Coherent states and related quantizations forunbounded motions V. G. Bagrov,1, J.-P. Gazeau,2, D. M. Gitman,3, and A. D. Levin3, ∗ † ‡ § 1Department of Physics, Tomsk State University, 634050, Tomsk, Russia.¶ 2Astroparticuleset Cosmologie, UnivParisDiderot, Sorbonne ParisCite´, 75205 Paris, France 3Institute of Physics, University of Sa˜o Paulo, Brazil Webuildcoherentstates(CS)forunboundedmotionsalongtwodifferentprocedures.Inthefirstoneweadapt theMalkin-MankoconstructionforquadraticHamiltonianstothemotionofaparticleinalinearpotential. A generalization to arbitrary potentials is discussed. The second one extends to continuous spectrum previous constructionsofaction-anglecoherentstatesinviewofaconsistentenergyquantization. PACSnumbers:03.65.Sq,03.65.Fd,03.65.Ca 2 Keywords:coherentstates,wavepackets,semi-classicalstates,quantization,continuousenergyspectrum,timeevolution 1 0 2 I. INTRODUCTION by phase space variables. There existsome attemptsto con- n structCSforsystemswithcontinuousspectra,seeforinstance a Atpresent,coherentstates(CS)takeanimportantplacein [8, 14–16]. However, one can state that the problem is still J open or at least deserves to be examined in a more compre- modernquantummechanics. Theyhave a wide rangeof ap- 8 plications, in semiclassical description of quantum systems, hensive way, particularly in view of application to realistic 1 systems. at the same time in quantizationof classical models, in con- densed matter physics, in radiation theory, in loop quantum In this article, we examine the problem from two view- ] h gravity, and so on [1]. In view of this wide range of do- points. OnonesideweadopttheapproachofMalkin-Manko p mains, a universally accepted definition of CS for arbitrary to systems with continuous spectra. On the other side, we - physicalsystems and a universallyaccepted constructionfor generalize, modify, and apply the approach followed in [8] t n them are still lacking. Due to Glauber and Malkin-Manko to the same kind of systems. It should be noted that in the a (see[2,3])thereexistsawell-definedconstructionalgorithm firstapproachwestartwithawell-definedquantumformula- u for systems with quadratic Hamiltonians (QH) with discrete tion (canonical quantization) of the physical system and the q [ spectra, and due to Gilmore, Perelomov and others (see [4– construction of coherent states follows from such a quanti- 7])forsystemswithagivenLiegroupsymmetry.Approaches zation. In the second approach, the quantization procedure 2 based on action-angle formalism [8] or on reproducing ker- is inherentto the CS constructionitself. In both approaches v nelcombinedwith Bayesian probabilisticingredients[9, 10] wepretendtoconstructCSforconcretesystemswithcontin- 5 5 have been developed more recently. In any generalization, uous spectra, free one-dimensionalparticle, chargedparticle 9 one attempts to maintain some of the basic properties of al- ontheplaneandsubmittedtoanelectricfield,andeventually 0 readyknownCSforquadraticsystems,likeresolutionofthe one-dimensionalparticle submitted to an arbitraryscattering . unity. One of the most popular constraints concerns semi- potential. 1 0 classicalfeatures.Onethusattemptstomaintainsaturationof 2 uncertaintyrelationsforsomephysicalquantities(e.g.coordi- 1 natesandmomenta)astheyaregivenatacertaininstant.One v: requires that means of particle coordinates, calculated with II. CSFORQHSYSTEMSWITHCONTINUOUS i respecttotime-dependentCS,movealongthecorresponding SPECTRA.APOSSIBLEAPPROACH X classicaltrajectories.Inaddition,CShavetobelabeledbypa- r rametersthathaveadirectclassicalanalog,letsaybyphase- a A. Aninstructiveexample:aparticleinaconstantexternal spacecoordinates. Itisalsodesirablefortime-dependentCS force tomaintaintheirformunderthetimeevolution. Onelastbut nottheleastconstraintintheconstructionistogivethesespe- cialstatesastatusofquantizera` laBerezin-Klauder[10–13]. 1. Creationandannihilationoperators-integralsofmotion As was already mentioned, usually CS are constructed for systems with discrete energy spectra, which represent Letusconsiderthequantummotionofaparticlesubjected bounded motions: we thus pass from quantum stationary toaconstantforcethatisdirectedalongtheaxisx1.Infact,it stateslabelledwithquantumnumberstoquantumCSlabelled isenoughtoconsideronlytheone-dimensionalmotioninthe x1-direction, since the motions in the x2- and x3-directions areseparatedandarefreemotions.Thequantummotioninthe x1-directionisdescribedbytheone-dimensionalSchro¨dinger ∗[email protected] equationoftheform †[email protected] ‡[email protected] §[email protected] ∂Ψ ~2∂2 ¶AlsoatInstituteofPhysics,UniversityofSa˜oPaulo,Brazil i~ =HˆΨ, Hˆ = x1 +αx1, (1) ∂t − 2m 2 wherethe constantα determinesthe magnitudeof the force. construction, because of the absence of the vacuum vector. Introducingdimensionlessvariablesxandτ as However,theMalkin-Mankoideacanbeimplemented,aswe describebelow. ~ x1 =lx, τ = t, (2) Letusconstructanoperator 2ml2 Aˆ(τ)=f(τ)a+g(τ)a +ϕ(τ), (8) where l is an arbitraryconstantof the length dimension,Eq. † (2)reducesto: where the functions f(τ), g(τ), andϕ(τ) have to be deter- mined by demanding that the operator Aˆ(τ) be integral of ∂Ψ √2ml3α i =HˆΨ, Hˆ =√2bx ∂2, b= . (3) motionoftheequation(3). TothisendoperatorAˆhastoobey ∂τ − x ~2 thecondition Henceweareleftwithonesingledimensionlessconstantb. ∂ We note that the classical trajectory of the position x has [Sˆ,Aˆ(τ)]=0, Sˆ=i Hˆ. (9) ∂τ − theform Usingrelations(6), onecan see thatthe conditions(9)holds x(τ)=x0+p0τ √2bτ2, (4) ifthefunctionsf(τ), g(τ), ϕ(τ)aresolutionstothesystem − wherex0andp0arearbitraryconstants(initialdata). if˙+f+g =0, ig˙ f g =0, iϕ˙ +b(f g)=0. (10) InspiteofthefactthattheHamiltonianHˆ hasacontinuous − − − spectrum, spec Hˆ = R, it is convenient to introduce in the Thegeneralsolutionofeqs. (10)hastheform problem the familiar creation and annihilation operators a † andaasfollows: f(τ)=c1+i(c1+c2)τ, g(τ)=c2 i(c1+c2)τ, − ϕ(τ)=bτ[i(c c ) (c +c )τ]+c x+∂x x ∂x 1− 2 − 1 2 3 a= √2 , a† = √−2 ⇒ =bτ{[f(τ)+g(τ)]τ +i[f(τ)−g(τ)]}+c3, (11) a+a a a wherec , j =1, 2, 3,arearbitrarycomplexconstants.With- x= √2†, ∂x = √−2†; [a,a†]=1. (5) outlossjofgenerality,wecansetc3 =0. Wenotethatthereisnonontrivialsolutionto(10)thatsat- We recall well-knowncommutatorsof such operatorswhich isfiestheconditionf(τ)=g(τ). willbeusefulforthesequel: ItfollowsfromEqs. (5)and(8)that [a†a,a]=[aa†,a]=−a, [Aˆ(τ),Aˆ†(τ)]=∆=|f(τ)|2−|g(τ)|2 =|c1|2−|c2|2. [a a,a ]=[aa ,a ]=a ,[an,a ]=nan 1, (12) † † † † † † − If ∆ > 0, then, without loss of generality, we can set [(a†)n,a]=−n(a†)n−1. (6) ∆ = 1, which corresponds to the multiplication of Aˆ by a complexnumber. InthiscasetheoperatorsAˆ (τ)andAˆ(τ) When written in terms of the operators(5), the Hamiltonian † arefamiliarcreationandannihilationoperators. takestheform If ∆ = 0, then, without loss of generality, the operator Hˆ = 1(aa +a a a2 a 2)+b(a+a ). (7) Aˆ(τ)canbeconsideredasaself-adjointone.(Aˆ(τ)candiffer † † † † 2 − − fromaself-adjointoneonlybyacomplexfactoronly).Inthis case,Eqs. (11)containonlyonecomplexconstantcandhave The term a2 a 2 impedes the Hamiltonian to be reduced − † theform toanoscillator-likeformthroughacanonicaltransformation, whichindicatesthattheredoesnotexistagroundstateandthe f(τ)=c+i(c+c∗)τ, g(τ)=f∗(τ), spectrumofHˆ iscontinuous. ϕ(τ)=b[i(c c )τ (c+c )τ2], ϕ(τ)=ϕ (τ). (13) Fortheoscillator-likequadraticHamiltonians,CSarecon- − ∗ − ∗ ∗ structed with the aid of a Fock discrete basis issued from Finally,if∆ < 0, thenonehastotreatBˆ = Aˆ asanan- the action of the creation operators on the vacuum state 0 † | i nihilationoperatorandweagainhavethecase∆>0. There- (a0 =0). ThentheGlauber-typeinstantaneousCShavethe | i fore,infact,wehavetostudyonlytwocases:∆=1, ∆=0. form z =D(z) 0 ,wheretheunitaryoperatorD(z)reads | i | i D z,a,a† =exp za†+z∗a . 2. Coherentstates Inthecourseoft(cid:0)heevolu(cid:1)tionthe(cid:8)CSmaintain(cid:9)theirformwith sometimedependentz(t). TheMalkin-Manko-typeCScan Letusconsidersolutionsψ(τ;x)oftheequation(3)that,at bedefinedaseigenvectorsofsomeannihilationoperatorsthat thesametime,areeigenstatesoftheoperatorAˆ(τ),withthe are integrals of motion, see [3]. In fact both constructions eigenvaluesZ, coincide for quadratic Hamiltonians. In the case under con- sideration, it does not exist a generalization of the Glauber Aˆ(τ)ψ(τ;x)=Zψ(τ;x). (14) 3 Let us consider the case ∆ = 1. Here, we have a family of operatorsAˆ(τ) = Aˆ(τ,c ,c ) parametrized by complex 1 2 numbersc and c such that c 2 c 2 = 1. One can see 1 1 2 1 2 | | −| | that the spectrum of any Aˆ(τ) is continuous, spec Aˆ(τ) = C,andtheeigenstateψc1,c2(τ;x)correspondingtoZ canbe Z constructedintwoways. Thestatesψc1,c2(τ;x)canbesimplyfoundassolutionsof Z thedifferentialequation(14),takingtheoperatorAˆ(τ)inthe x coordinate representation (8) with account taken of (5) and 0 (11). Asaresultweobtain: expR ψc1,c2(τ;x)= , Z (f g)√π − 2 f +g p √2Z R= x+2bτ2 2(f g) − f +g! -1 Z[(f +g)Z (−f +g )Z ] 2bτ2 0 0. 05 0.01 + − ∗ ∗ ∗ ibτ √2x+ . 2(f +g ) − 3 ∗ ∗ (cid:18) (cid:19) (15) Onecanseethat F15IG,.b1.=Fu1n8c0t.ioPnla|ψinZcl1i,nce2(rτe;pxre)s|e2n,tsc1th=ep3a,racb2o=lic√cl8a,ssxic0a=ltr0a,jepct0or=y x(τ)givenby(16). q2 x x(τ) ReR= , q = − , − 2 f g | − | Let us fix complexnumbersc and c . Then, the CS (15) and 1 2 aresquareintegrableandnormalizedtotheunity, 1 x(τ)= Z(f g )+Z (f g) 2bτ2 . (16) ∗ ∗ ∗ √2 − − − Z,τ Z,τ =1. (22) h | i (cid:2) (cid:3) Thefunctionx(τ)isjusttheclassicaltrajectory(4)withthe Buttheyarenotorthogonal,theiroverlappingrelationhasthe initialdata form 1 x0 = √2[(c1−c2)Z∗+(c∗1−c∗2)Z], hZ′,τ|Z,τi= ∞ [ψZc1′,c2(τ;x)]∗ψZc1,c2(τ;x)dx= p0 =i√2[(c1+c2)Z∗−(c∗1+c∗2)Z]. (17) exp(F/2), FZ=−∞Z(Z Z )+Z (Z Z ). (23) ′∗ ∗ ′∗ ′ − − Forfixedcomplexnumbersc andc ,underthecondition 1 2 ∆ = 1, there is an one-to-one correspondence between the Atanyfixedc andc theCSforanovercompletesystemwith 1 2 complexnumberZ andtheinitialdatax andp , thefollowingresolutionoftheunity 0 0 c +c i(c c ) Z = 1√2 2x0+ 21√−22 p0. (18) d2πZ [ψZc1,c2(τ;x′)]∗ψZc1,c2(τ;x)=δ(x−x′), Z Thesecondwaytoconstructthestatesψc1,c2(τ;x)isreminis- d2Z =dReZdImZ. Z centoftheGlauberconstructionofCS.Wedefinethevacuum state 0,τ fortheoperatorAˆ(τ), Togivesomeinsightintotheshapeofthesestatesandthe | i waytheirspreadingfaithfullyfollowstheclassicaltrajectory Aˆ(τ) 0,τ =0, (19) (16), weshowin Figure1the timeτ evolutionoftheproba- | i bility distributionx ψc1,c2(τ;x)2 for some fixed values andtheunitarydisplacementoperatorD(Z,τ), 7→ | Z | ofotherparameters. D(Z,τ)=exp ZAˆ (τ) Z Aˆ(τ) . (20) † ∗ { − } Then,thestates(15)canberepresentedas 3. Semi-classicalfeatures ψ (τ;x)= Z,τ =D(Z,τ) 0,τ . (21) Z | i | i LetuscalculatesomemeansanddispersionsintheCS.To Wewillcallthestates(15)or(21)thecoherentstates(CS)in this end, we use relations between the operators xˆ and pˆ = thecaseunderconsideration. i∂ ,andthecreationandannihilationoperatorsAˆ (τ)and x † − 4 Aˆ(τ),whichfollowfrom(5)and(8), whereV x1 isapotentialwhichcorrespondseithertoadis- creteortoacontinuousspectrum. Usingdimensionlessvari- xˆ= 1 (f g)(Aˆ ϕ )+(f g )(Aˆ ϕ) , ablesxan(cid:0)dτ(cid:1)givenby(2),weobtain † ∗ ∗ ∗ √2 − − − − ∂Ψ 2ml2 1 h i i =HˆΨ, Hˆ = ∂2+U(x), U(x)= V (lx). pˆ=i (f +g)(Aˆ+ ϕ ) (f +g )(Aˆ ϕ) . (24) ∂τ − x ~2 ∗ ∗ ∗ √2 − − − (31) h i Let us suppose that we are able to construct an operator Then Aˆ(τ)-integralofmotionthatobeystheconditions def x = hZ,τ|xˆ|Z,τi=x(τ) [Sˆ,Aˆ(τ)]=0, Sˆ=i ∂ Hˆ, [Aˆ(τ),Aˆ+(τ)]=1. 1 ∂τ − = Z(f g )+Z (f g) 2bτ2 , (32) ∗ ∗ ∗ √2 − − − pd=ef (cid:2)Z,τ pˆZ,τ =p(τ)= p0 √2bτ(cid:3). (25) Then,wedefinethevacuumstate|0,τifortheoperatorAˆ(τ) h | | i 2 − byequation(19),theunitarydisplacementoperatorD(Z,τ) given by eq. (20), and finally coherent states D(Z,τ) by Letusintroducethedeviationoperators∆xand∆p, equation(21). Westressthatsuchaconstructionisbasedonthepossibility ∆x=xˆ x(τ)= tofindacompletediscretesetofsolutionsoftheSchro¨dinger − 1 equation with a given potential. Such a possibility naively (f g) Aˆ+ Z +(f g ) Aˆ Z , ∗ ∗ ∗ followsfromthe existence of a unitaryevolutionoperatorin √2 − − − − h (cid:16) (cid:17) (cid:16) (cid:17)i thecaseunderconsiderationandfromtheexistenceofadis- ∆p=pˆ p(τ)= − cretecompletebasisinthecorrespondingHilbertspace(then i (f +g) Aˆ+ Z (f +g ) Aˆ Z , (26) vectorsfrom such a basis can be chosen as initial states and ∗ ∗ ∗ √2 − − − developedthenintoacompletesetofsolutionsbytheevolu- h (cid:16) (cid:17) (cid:16) (cid:17)i tionoperator). However,weknowthatthedefinitiondomain andthevariances oftheHamiltonianasaruledoesnotcoincidewiththeHilbert space,thisisasourceofnumerousparadoxes(see[17])and, 1 σ =(∆x)2, σ =(∆p)2, σ = (∆x∆p+∆p∆x). inparticular,cancreatedifficultieswiththerealizationofthe 1 2 3 2 describedaboveprogram. (27) For any quadratic potential U(x) operators Aˆ(τ) and Thelatterquantitiescanbeeasilycalculated: Aˆ+(τ) are expressed by a linear canonical transformation withthecreationandannihilationoperatorsa andagivenby † 1 1 i (5). Coefficientfunctionsinsucha canonicaltransformation σ = f g 2, σ = f +g 2, σ = (gf g f). 1 2| − | 2 2| | 3 2 ∗− ∗ obeyordinarydifferentialequationsofsecondorder,[18].For (28) moregeneralpotentialsonehastoelaboratespecificmethods for solving the operator equations (32). In any case, in the One can see that the variances do not depend on Z, but de- approachunderconsideration,wearenotrestrictedbythede- pend on the complex numbers c and c according to (11). mandthatthesystemhastohaveadiscretespectrum. 1 2 Choosing the numbers c and c one can provide any given 1 2 (atτ =0)valueforσ orσ . Itfollowsfrom(28): 1 2 III. CSFORCONSERVATIVESYSTEMSWITH J =σ σ σ2 =1/4. (29) CONTINUOUSSPECTRA.ANALTERNATIVE 1 2− 3 CONSTRUCTION ThequantityJ doesnotdependontime, itisminimalinthe CS. A. Pseudo-action&anglevariables One ought to mention that for α = 0 which correspond to the free particle case, the CS (15) coincide with the ones We consider again the motion of a particle of mass m on constructedinthework[16]. theline,withphasespaceconjugatevariables(q,p),andsub- mitted to a potential V(q). Suppose it conservative. For a givenunboundedmotionits Hamiltonianfunctionisfixed to B. CSforgeneralpotentials acertainvalueEoftheenergy: p2 H(q,p)= +V(q)=E. (33) Lettheone-dimensionalSchro¨dingerequationhaveamore 2m generalthan(1)form Solvingthisforthemomentumvariablep,assumingapositive velocity,leadsto ∂Ψ ~2∂2 i~ =HˆΨ, Hˆ = x1 +V x1 , (30) p=p(q,E)=√2m E V(q), (34) ∂t − 2m − (cid:0) (cid:1) p 5 supposingno restriction on q, e.g. E V(q) > 0 for all q. B. Pseudo-action-anglecoherentstates − Fromp = mdq/dtwederivetheexpressionofthetimeasa functionof(q,p),throughV andfromE =E(q,p): Let be a complex Hilbert space with distributional or- m dq thonormHalbasis ψE , 0 E <EM , dt= {| i ≤ } r2 E−V(q) ⇒ E˜M t t0 = mp q dq′ . (35) hψE|ψE′i=δ(E −E′), Z0 dE˜|ψEihψE|=1H. (41) − 2 E V(q ) r Zq0 − ′ Thepseudo-action-anglephasespacefortheunboundedmo- We then introducea “pseudo-actpion”variable, dependingon tion with measured energies 0 E < E is the set X = (q,p)throughtheenergyonly,J=J(E),withderivativesub- (J,γ), J J, γ R . Le≤t (pE(J))Mbe the continuous mittedtothecondition { ∈ R ∈ } setofprobabilitydistributionsassociatedwiththeseenergies. dJ Onethenconstructsthefamilyofstates in forthe consid- J′(E)= >0. (36) H dE eredmotionasthefollowingcontinuousmapfromX into : H ThusthemapE J(E)isone-to-oneandE canbeconsid- eredaswellasa7→functionofJ: E = E(J). Wenowconsider X (J,γ) J,γ = ∋ 7→| i themap(q,p) (J,t)withJacobianmatrix E˜ 1 M mp − V′2(qJ)′p(E7→m2)VRq′q0(q()E−Vdq(′q′3/2 −p2q21mJ′R(Eqq0)(Emp−Vdq(′q′3/2! , wherepthNe(cJh)oiZc0e ofdthE˜eprepaEl(fJu)nec−tioiαnEEγ|ψEiα∈EHis,left to(4u2s) (37) 7→ in order to comply with some reasonable physical criteria. withdeterminantequaltoJ(E) (F(J)) 1. Therefore,the ′ − A naturalchoice which guarantiestime evolutionstability is ≡ map αE =ςE˜,whereς issomeconstant. def Thecoherentstates J,γ areunitvector: J,γ J,γ = 1 (q,p) (J,γ), γ = F(J(E(q,p))t(q,p), (38) | i h | i 7→ andresolvetheunityoperatorin withrespecttothemeasure H hasJacobianequalto1,i.e. iscanonical. Newvariableswill “intheBohrsense”µ (dJdγ)onthephasespaceX : B becalled“pseudo-action–angle”variablesbyanalogywiththe usualaction-anglevariableusedforboundedone-dimensional def µ (dJdγ) (J) J,γ J,γ = B motions. Notetheroleplayedbyγ asakindofintrinsictime N | ih | ZX forthe system, like theanglevariabledoesforboundedmo- T tions. dJ˜ (J) lim 1 2 dγ J,γ J,γ =1 . (43) Suppose that measurements on the considered one- ZRJ N T→∞T Z−T2 | ih | H dimensionalsystemwithclassicalenergyE =p2/2m+V(q) This property allows a coherent state quantization of classi- yieldthecontinuousspectralvaluesfortheenergyobservable (uptoaconstantshift),denotedbyE: calobservablesf(J,γ)whichis energycompatiblewithour construction of the posterior distribution J pE(J) in the 0 E <EM, EM finiteor (39) followingsense: 7→ ≤ ∞ Thedifferencebetweenthetwo physicalquantities, classical def E andquantumE,liesintheprobabilisticnatureofthemea- f(J,γ) µ (dJdγ) (J)f(J,γ) J,γ J,γ = A B f 7→ N | ih | surement of the latter, involving Hilbertian quantum states. ZX (44) Let ε be a constant characteristic energy of the considered system (e.g. h/τ, where τ is a characteristic time). We put Indeed,itistriviallyverifiedthatthequantumHamiltonianis E˜ = E/ε. We definea correspondingsequenceof probabil- whatweexpect: ity distributions J pE(J), dJ˜pE(J) = 1, supposing a(prior)uniformdi7→stributiononRtJherange ofthepseudo- actionvariableJ. FurthermoreR,weimposeRpEJ(J)toobeythe AH = µB(dJdγ)N(J)E(J)|J,γihJ,γ|= ZX twoconditions: E˜ M 0< (J)d=ef E˜M dE˜pE(J)< , Z0 dE˜E|ψEihψE|, N ∞ Z0 that is, the states ψE are eigendistributionsof the quantum E = dJ˜E(J)pE(J), (40) Hamiltonian A |withieigenvalues the elements of the spec- H ZRJ trum(39). where J˜ = J/h, h being the Plank constant. The finiteness Thequantizationofanyfunctionf(J)ofthesinglepseudo- condition allows to consider the map E pE(J)/ (J) as actionvariableyieldsthediagonaloperator: 7→ N aprobabilisticmodelreferringtothecontinuousenergydata, E˜ whichmightviewedinthepresentcontextasapriordistribu- M tion. f(J)7→Af = dE˜hfiE|ψEihψE|. (45) Z0 6 where and so J = R for the range of J. For the probability dis- R tribution J pE(J) we choose the normal law centered at f E = dJ˜f(J)pE(J). (46) ηlnE˜: 7→ h i ZRJ ǫ 1/2 Alternatively,thequantizationofanyfunctionf(γ)ofthesin- pE(J)= π e−ǫ(J˜−ηlnE˜)2. (52) gleanglevariableonlyyieldstheoperator: (cid:16) (cid:17) Then the three fundamental requirements are (almost) ful- f(γ) Af = E˜M dE˜ E˜M′ dE˜′[Af]EE′ ψE ψE′ , (47) filled: 7→ Z0 Z0 | ih | (i) itisprobabilistic: RdJ˜pE(J)=1, wherethematrixelements[Af]EE′ areformallygivenby: (ii) the average valueRof the classical energy is the ob- ≈ servedvalueatlargeǫorη: [Af]EE′ = dJ˜ pE(J)pE′(J) Tlim T1 T2T dγe−i(αE−αE′)γf(γ). ZRdJ˜E(J)pE(J)=e4ǫ1η2 E , (53) ZRJ p →∞ Z−2 (48) (iii) positivenessandfinitenessconditionsarefulfilled: In particular the CS quantization procedure provides, for a E˜ gcoivrerenspchoonidciengoftothaenfyurnecatliobnouEnd7→edαoEr,saemsei-lfb-oaudnjodiendtofupnecratitoonr 0< N(J)= M dE˜pE(J)= η1 e(cid:16)Jη˜+4ǫ1η2(cid:17) <∞. (54) Z0 f(γ). Forinstance,thequantizationoftheelementaryFourier exponentialf(γ) = ei̟γ givesaboundedoperatorwithma- Note the average value of J : RdJ˜JpE(J) = hηlnE˜. trixelements(intheconsideredenergyrange): CoherentstateswithαE =ςE˜ readas: R [Aei̟γ]EE′ =π dJ˜ pE(J)pE′(J) δ(αE′ −αE +̟). X =R×R7→ (cid:20)ZRJ p (cid:21) (49) J,γ = 1 ∞dE˜ pE(J)e−iςE˜γ ψE , (55) | i (J) | i∈H N Z0 p The quantization of the original canonical position and mo- Theyare,bpyconstruction,unitvectors,aretemporalevolution mentum variables (q,p) is carried out through the functions stableforlargeǫorη,andsolvetheidentity: q = q(J,γ), p = p(J,γ)obtainedthroughtheinverseofthe map(38). Ityieldssymmetricpositionandmomentumoper- ators. Self-adjointnessisnotguaranteed,dependingornoton J,γ J,γ =1, µ (dJdγ) (J) J,γ J,γ =1 , B the choice of the choice of distribution J pE(J) and the h | i ZX N | ih | H functionE αE. Itispossiblethatregular7→izationtechniques e−iA˜Ht J,γ = J,γ+t/ς , (56) 7→ | i | i areneededhere. Semi-classical aspects of such coherent states and related withA˜ =A /h. Theyoverlapas H H quantization are suitably caught through the so-called lower ssfyta7→mtebsfoˇflˇsi(sJot,fhγeo)pB=eerraehtJzoi,rnsγ-l|AiAkffe,|iJin.,eteγ.gitr.haAelitsrraamnmsefaoantrtmveraloufesfaicnt,ctohheemreanpt hJ′,γ′|J,+γ∞i=dE˜pe−Niς(E˜J(1)γN−γ(′J)′e)−eǫ−(cid:16)J˜4ǫ+(2J˜J˜−′−J˜η′)l2n(cid:16)E˜(cid:17)πǫ2(cid:17).1/2 (57) × fˇ(J,γ)= µ (dJ dγ ) (J)f(J,γ ) J,γ J,γ 2, Z0 B ′ ′ ′ ′ ′ ′ ′ N |h | i| ZX This indicates a bell-shaped localization in pseudo-action (50) variableatlargeJ˜oratlargeǫ: whichgivesatoncesomeinsightonthedomainpropertiesof Af andonthesemi-classicalbehaviorofthecoherentstates. |hJ′,γ′|J,γi|≤ (J1) (J )e−4ǫ(J˜−J˜′)2 πǫ 1/2 N N ′ (cid:16) (cid:17) +p∞dE˜e−ǫ(cid:16)J˜+2J˜′−ηlnE˜(cid:17)2. (58) C. Anexplorationwithnormallaw × Z0 A similar good localization in angle requires a study of Let us choose the following function for the classical the behavior at large k of the following Fourier transform: pseudo-action: 0+∞dxe−ikxe−µ(lnx−λ)2, with x = E˜, k = ς(γ − γ′), J˜(E)=ηlnE˜, E˜ =eJ˜/η, η >0,E˜ >0, (51) µ=ǫη2,andλ= J˜+J˜′. ⇔ R 2η 7 AninterestingobservationconcernstheCSquantizationof Probability density anypoweroftheclassicalenergy: 4 4.5 A = µ (dJdγ) (J)(E(J))λ J,γ J,γ 3.5 Hλ ZX B N | ih | 4 =e4λǫη22 +∞dE˜(E)λ ψE ψE , 3.5 3 Z0 | ih | 3 2.5 which means that AHλ = eλ4(λǫη−21) (AH)λ. The quantization 2.5 2 oftheFourierexponentialei̟γ givestheboundedoperator 2 1.5 1.5 Aei̟γ = πς Zsu+p∞(0,̟/ς)e−ǫ4η(cid:16)ln(cid:16)E˜−̟E˜/ς(cid:17)(cid:17)2|ψEihψE−̟/ς|. 0.15 1 (59) 0 0.5 5 −5 We might be able to deduce from this formula the quan- 0 0 tization of the variable γ by the formal trick A = γ −5 5 i∂/∂̟A . γ’ − ei̟γ|̟=0 J’ D. Probabilitydistributionsonphaseorotherspaces FIG.2. Calculatedphasespaceprobabilitydensity(Eq. IIID)with J = γ = 0, ς = ǫ = η = 1 and zoom in the range J′ : 5 InFigure2areshowntwo-dimensionalpicturesoftheprob- 5, γ′: 5 5. − ÷ − ÷ abilitydensity (J) J,γ J,γ 2with ′ ′ N |h | i| (J)= E˜M dE˜pE(J)= 1e(cid:16)Jη˜+4ǫ1η2(cid:17) (60) TofhtehsetufodlyloowfitnhgisFeoxuprrieersstiroannsafmoromu:ntstoanalyzethebehavior N η Z0 and, F(x)= 1 +∞due ixuuαe δ(lnu)2e iβu2, (63) − − − J′,γ′ J,γ = 1 e−4ǫ(J˜−J˜′)2 ǫ 1/2 √2π Z0 h | i N(J)N(J′) (cid:16)π(cid:17) withα=2ǫηJ˜+1/2,β =ςγ,andδ =2ǫη2. Fromtheupper +∞dE˜pe−iςE˜(γ−γ′)e−ǫ(cid:16)J˜+2J˜′−ηlnE˜(cid:17)2. (61) bound × We fix theZp0arameters (J,γ) and sweep (J′,γ′) in the R |F(x)|≤ 2δ e(α+4δ1)2 , (64) R space. Parameters ǫ = η = ς = J = 1 are chosen fo×r r we see that it can be made arbitrarily small at large η. The an example. That gives a nice picture of the expected good localizationofthesestatesinthephasespaceplane(J,γ ). map ′ ′ Let us explore another representation, picking = L2(R) as a companion Hilbert space and as coHntinu- x xJ,γ 2 = ǫη2 e−ǫ(J˜+2ǫ1η)2 ous basis the eigen-distributions of the operator d2/dx2 7→|h | i| π3 [17]: to each eigenvalue E˜ correspond the sy−mmetric +∞duu2ǫηJ˜+1/2e 2ǫη2(lnu)2e i(ςγu2+xu) 2 (65) ψE+(x) = √4π1√E˜ cos(√E˜x)andtheantisymmetricψE−(x) = ×(cid:12)(cid:12)Z0 − − (cid:12)(cid:12) i sin(√E˜x) (the phase i is chosenfor convenience). define(cid:12)saprobabilitydistributionontherealline. As(cid:12)shownin √4−π√E˜ − Figur(cid:12)e3,itgivesaninsightintothelocalizationofth(cid:12)ecoher- A degeneracyof order2 is presenthere and shouldbe taken entstatesviewedaswavepacketsonthelinex Randtheir into account by including a factor 2 in the spectral measure ∈ spreadinginfunctionoftherescaled“time”γ. dE˜ ψE ψE appearingin(41). Weshouldcautionagainstthe | ih | riskofconfusionwiththepositionrepresentation:thesymbol xshouldnotberegardedingeneralasanelementofthespec- IV. CONCLUSION trumofthepositionoperatorA ,andinstead,weshouldview q thestates(IIIC)asspecialwavepacketsinrepresentation“x”. We have presented two methods for constructing families Wefindfrom(IIIC)(afterthechangeu=√E˜), of coherentstates adapted to the quantumdescription of un- xJ,γ = ǫη2 e−2ǫ(J˜+2ǫ1η)2 boTunhdeefidrmstoatpiopnrosaocnhtfhoellroewalsltihnee.Malkin-Mankotreatmentof h | i π3 r quadraticHamiltoniansandismoreofalgebraicnature,rest- + ∞duu2ǫηJ˜+1/2e 2ǫη2(lnu)2e i(ςγu2+ux), (62) inguponcanonicalcommutationrulesandinvarianceprinci- − − ×Z0 ples. Wehaveconsideredtheexampleofaparticlesubmitted 8 a broad range of possibilities in choosing the three main in- 0.07 gredientsoftheCSconstruction: thefunctionE J(E)on 7→ aclassicallevel,and,onaquantumlevel,theprobabilitydis- tributions J pE(J) and the frequencyfunction E αE. 7→ 7→ Of course, the selection should be ruled by the requirement γ = 0 ofmanageablequantumoperatorscombinedwith acceptable semi-classicalproperties. In a next publication we will examine in a more compre- PD 0.035 γ = −2 hensivewaythefollowingpoints: (i) generalizationofthefirstmethodtoarbitrarypotentials, γ = −4 (ii) algebraic and domain properties of position and mo- mentumoperatorsyieldedbythesecondapproach, 0 (iii) detailedcomparisonofthetwoapproacheswithregard −10 −5 0 5 10 15 20 25 30 x tolocalizationpropertiesinphasespaceandinconfig- urationspace. FIG.3. Calculatedprobabilitydensities(Eq. IIID)ontherealline x RwithJ=0,ς =ǫ/2=η=1,forthevaluesγ = 4, 2, 0. ∈ − − ACKNOWLEDGEMENT Onecannoticethespreadingofthewavepacket. TheworkofVGBwaspartiallysupportedbyFAPESP,the to a constant force (i.e. linear potential) and obtained fami- FederalTargetedProgram”Scientificandscientific-pedagog- liesofstatesfulfillingsemi-classicalexigences.Wehavealso ical personnel of innovative Russia”, contract No P789 and givensomeinsightaboutgeneralizationtoarbitrarypotentials. RussiaPresidentgrantSS-1694.2012.2.GitmanthankCNPq Thesecondapproachisofprobabilisticnature. Itprovides andFAPESPforpermanentsupport. [1] Special issue on coherent states: mathematical and physical [11] F.A.Berezin, Generalconcept ofquantization, Comm.Math. aspectsS.T.Ali, J.-P.Antoine, F.BagarelloandJ.-P.Gazeau Phys.,40,153(1975). (Ed.),J.Phys.A,toappear(2012). [12] J.R. Klauder, Quantization Without Quantization, Ann. Phys. [2] R.Glauber,Phys.Rev.Lett.1084-(1963);Phys.Rev.1302529- (NY)237,147-160(1995). (1963); J.R.Klauder, E.C.Sudarshan, Fundamentals of Quan- [13] J.R.Klauder. BeyondConventionalQuantization. Cambridge tumOptics,(Benjamin,1968) UniversityPress,Cambridge,2000. [3] I.A.Malkin,V.I.Man’ko,DynamicalSymmetriesandCoherent [14] M. Hongoh, Coherent states associated with the continuous States of Quantum Systems, (Nauka, Moscow, 1979) pp.320; spectrumofnoncompactgroups,J.Math.Phys.,18,2081-2085 SovietPhys.JETP28(1969)527 (1977). [4] R.Gilmore,Geometryofsymmetrizedstates, Ann.Phys.(NY) [15] J.BenGelounandJ.R.Klauder,Ladderoperatorsandcoher- 74391-463(1972). entstatesforcontinuousspectra,J.Phys.A:Math.Theor.,42, [5] A. M. Perelomov, Coherent states for arbitrary Lie groups, 375209(2009). Commun.Math.Phys.26222-236(1972). [16] J. Guerrero, F.F. Luˆpez-Ruiz, V. Aldaya and F. Cossio, Har- [6] A.M.Perelomov,GeneralizedCoherentStatesandTheirAppli- monicstatesforthefreeparticle, J.Phys.A44445307, 1–26 cations,Springer-Verlag,1986. (2011). [7] S.T. Ali, J-P. Antoine, and J-P. Gazeau, Coherent States, [17] D.M. Gitman, I.V. Tyutin, B.L. Voronov, Self-adjoint Exten- Wavelets and Their Generalizations, Springer-Verlag, New sionsinQuantumMechanics.Generaltheoryandapplications York,Berlin,Heidelberg,2000. toSchroedingerandDiracequationswithsingularpotentials, [8] J.P. Gazeau and J. Klauder, Coherent States for Systems with Birkha¨userPublisher(2012)inpress. DiscreteandContinuousSpectrum,J.Phys.A:Math.Gen.,32, [18] V.G. Bagrov and D.M. Gitman, Exact Solutions of Relativis- 123-132(1999). ticWaveEquations,Math.itsAppl.,Sov.ser.,Vol39(Kluwer, [9] S.T. Ali, B. Heller and J.P. Gazeau, Coherent states and Dordrecht1990) Bayesian duality, J. Phys. A: Math. Theor., 41, 365302 1-22 [19] J.P.GazeauandR.Kanamoto,Action-anglecoherentstatesand (2008). relatedquantization,arXiv:1110.6678v1[quant-ph] [10] J.P.Gazeau,CoherentStatesinQuantumPhysics,Wiley-VCH, Berlin,2009.