homogeneous functions . . . . . . . . . . . 146 7.4 Algebra generated by the Bergman projection and discontinuous coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.5 Some particular cases . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.6 Toeplitz operator algebra. A first look . . . . . . . . . . . . . . . . 162 7.7 Toeplitz operator algebra. Some more analysis . . . . . . . . . . . . 165 8 Anatomy of the Algebra Generated by Toeplitz Operators with Piece-wise Continuous Symbols 175 8.1 Symbol class and operators . . . . . . . . . . . . . . . . . . . . . . 177 8.2 Algebra T (PC(D,T)) . . . . . . . . . . . . . . . . . . . . . . . . . 178 8.3 Operators of the algebra T (PC(D,T)) . . . . . . . . . . . . . . . . 180 8.4 Toeplitz operators of the algebra T (PC(D,T)) . . . . . . . . . . . 183 8.5 More Toeplitz operators . . . . . . . . . . . . . . . . . . . . . . . . 187 8.6 Semi-commutators involving unbounded symbols . . . . . . . . . . 198 8.7 Toeplitz or not Toeplitz . . . . . . . . . . . . . . . . . . . . . . . . 206 8.8 Technical statements . . . . . . . . . . . . . . . . . . . . . . . . . . 209 9 Commuting Toeplitz Operators and Hyperbolic Geometry 215 9.1 Bergman metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.2 Basic properties of M¨o¨bius transformations . . . . . . . . . . . . . 217 9.3 Fixed points and commuting Mo¨¨bius transformations . . . . . . . . 220 9.4 Elements of hyperbolic geometry . . . . . . . . . . . . . . . . . . . 221 9.5 Action of Mo¨¨bius transformations . . . . . . . . . . . . . . . . . . . 224 9.6 Classification theorem . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.7 Proof of the classification theorem . . . . . . . . . . . . . . . . . . 228 Contents vii 10 Weighted Bergman Spaces 233 10.1 Unit disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 10.2 Upper half-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.3 Representations of the weighted Bergman space . . . . . . . . . . . 240 10.4 Model classes of Toeplitz operators . . . . . . . . . . . . . . . . . . 250 10.5 Boundedness, spectra, and invariant subspaces . . . . . . . . . . . 260 11 Commutative Algebras of Toeplitz Operators 263 11.1 On symbol classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 11.2 Commutativity on a single Bergman space . . . . . . . . . . . . . . 267 11.3 Commutativity on each weighted Bergman space . . . . . . . . . . 270 11.4 First term: common gradient and level lines . . . . . . . . . . . . . 272 11.5 Second term: gradient lines are geodesics . . . . . . . . . . . . . . . 275 11.6 Curves with constant geodesic curvature . . . . . . . . . . . . . . . 278 11.7 Third term: level lines are cycles . . . . . . . . . . . . . . . . . . . 285 11.8 Commutative Toeplitz operator algebras and pencils of geodesics . 290 12 Dynamics of Properties of Toeplitz Operators with Radial Symbols 293 12.1 Boundedness and compactness properties . . . . . . . . . . . . . . 294 12.2 Schatten classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 12.3 Spectra of Toeplitz operators, continuous symbols . . . . . . . . . . 314 12.4 Spectra of Toeplitz operators, piece-wise continuous symbols . . . 318 12.5 Spectra of Toeplitz operators, unbounded symbols . . . . . . . . . 324 13 Dynamics of Properties of Toeplitz operators on the Upper Half Plane: Parabolic case 329 13.1 Boundedness of Toeplitz operators with symbols depending on y =Imz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 13.2 Continuous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 339 13.3 Piece-wise continuous symbols . . . . . . . . . . . . . . . . . . . . . 341 13.4 Oscillating symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 13.5 Unbounded symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 345 14 Dynamics of Properties of Toeplitz operators on the Upper Half Plane: Hyperbolic case 349 14.1 Boundedness of Toeplitz operators with symbols depending on θ =argz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 14.2 Continuous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 353 14.3 Piece-wise continuous symbols . . . . . . . . . . . . . . . . . . . . . 355 14.4 Unbounded symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 358 viii Contents Appendices A Coherent states and Berezin transform 361 A.1 General approach to coherent states . . . . . . . . . . . . . . . . . 361 A.2 Numerical range and spectra . . . . . . . . . . . . . . . . . . . . . 365 A.3 Coherent states in the Bergman space . . . . . . . . . . . . . . . . 367 A.4 Berezin transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 B Berezin Quantization on the Unit Disk 373 B.1 Definition of the quantization . . . . . . . . . . . . . . . . . . . . . 373 B.2 Quantization on the unit disk . . . . . . . . . . . . . . . . . . . . . 375 B.3 Two first terms of asymptotic of the Wick symbol . . . . . . . . . 376 B.4 Three first terms of asymptotic in a commutator . . . . . . . . . . 380 Bibliographical Remarks 391 Bibliography 397 List of Figures 413 Index 415 Preface The book is devoted to the spectral theory of commutative C∗-algebrasof Toeplitz operators on Bergman spaces, and its applications. For each such commutative algebra we construct a unitary operator which reduces each Toeplitz operator from this algebra to a certain multiplication operator, thus also providing its spectral type representation.This givesus a powerful researchtool allowing direct access to the majority of the important properties of the Toeplitz operators studied herein. The presence and exploitation of these spectral type representations forms the basis for an essential part of the results presented in this book. We give a criterion of when the algebras are commutative on each commonly considered weighted Bergman space. For Toeplitz operators generating such com- mutative algebras we describe their boundedness, compactness, and spectral prop- erties. Furthermore, the above commutative algebras serve as model or local cases for a number of problems treated in the book, thus making their solutions possible. We note that in the Bergman space case considered in the book the un- derlying manifold (the unit disk equipped with the hyperbolic metric) possesses a richer geometric structure in comparison with the Hardy space case (the unit circle). This fact has an important reflection in the presented theory. We mention as well that from the general operator point of view the Toeplitz operators, both on Hardy space and on Bergman space, are compressions of multi- plication operators onto certain subspaces, and thus they represent two interesting different models of operators having similar structure. At the same time the pre- sented results show clearly essential differences between the theories for these two species of operators. The book is addressed to a wide audience of mathematicians, from graduate students to researchers, whose primary interests lie in complex analysis and op- erator theory. The prerequisites for reading this book include a basic knowledge in one-dimensional complex analysis, functional analysis, and operator theory. An acquaintance with some facts of the theory of Banach and C∗-algebras will be use- ful as well. Among various excellent sources which may serve for the preliminary reading we mention, for example, the books by I. Gohberg, S. Goldberg, and M. Kaashoek [81], and R. Douglas [58]. Theauthorisgreatlyindebtedto hiscolleaguesSergueiGrudsky,hiscoauthor in many papers, and Michael Porter who read the manuscript and made many important suggestions essentially improving the book. The author would like to address special words of gratitude to Olga Grudskaia who tragically died in a car accident in February 2004. She generously assisted in the preparation of this book, beautifully elaborating all the figures of the last three chapters. The author is sincerelygrateful to IsraelGohberg,the editor of the “Operator Theory: Advances and Applications” book series, for his invitation to publish the book in this series and whose friendly remarks and advice greatly assisted in the final stage of its preparation.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.