Downloaded from orbit.dtu.dk on: Jan 07, 2023 Combustion of solid alternative fuels in the cement kiln burner Nørskov, Linda Kaare Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Nørskov, L. K. (2012). Combustion of solid alternative fuels in the cement kiln burner. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Combustion of solid alternative fuels in the cement kiln burner Linda Kaare Nørskov Industrial PhD thesis 2012 Abstract In the cement industry there is an increasing environmental and financial motivation for substituting conven- tional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternativefuelsmayinfluenceemissions,cementproductquality,processstability,andprocessefficiency. Al- ternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion properties and the influence on the flame formation is available. Inthisprojectascientificapproachtoincreasethefundamentalunderstandingofalternativefuelconversionin therotarykilnburnerisemployedthroughliteraturestudies,experimentalcombustioncharacterisationstudies, combustionmodelling,datacollectionandobservationsatanindustrialcementplantfiringalternativefuels. Alternativefuelsmaydifferfromconventionalfossilfuelsincombustionbehaviourthroughdifferencesinphys- icalandchemicalpropertiesandreactionkinetics. Oftensolidalternativefuelsareavailableatsignificantlarger particle sizes than solid fossil fuels due to the cost of downsizing. Through theoretical evaluation it is found thatthedevolatilisationoflargefuelparticlesismainlylimitedbyinternalheattransferandthecharoxidation isdominatedbyexternalO diffusionatconditionsrelevanttosuspensionfiredcombustion. 2 An experimental combustion reactor for simulating suspension fired combustion of large, single particles is established and experiments are performed to investigate conversion pathways, ignition, devolatilisation, and charoxidationtimesofpinewood,andthreetypesofdriedsewagesludgeasfunctionofparticlesizeandshape, O concentration,andgastemperature. Resultsshowthatthemainfactorsaffectingthetimeofdevolatilisation 2 is the gas temperature and particle size and shape. Factors affecting char oxidation rates include gas tempera- ture,O concentration,andparticlesizeandshape. 2 A one-dimensional mathematical model of the rotary kiln flame is developed to evaluate the influence of fuel properties and combustion system parameters on the fuel burnout and flame temperature profile. Two alter- native fuel cases are simulated; dried sewage sludge and refuse derived fuel firing. Firing sewage sludge or refused derived fuel with large particles and high moisture contents at conditions similar to a coal fired flame resultsinanelongatedflameandaburnouttimeexceedingtheavailabletimeinsuspension. Fuelpretreatment, i.e. grinding and drying, is insufficient to ensure the dried sewage sludge to be converted within the available time in suspension, however a partial particle downsizing without drying can be allowed for refuse derived fuelfiring. Byincreasingthe entrainmentrate ofsecondaryair, theprimary airpercentage, theexcessairratio andapplyingO enrichmentitisfoundthatfullconversionofthelargealternativefuelparticlesmaybereached. 2 The simplified mathematical model may serve as a tool for predicting the effect of introducing new fuels on burnoutbehaviour,andflamepropertiessuchasflamelengthandgastemperatureprofileinarotarykilnflame. i Dansk resume´ I cementindustrien er der en øget miljømœssig og økonomisk motivation for at erstatte konventionelle fossile brœndslermedalternativebrœndsler; biomasseogaffald. Indførelsenafalternativebrœndslerkandogpåvirke emissioner, cementproduktkvalitet, processtabilitet og -effektivitet. I kalcinatoren er substitutionen med alter- native brœndsler nået tœt på 100% på mange cementanlœg, og for at øge anvendelsen af alternative brœndsler yderligeremåsubstitutioneniroterovnenøges. Dererbegrœnsetsystematiskvidentilgœngeligomdealterna- tivebrœndslersforbrœndingsegenskaberogderesindflydelsepåflammedannelsenidag. Idetteprojektanven- desenvidenskabeligtilgangforatøgedengrundlœggendeforståelseafomsœtningenafalternativebrœndsleri roterovnsbrœnderen igennem litteraturstudier, eksperimentelle forbrœndingsstudier, forbrœndingsmodellering, ogdataopsamlingogobservationerfraetindustrieltcementanlœg,derfyreralternativebrœndsler. Forbrœndingsegenskaberneafalternativebrœndslerkanadskillesigfradekonventionellefossilebrœndslergen- nemforskelleifysiskeogkemiskeegenskaberogreaktionskinetik. Oftevilfastealternativebrœndslerhaveen markantstørrepartikelstørrelseendfastefossilebrœndslerpågrundafomkostningernevedneddeling. Enteo- retiskevalueringviser,atpyrolyseafstorebrœndselspartiklerhovedsageligterbegrœnsetafinternvarmetrans- port,ogkoksoxidationenerdomineretafeksternO diffusionvedsuspensionsfyretforbrœndingsbetingelser. 2 Eneksperimentelforbrœndingsreaktoreretablerettilsimuleringafsuspensionsfyretforbrœndingafstoreenkelt- partikler og forsøg er udført for at undersøge omdannelsesvejen, antœnding, pyrolyse, og koksoxidationstider af fyrretrœ og tre typer tørret spildevandsslam som funktion af partikelstørrelse og form, O koncentration og 2 gastemperatur. Resultaterne viser, at de vigtigste faktorer, som påvirker pyrolysen er gastemperaturen, par- tikelstørrelsenogformen. Faktorer,sompåvirkerkoksoxidationen,inkluderergastemperatur,O koncentration, 2 partikelstørrelseogform. Enendimensionelmatematiskmodelafroterovnsflammenerudvikletforatevaluereindflydelsenafbrœndsels- egenskaber og forbrœndingssystemparametre på udbrœndingstiden og flammetemperaturprofilen. Indfyring af to alternative brœndsler er simuleret; tørret spildevandsslam og affaldsfyring. Fyring med spildevandsslam og affaldmedstorepartikleroghøjtvandindholdundersammebetingelsersomkulfyringresultererienforlœnget flammeogenudbrœndingstid, somoverstigerdentilgœngeligetidisuspension. Brœndselsforbehandling, tør- ring og neddeling, er ikke tilstrœkkelig til at sikre udbrœnding af spildevandsslam indenfor den tilgœngelige tid,mensendelvisneddelingafutørretaffaldkantillades. Vedatøgeindblandingshastighedenafsekundœrluft, primœrluftmœngden, overskudsluftforholdet og anvende iltberigelse kan fuld omdannelse af de alternative brœndsleropnås. Den simplificerede matematiske model kan bruges som et vœrktøj til at forudsige effekten af at introducere nyebrœndslerpå udbrœndingogflammeegenskaber,somflammelœngdeoggastemperaturprofiliroterovnen. ii Preface ThisIndustrialPhDprojectisperformedincorporationbetweentheResearchDepartmentofFLSmidthA/Sand CHECResearchCentre, DepartmentofChemicalandBiochemicalEngineeringattheTechnicalUniversityof Denmark,DTU.ThePhDprojectisco-fundedbyTheDanishAgencyforScience,TechnologyandInnovation. The project is a part of the research platform ’New Cement Production Technology’, funded by the Danish NationalAdvancedTechnologyFoundation,theTechnicalUniversityofDenmark,andFLSmidthA/S. The supervisors of the project are Morten Boberg Larsen (FLSmidth), Kim Dam-Johansen (CHEC), Peter Glarborg (CHEC), and Peter Arendt Jensen (CHEC) whom I would like to thank for valuable discussions and supervision during the project. Furthermore, a special thank you to Michael Lykke Heiredal for performing computational fluid dynamics (CFD) calculations in this project, to Paw Jensen who has contributed to a large part of the thermogravimetric analysis experiments and combustion experiments in the single particle reactor during his master project, to Troels Bruun Hansen for various matters and help regarding the single particle combustion setup during his master thesis and later employment at CHEC Research Centre, to Weigang Lin for conducting the swirl-flow burner experiments, and to Martin Hagsted Rasmussen for troubleshooting my Matlab code. Thanks to all the other colleagues at FLSmidth and CHEC, not mentioned here, who have been involvedintheproject. 31th July2012 LindaKaareNørskov iii Nomenclature Roman a ConstantinSherwoodcorrelation [-] a Densityweightedvelocityratiobetweenajetandco-flowfluid [-] a KineticparameterintheHR-SMORpyrolysismodel [sb−1/Kb] A Area [m2]or[m2/s] A Pre-exponentialfactor unitdependsonrateconstant A Massratio [kg/kg] b KineticparameterintheHR-SMORpyrolysismodel [-] Bi Biotnumber [-] c Particleconcentrationingas [m−3] p C Constantforwalltemperatureprofile [-] C Bulkconcentrationofoxygen [molO /m3] b 2 C Specificheatcapacity [J/(molK)]or[J/(kgK)] p d Particlediamter [m] p D Diameter [m] D Diffusioncoefficient [m2/s] E Activationenergy [J/molorJ/kg] A f Massfraction [-] F Force [kgm/s2] F Viewfactorforradiation [-] g Gravitationalacceleration [9.80665m/s2] h Heattransfercoefficient [W/(m2 K)] H Enthalpy [J/mol]or[J/kg] k Rateconstant [m/s] ( ) kc Chemicalreactionrateconstant m3(gas n ) (molO )n-1 m2 surface ·s 2 ( ) kc′ Chemicalreactionrateconstant (molO )nm-13(mga2ssunrface)·s 2 iv k′′ Chemicalreactionrateconstant ( gC ) c (atm)n· m2 surface ·s k RateconstantforexternalO diffusion [m(s] g 2 K Proportionalconstantforsecondaryairentrainment [-] l Length [m] L Length [m] LHV Lowerheatingvalue [J/mol]or[J/kg] m Reactionorderwithrespecttostructuralmodel [-] m˙ Massflowrate [kg/s] M Molarmass [kg/mol] M Momentum [kgm/s] n Numberofmoles [mol/kgfuel] n ReactionorderwithrespecttoO [-] 2 n Constantorexponent [-] n˙ Molarflow [mol/s] N Absolutenumber [-] Nu Nusselt’snumber [-] P Pressure [Pa] Pr Prandlt’snumber [-] q Volumetricflow [m3/s] q Heatfluxdensity [J/(s·m2)] Q Heatflow [J/s2] r Radius [m] R Initialradius [m] Rgas Idealgasconstant [[(m3 atm])/(molK)orJ/(molK)] molC R Reactionrate m2 s Ra Rayleigh’snumber [-] Re Reynold’snumber [-] S Surfacearea [m2] S Swirlnumber [-] Sc Schmidtnumber [-] Sh Sherwoodnumber [-] t Time [s] T Temperature [K] u Velocity [m/s] V Volume [m3] wt Massfraction [-] X Massbaseddegreeofconversion [-] y Molarfraction [-] z Coordinatesofthetransientheattransferequation [-] v Greek α Absorptivity [-] α KineticparameterintheDAEMmodel [-] α Stoichiometricnumberforcarbon [mol/kgfuel] β KineticparameterintheDAEMmodel [-] β Stoichiometricnumberforhydrogen [mol/kgfuel] β Angleofrepose [o] β Coefficientofvolumeexpansion [-] γ Stoichiometricnumberforsulphur [mol/kgfuel] Γ Kilnfillangle [rad] δ Stoichiometricnumberfornitrogen [mol/kgfuel] ε Emissivity [-] ε Evaporationfactor [-] κ Thermaldiffusivity [m2/s] λ Excessairratio [-] λ Thermalconductivity [W/(mK)] λ Wavelength [m] µ Dynamicviscosity [kg/(ms)] µ StoichiometricnumberforH O [mol/kgfuel] 2 ξ Stoichiometricnumberforchloride [mol/kgfuel] ρ Density [kg/m3] σ Stefan-Boltzmann’sconstant [J/(sm2 K4] τ Timeforconversion [s] ϕ StoichiometricnumberforO [mol/kgfuel] 2 φ Stoichiometricfactorforcharconversion [molC/molO ] 2 ψ Volumefraction [-] ω Rotationalspeed [rad/s] Ω Viewfactorofradiation [-] vi subscripts 0 Initialorattimet = 0 air Air ash Ash b Bulk b Bed c Chemicalreaction c Coating cb Combustion co Co-flow CC Conductionthroughcoating CGB Convectionfromgastobed CGP Convectionfromgastoparticle CGW Convectionfromgastowall char Char CR Conductionthroughrefractory CS Conductionthroughsteelshell CSA Convectionfromshelltoambientair CV Controlvolume CWB Conductionfromwalltobed daf Dry,ashfree e Equivalent e(cid:11) Effective end End evap Evaporation f Flame f Film fc Forcedconvection fuel Fuel g Gas i Inner inst Instantaneous jet Jet loss Loss nc Naturalconvection o Outer org Organicmatter p Particle p Projected pri Primaryair vii R Reaction rc Interfacebetweenrefractoryandcoating ref Reference rgp radiationgastoparticle RGP Radiationfromgastobed RGP Radiationfromgastoparticle RGW Radiationfromgastowall RSA Radiationfromshelltoambientair RWB Radiationfromwalltobed s Surface s Shell sr Interfacebetweenshellandrefractory sec Secondaryair theo Theoretical tra Transportair tot Total vol Volatile w Wall viii
Description: