ebook img

Coherent states and related quantizations for unbounded motions PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Coherent states and related quantizations for unbounded motions

Coherent states and related quantizations forunbounded motions V. G. Bagrov,1, J.-P. Gazeau,2, D. M. Gitman,3, and A. D. Levin3, ∗ † ‡ § 1Department of Physics, Tomsk State University, 634050, Tomsk, Russia.¶ 2Astroparticuleset Cosmologie, UnivParisDiderot, Sorbonne ParisCite´, 75205 Paris, France 3Institute of Physics, University of Sa˜o Paulo, Brazil Webuildcoherentstates(CS)forunboundedmotionsalongtwodifferentprocedures.Inthefirstoneweadapt theMalkin-MankoconstructionforquadraticHamiltonianstothemotionofaparticleinalinearpotential. A generalization to arbitrary potentials is discussed. The second one extends to continuous spectrum previous constructionsofaction-anglecoherentstatesinviewofaconsistentenergyquantization. PACSnumbers:03.65.Sq,03.65.Fd,03.65.Ca 2 Keywords:coherentstates,wavepackets,semi-classicalstates,quantization,continuousenergyspectrum,timeevolution 1 0 2 I. INTRODUCTION by phase space variables. There existsome attemptsto con- n structCSforsystemswithcontinuousspectra,seeforinstance a Atpresent,coherentstates(CS)takeanimportantplacein [8, 14–16]. However, one can state that the problem is still J open or at least deserves to be examined in a more compre- modernquantummechanics. Theyhave a wide rangeof ap- 8 plications, in semiclassical description of quantum systems, hensive way, particularly in view of application to realistic 1 systems. at the same time in quantizationof classical models, in con- densed matter physics, in radiation theory, in loop quantum In this article, we examine the problem from two view- ] h gravity, and so on [1]. In view of this wide range of do- points. OnonesideweadopttheapproachofMalkin-Manko p mains, a universally accepted definition of CS for arbitrary to systems with continuous spectra. On the other side, we - physicalsystems and a universallyaccepted constructionfor generalize, modify, and apply the approach followed in [8] t n them are still lacking. Due to Glauber and Malkin-Manko to the same kind of systems. It should be noted that in the a (see[2,3])thereexistsawell-definedconstructionalgorithm firstapproachwestartwithawell-definedquantumformula- u for systems with quadratic Hamiltonians (QH) with discrete tion (canonical quantization) of the physical system and the q [ spectra, and due to Gilmore, Perelomov and others (see [4– construction of coherent states follows from such a quanti- 7])forsystemswithagivenLiegroupsymmetry.Approaches zation. In the second approach, the quantization procedure 2 based on action-angle formalism [8] or on reproducing ker- is inherentto the CS constructionitself. In both approaches v nelcombinedwith Bayesian probabilisticingredients[9, 10] wepretendtoconstructCSforconcretesystemswithcontin- 5 5 have been developed more recently. In any generalization, uous spectra, free one-dimensionalparticle, chargedparticle 9 one attempts to maintain some of the basic properties of al- ontheplaneandsubmittedtoanelectricfield,andeventually 0 readyknownCSforquadraticsystems,likeresolutionofthe one-dimensionalparticle submitted to an arbitraryscattering . unity. One of the most popular constraints concerns semi- potential. 1 0 classicalfeatures.Onethusattemptstomaintainsaturationof 2 uncertaintyrelationsforsomephysicalquantities(e.g.coordi- 1 natesandmomenta)astheyaregivenatacertaininstant.One v: requires that means of particle coordinates, calculated with II. CSFORQHSYSTEMSWITHCONTINUOUS i respecttotime-dependentCS,movealongthecorresponding SPECTRA.APOSSIBLEAPPROACH X classicaltrajectories.Inaddition,CShavetobelabeledbypa- r rametersthathaveadirectclassicalanalog,letsaybyphase- a A. Aninstructiveexample:aparticleinaconstantexternal spacecoordinates. Itisalsodesirablefortime-dependentCS force tomaintaintheirformunderthetimeevolution. Onelastbut nottheleastconstraintintheconstructionistogivethesespe- cialstatesastatusofquantizera` laBerezin-Klauder[10–13]. 1. Creationandannihilationoperators-integralsofmotion As was already mentioned, usually CS are constructed for systems with discrete energy spectra, which represent Letusconsiderthequantummotionofaparticlesubjected bounded motions: we thus pass from quantum stationary toaconstantforcethatisdirectedalongtheaxisx1.Infact,it stateslabelledwithquantumnumberstoquantumCSlabelled isenoughtoconsideronlytheone-dimensionalmotioninthe x1-direction, since the motions in the x2- and x3-directions areseparatedandarefreemotions.Thequantummotioninthe x1-directionisdescribedbytheone-dimensionalSchro¨dinger ∗[email protected] equationoftheform †[email protected][email protected] §[email protected] ∂Ψ ~2∂2 ¶AlsoatInstituteofPhysics,UniversityofSa˜oPaulo,Brazil i~ =HˆΨ, Hˆ = x1 +αx1, (1) ∂t − 2m 2 wherethe constantα determinesthe magnitudeof the force. construction, because of the absence of the vacuum vector. Introducingdimensionlessvariablesxandτ as However,theMalkin-Mankoideacanbeimplemented,aswe describebelow. ~ x1 =lx, τ = t, (2) Letusconstructanoperator 2ml2 Aˆ(τ)=f(τ)a+g(τ)a +ϕ(τ), (8) where l is an arbitraryconstantof the length dimension,Eq. † (2)reducesto: where the functions f(τ), g(τ), andϕ(τ) have to be deter- mined by demanding that the operator Aˆ(τ) be integral of ∂Ψ √2ml3α i =HˆΨ, Hˆ =√2bx ∂2, b= . (3) motionoftheequation(3). TothisendoperatorAˆhastoobey ∂τ − x ~2 thecondition Henceweareleftwithonesingledimensionlessconstantb. ∂ We note that the classical trajectory of the position x has [Sˆ,Aˆ(τ)]=0, Sˆ=i Hˆ. (9) ∂τ − theform Usingrelations(6), onecan see thatthe conditions(9)holds x(τ)=x0+p0τ √2bτ2, (4) ifthefunctionsf(τ), g(τ), ϕ(τ)aresolutionstothesystem − wherex0andp0arearbitraryconstants(initialdata). if˙+f+g =0, ig˙ f g =0, iϕ˙ +b(f g)=0. (10) InspiteofthefactthattheHamiltonianHˆ hasacontinuous − − − spectrum, spec Hˆ = R, it is convenient to introduce in the Thegeneralsolutionofeqs. (10)hastheform problem the familiar creation and annihilation operators a † andaasfollows: f(τ)=c1+i(c1+c2)τ, g(τ)=c2 i(c1+c2)τ, − ϕ(τ)=bτ[i(c c ) (c +c )τ]+c x+∂x x ∂x 1− 2 − 1 2 3 a= √2 , a† = √−2 ⇒ =bτ{[f(τ)+g(τ)]τ +i[f(τ)−g(τ)]}+c3, (11) a+a a a wherec , j =1, 2, 3,arearbitrarycomplexconstants.With- x= √2†, ∂x = √−2†; [a,a†]=1. (5) outlossjofgenerality,wecansetc3 =0. Wenotethatthereisnonontrivialsolutionto(10)thatsat- We recall well-knowncommutatorsof such operatorswhich isfiestheconditionf(τ)=g(τ). willbeusefulforthesequel: ItfollowsfromEqs. (5)and(8)that [a†a,a]=[aa†,a]=−a, [Aˆ(τ),Aˆ†(τ)]=∆=|f(τ)|2−|g(τ)|2 =|c1|2−|c2|2. [a a,a ]=[aa ,a ]=a ,[an,a ]=nan 1, (12) † † † † † † − If ∆ > 0, then, without loss of generality, we can set [(a†)n,a]=−n(a†)n−1. (6) ∆ = 1, which corresponds to the multiplication of Aˆ by a complexnumber. InthiscasetheoperatorsAˆ (τ)andAˆ(τ) When written in terms of the operators(5), the Hamiltonian † arefamiliarcreationandannihilationoperators. takestheform If ∆ = 0, then, without loss of generality, the operator Hˆ = 1(aa +a a a2 a 2)+b(a+a ). (7) Aˆ(τ)canbeconsideredasaself-adjointone.(Aˆ(τ)candiffer † † † † 2 − − fromaself-adjointoneonlybyacomplexfactoronly).Inthis case,Eqs. (11)containonlyonecomplexconstantcandhave The term a2 a 2 impedes the Hamiltonian to be reduced − † theform toanoscillator-likeformthroughacanonicaltransformation, whichindicatesthattheredoesnotexistagroundstateandthe f(τ)=c+i(c+c∗)τ, g(τ)=f∗(τ), spectrumofHˆ iscontinuous. ϕ(τ)=b[i(c c )τ (c+c )τ2], ϕ(τ)=ϕ (τ). (13) Fortheoscillator-likequadraticHamiltonians,CSarecon- − ∗ − ∗ ∗ structed with the aid of a Fock discrete basis issued from Finally,if∆ < 0, thenonehastotreatBˆ = Aˆ asanan- the action of the creation operators on the vacuum state 0 † | i nihilationoperatorandweagainhavethecase∆>0. There- (a0 =0). ThentheGlauber-typeinstantaneousCShavethe | i fore,infact,wehavetostudyonlytwocases:∆=1, ∆=0. form z =D(z) 0 ,wheretheunitaryoperatorD(z)reads | i | i D z,a,a† =exp za†+z∗a . 2. Coherentstates Inthecourseoft(cid:0)heevolu(cid:1)tionthe(cid:8)CSmaintain(cid:9)theirformwith sometimedependentz(t). TheMalkin-Manko-typeCScan Letusconsidersolutionsψ(τ;x)oftheequation(3)that,at bedefinedaseigenvectorsofsomeannihilationoperatorsthat thesametime,areeigenstatesoftheoperatorAˆ(τ),withthe are integrals of motion, see [3]. In fact both constructions eigenvaluesZ, coincide for quadratic Hamiltonians. In the case under con- sideration, it does not exist a generalization of the Glauber Aˆ(τ)ψ(τ;x)=Zψ(τ;x). (14) 3 Let us consider the case ∆ = 1. Here, we have a family of operatorsAˆ(τ) = Aˆ(τ,c ,c ) parametrized by complex 1 2 numbersc and c such that c 2 c 2 = 1. One can see 1 1 2 1 2 | | −| | that the spectrum of any Aˆ(τ) is continuous, spec Aˆ(τ) = C,andtheeigenstateψc1,c2(τ;x)correspondingtoZ canbe Z constructedintwoways. Thestatesψc1,c2(τ;x)canbesimplyfoundassolutionsof Z thedifferentialequation(14),takingtheoperatorAˆ(τ)inthe x coordinate representation (8) with account taken of (5) and 0 (11). Asaresultweobtain: expR ψc1,c2(τ;x)= , Z (f g)√π − 2 f +g p √2Z R= x+2bτ2 2(f g) − f +g! -1 Z[(f +g)Z (−f +g )Z ] 2bτ2 0 0. 05 0.01 + − ∗ ∗ ∗ ibτ √2x+ . 2(f +g ) − 3 ∗ ∗ (cid:18) (cid:19) (15) Onecanseethat F15IG,.b1.=Fu1n8c0t.ioPnla|ψinZcl1i,nce2(rτe;pxre)s|e2n,tsc1th=ep3a,racb2o=lic√cl8a,ssxic0a=ltr0a,jepct0or=y x(τ)givenby(16). q2 x x(τ) ReR= , q = − , − 2 f g | − | Let us fix complexnumbersc and c . Then, the CS (15) and 1 2 aresquareintegrableandnormalizedtotheunity, 1 x(τ)= Z(f g )+Z (f g) 2bτ2 . (16) ∗ ∗ ∗ √2 − − − Z,τ Z,τ =1. (22) h | i (cid:2) (cid:3) Thefunctionx(τ)isjusttheclassicaltrajectory(4)withthe Buttheyarenotorthogonal,theiroverlappingrelationhasthe initialdata form 1 x0 = √2[(c1−c2)Z∗+(c∗1−c∗2)Z], hZ′,τ|Z,τi= ∞ [ψZc1′,c2(τ;x)]∗ψZc1,c2(τ;x)dx= p0 =i√2[(c1+c2)Z∗−(c∗1+c∗2)Z]. (17) exp(F/2), FZ=−∞Z(Z Z )+Z (Z Z ). (23) ′∗ ∗ ′∗ ′ − − Forfixedcomplexnumbersc andc ,underthecondition 1 2 ∆ = 1, there is an one-to-one correspondence between the Atanyfixedc andc theCSforanovercompletesystemwith 1 2 complexnumberZ andtheinitialdatax andp , thefollowingresolutionoftheunity 0 0 c +c i(c c ) Z = 1√2 2x0+ 21√−22 p0. (18) d2πZ [ψZc1,c2(τ;x′)]∗ψZc1,c2(τ;x)=δ(x−x′), Z Thesecondwaytoconstructthestatesψc1,c2(τ;x)isreminis- d2Z =dReZdImZ. Z centoftheGlauberconstructionofCS.Wedefinethevacuum state 0,τ fortheoperatorAˆ(τ), Togivesomeinsightintotheshapeofthesestatesandthe | i waytheirspreadingfaithfullyfollowstheclassicaltrajectory Aˆ(τ) 0,τ =0, (19) (16), weshowin Figure1the timeτ evolutionoftheproba- | i bility distributionx ψc1,c2(τ;x)2 for some fixed values andtheunitarydisplacementoperatorD(Z,τ), 7→ | Z | ofotherparameters. D(Z,τ)=exp ZAˆ (τ) Z Aˆ(τ) . (20) † ∗ { − } Then,thestates(15)canberepresentedas 3. Semi-classicalfeatures ψ (τ;x)= Z,τ =D(Z,τ) 0,τ . (21) Z | i | i LetuscalculatesomemeansanddispersionsintheCS.To Wewillcallthestates(15)or(21)thecoherentstates(CS)in this end, we use relations between the operators xˆ and pˆ = thecaseunderconsideration. i∂ ,andthecreationandannihilationoperatorsAˆ (τ)and x † − 4 Aˆ(τ),whichfollowfrom(5)and(8), whereV x1 isapotentialwhichcorrespondseithertoadis- creteortoacontinuousspectrum. Usingdimensionlessvari- xˆ= 1 (f g)(Aˆ ϕ )+(f g )(Aˆ ϕ) , ablesxan(cid:0)dτ(cid:1)givenby(2),weobtain † ∗ ∗ ∗ √2 − − − − ∂Ψ 2ml2 1 h i i =HˆΨ, Hˆ = ∂2+U(x), U(x)= V (lx). pˆ=i (f +g)(Aˆ+ ϕ ) (f +g )(Aˆ ϕ) . (24) ∂τ − x ~2 ∗ ∗ ∗ √2 − − − (31) h i Let us suppose that we are able to construct an operator Then Aˆ(τ)-integralofmotionthatobeystheconditions def x = hZ,τ|xˆ|Z,τi=x(τ) [Sˆ,Aˆ(τ)]=0, Sˆ=i ∂ Hˆ, [Aˆ(τ),Aˆ+(τ)]=1. 1 ∂τ − = Z(f g )+Z (f g) 2bτ2 , (32) ∗ ∗ ∗ √2 − − − pd=ef (cid:2)Z,τ pˆZ,τ =p(τ)= p0 √2bτ(cid:3). (25) Then,wedefinethevacuumstate|0,τifortheoperatorAˆ(τ) h | | i 2 − byequation(19),theunitarydisplacementoperatorD(Z,τ) given by eq. (20), and finally coherent states D(Z,τ) by Letusintroducethedeviationoperators∆xand∆p, equation(21). Westressthatsuchaconstructionisbasedonthepossibility ∆x=xˆ x(τ)= tofindacompletediscretesetofsolutionsoftheSchro¨dinger − 1 equation with a given potential. Such a possibility naively (f g) Aˆ+ Z +(f g ) Aˆ Z , ∗ ∗ ∗ followsfromthe existence of a unitaryevolutionoperatorin √2 − − − − h (cid:16) (cid:17) (cid:16) (cid:17)i thecaseunderconsiderationandfromtheexistenceofadis- ∆p=pˆ p(τ)= − cretecompletebasisinthecorrespondingHilbertspace(then i (f +g) Aˆ+ Z (f +g ) Aˆ Z , (26) vectorsfrom such a basis can be chosen as initial states and ∗ ∗ ∗ √2 − − − developedthenintoacompletesetofsolutionsbytheevolu- h (cid:16) (cid:17) (cid:16) (cid:17)i tionoperator). However,weknowthatthedefinitiondomain andthevariances oftheHamiltonianasaruledoesnotcoincidewiththeHilbert space,thisisasourceofnumerousparadoxes(see[17])and, 1 σ =(∆x)2, σ =(∆p)2, σ = (∆x∆p+∆p∆x). inparticular,cancreatedifficultieswiththerealizationofthe 1 2 3 2 describedaboveprogram. (27) For any quadratic potential U(x) operators Aˆ(τ) and Thelatterquantitiescanbeeasilycalculated: Aˆ+(τ) are expressed by a linear canonical transformation withthecreationandannihilationoperatorsa andagivenby † 1 1 i (5). Coefficientfunctionsinsucha canonicaltransformation σ = f g 2, σ = f +g 2, σ = (gf g f). 1 2| − | 2 2| | 3 2 ∗− ∗ obeyordinarydifferentialequationsofsecondorder,[18].For (28) moregeneralpotentialsonehastoelaboratespecificmethods for solving the operator equations (32). In any case, in the One can see that the variances do not depend on Z, but de- approachunderconsideration,wearenotrestrictedbythede- pend on the complex numbers c and c according to (11). mandthatthesystemhastohaveadiscretespectrum. 1 2 Choosing the numbers c and c one can provide any given 1 2 (atτ =0)valueforσ orσ . Itfollowsfrom(28): 1 2 III. CSFORCONSERVATIVESYSTEMSWITH J =σ σ σ2 =1/4. (29) CONTINUOUSSPECTRA.ANALTERNATIVE 1 2− 3 CONSTRUCTION ThequantityJ doesnotdependontime, itisminimalinthe CS. A. Pseudo-action&anglevariables One ought to mention that for α = 0 which correspond to the free particle case, the CS (15) coincide with the ones We consider again the motion of a particle of mass m on constructedinthework[16]. theline,withphasespaceconjugatevariables(q,p),andsub- mitted to a potential V(q). Suppose it conservative. For a givenunboundedmotionits Hamiltonianfunctionisfixed to B. CSforgeneralpotentials acertainvalueEoftheenergy: p2 H(q,p)= +V(q)=E. (33) Lettheone-dimensionalSchro¨dingerequationhaveamore 2m generalthan(1)form Solvingthisforthemomentumvariablep,assumingapositive velocity,leadsto ∂Ψ ~2∂2 i~ =HˆΨ, Hˆ = x1 +V x1 , (30) p=p(q,E)=√2m E V(q), (34) ∂t − 2m − (cid:0) (cid:1) p 5 supposingno restriction on q, e.g. E V(q) > 0 for all q. B. Pseudo-action-anglecoherentstates − Fromp = mdq/dtwederivetheexpressionofthetimeasa functionof(q,p),throughV andfromE =E(q,p): Let be a complex Hilbert space with distributional or- m dq thonormHalbasis ψE , 0 E <EM , dt= {| i ≤ } r2 E−V(q) ⇒ E˜M t t0 = mp q dq′ . (35) hψE|ψE′i=δ(E −E′), Z0 dE˜|ψEihψE|=1H. (41) − 2 E V(q ) r Zq0 − ′ Thepseudo-action-anglephasespacefortheunboundedmo- We then introducea “pseudo-actpion”variable, dependingon tion with measured energies 0 E < E is the set X = (q,p)throughtheenergyonly,J=J(E),withderivativesub- (J,γ), J J, γ R . Le≤t (pE(J))Mbe the continuous mittedtothecondition { ∈ R ∈ } setofprobabilitydistributionsassociatedwiththeseenergies. dJ Onethenconstructsthefamilyofstates in forthe consid- J′(E)= >0. (36) H dE eredmotionasthefollowingcontinuousmapfromX into : H ThusthemapE J(E)isone-to-oneandE canbeconsid- eredaswellasa7→functionofJ: E = E(J). Wenowconsider X (J,γ) J,γ = ∋ 7→| i themap(q,p) (J,t)withJacobianmatrix E˜ 1 M mp − V′2(qJ)′p(E7→m2)VRq′q0(q()E−Vdq(′q′3/2 −p2q21mJ′R(Eqq0)(Emp−Vdq(′q′3/2! , wherepthNe(cJh)oiZc0e ofdthE˜eprepaEl(fJu)nec−tioiαnEEγ|ψEiα∈EHis,left to(4u2s) (37) 7→ in order to comply with some reasonable physical criteria. withdeterminantequaltoJ(E) (F(J)) 1. Therefore,the ′ − A naturalchoice which guarantiestime evolutionstability is ≡ map αE =ςE˜,whereς issomeconstant. def Thecoherentstates J,γ areunitvector: J,γ J,γ = 1 (q,p) (J,γ), γ = F(J(E(q,p))t(q,p), (38) | i h | i 7→ andresolvetheunityoperatorin withrespecttothemeasure H hasJacobianequalto1,i.e. iscanonical. Newvariableswill “intheBohrsense”µ (dJdγ)onthephasespaceX : B becalled“pseudo-action–angle”variablesbyanalogywiththe usualaction-anglevariableusedforboundedone-dimensional def µ (dJdγ) (J) J,γ J,γ = B motions. Notetheroleplayedbyγ asakindofintrinsictime N | ih | ZX forthe system, like theanglevariabledoesforboundedmo- T tions. dJ˜ (J) lim 1 2 dγ J,γ J,γ =1 . (43) Suppose that measurements on the considered one- ZRJ N T→∞T Z−T2 | ih | H dimensionalsystemwithclassicalenergyE =p2/2m+V(q) This property allows a coherent state quantization of classi- yieldthecontinuousspectralvaluesfortheenergyobservable (uptoaconstantshift),denotedbyE: calobservablesf(J,γ)whichis energycompatiblewithour construction of the posterior distribution J pE(J) in the 0 E <EM, EM finiteor (39) followingsense: 7→ ≤ ∞ Thedifferencebetweenthetwo physicalquantities, classical def E andquantumE,liesintheprobabilisticnatureofthemea- f(J,γ) µ (dJdγ) (J)f(J,γ) J,γ J,γ = A B f 7→ N | ih | surement of the latter, involving Hilbertian quantum states. ZX (44) Let ε be a constant characteristic energy of the considered system (e.g. h/τ, where τ is a characteristic time). We put Indeed,itistriviallyverifiedthatthequantumHamiltonianis E˜ = E/ε. We definea correspondingsequenceof probabil- whatweexpect: ity distributions J pE(J), dJ˜pE(J) = 1, supposing a(prior)uniformdi7→stributiononRtJherange ofthepseudo- actionvariableJ. FurthermoreR,weimposeRpEJ(J)toobeythe AH = µB(dJdγ)N(J)E(J)|J,γihJ,γ|= ZX twoconditions: E˜ M 0< (J)d=ef E˜M dE˜pE(J)< , Z0 dE˜E|ψEihψE|, N ∞ Z0 that is, the states ψE are eigendistributionsof the quantum E = dJ˜E(J)pE(J), (40) Hamiltonian A |withieigenvalues the elements of the spec- H ZRJ trum(39). where J˜ = J/h, h being the Plank constant. The finiteness Thequantizationofanyfunctionf(J)ofthesinglepseudo- condition allows to consider the map E pE(J)/ (J) as actionvariableyieldsthediagonaloperator: 7→ N aprobabilisticmodelreferringtothecontinuousenergydata, E˜ whichmightviewedinthepresentcontextasapriordistribu- M tion. f(J)7→Af = dE˜hfiE|ψEihψE|. (45) Z0 6 where and so J = R for the range of J. For the probability dis- R tribution J pE(J) we choose the normal law centered at f E = dJ˜f(J)pE(J). (46) ηlnE˜: 7→ h i ZRJ ǫ 1/2 Alternatively,thequantizationofanyfunctionf(γ)ofthesin- pE(J)= π e−ǫ(J˜−ηlnE˜)2. (52) gleanglevariableonlyyieldstheoperator: (cid:16) (cid:17) Then the three fundamental requirements are (almost) ful- f(γ) Af = E˜M dE˜ E˜M′ dE˜′[Af]EE′ ψE ψE′ , (47) filled: 7→ Z0 Z0 | ih | (i) itisprobabilistic: RdJ˜pE(J)=1, wherethematrixelements[Af]EE′ areformallygivenby: (ii) the average valueRof the classical energy is the ob- ≈ servedvalueatlargeǫorη: [Af]EE′ = dJ˜ pE(J)pE′(J) Tlim T1 T2T dγe−i(αE−αE′)γf(γ). ZRdJ˜E(J)pE(J)=e4ǫ1η2 E , (53) ZRJ p →∞ Z−2 (48) (iii) positivenessandfinitenessconditionsarefulfilled: In particular the CS quantization procedure provides, for a E˜ gcoivrerenspchoonidciengoftothaenfyurnecatliobnouEnd7→edαoEr,saemsei-lfb-oaudnjodiendtofupnecratitoonr 0< N(J)= M dE˜pE(J)= η1 e(cid:16)Jη˜+4ǫ1η2(cid:17) <∞. (54) Z0 f(γ). Forinstance,thequantizationoftheelementaryFourier exponentialf(γ) = ei̟γ givesaboundedoperatorwithma- Note the average value of J : RdJ˜JpE(J) = hηlnE˜. trixelements(intheconsideredenergyrange): CoherentstateswithαE =ςE˜ readas: R [Aei̟γ]EE′ =π dJ˜ pE(J)pE′(J) δ(αE′ −αE +̟). X =R×R7→ (cid:20)ZRJ p (cid:21) (49) J,γ = 1 ∞dE˜ pE(J)e−iςE˜γ ψE , (55) | i (J) | i∈H N Z0 p The quantization of the original canonical position and mo- Theyare,bpyconstruction,unitvectors,aretemporalevolution mentum variables (q,p) is carried out through the functions stableforlargeǫorη,andsolvetheidentity: q = q(J,γ), p = p(J,γ)obtainedthroughtheinverseofthe map(38). Ityieldssymmetricpositionandmomentumoper- ators. Self-adjointnessisnotguaranteed,dependingornoton J,γ J,γ =1, µ (dJdγ) (J) J,γ J,γ =1 , B the choice of the choice of distribution J pE(J) and the h | i ZX N | ih | H functionE αE. Itispossiblethatregular7→izationtechniques e−iA˜Ht J,γ = J,γ+t/ς , (56) 7→ | i | i areneededhere. Semi-classical aspects of such coherent states and related withA˜ =A /h. Theyoverlapas H H quantization are suitably caught through the so-called lower ssfyta7→mtebsfoˇflˇsi(sJot,fhγeo)pB=eerraehtJzoi,rnsγ-l|AiAkffe,|iJin.,eteγ.gitr.haAelitsrraamnmsefaoantrtmveraloufesfaicnt,ctohheemreanpt hJ′,γ′|J,+γ∞i=dE˜pe−Niς(E˜J(1)γN−γ(′J)′e)−eǫ−(cid:16)J˜4ǫ+(2J˜J˜−′−J˜η′)l2n(cid:16)E˜(cid:17)πǫ2(cid:17).1/2 (57) × fˇ(J,γ)= µ (dJ dγ ) (J)f(J,γ ) J,γ J,γ 2, Z0 B ′ ′ ′ ′ ′ ′ ′ N |h | i| ZX This indicates a bell-shaped localization in pseudo-action (50) variableatlargeJ˜oratlargeǫ: whichgivesatoncesomeinsightonthedomainpropertiesof Af andonthesemi-classicalbehaviorofthecoherentstates. |hJ′,γ′|J,γi|≤ (J1) (J )e−4ǫ(J˜−J˜′)2 πǫ 1/2 N N ′ (cid:16) (cid:17) +p∞dE˜e−ǫ(cid:16)J˜+2J˜′−ηlnE˜(cid:17)2. (58) C. Anexplorationwithnormallaw × Z0 A similar good localization in angle requires a study of Let us choose the following function for the classical the behavior at large k of the following Fourier transform: pseudo-action: 0+∞dxe−ikxe−µ(lnx−λ)2, with x = E˜, k = ς(γ − γ′), J˜(E)=ηlnE˜, E˜ =eJ˜/η, η >0,E˜ >0, (51) µ=ǫη2,andλ= J˜+J˜′. ⇔ R 2η 7 AninterestingobservationconcernstheCSquantizationof Probability density anypoweroftheclassicalenergy: 4 4.5 A = µ (dJdγ) (J)(E(J))λ J,γ J,γ 3.5 Hλ ZX B N | ih | 4 =e4λǫη22 +∞dE˜(E)λ ψE ψE , 3.5 3 Z0 | ih | 3 2.5 which means that AHλ = eλ4(λǫη−21) (AH)λ. The quantization 2.5 2 oftheFourierexponentialei̟γ givestheboundedoperator 2 1.5 1.5 Aei̟γ = πς Zsu+p∞(0,̟/ς)e−ǫ4η(cid:16)ln(cid:16)E˜−̟E˜/ς(cid:17)(cid:17)2|ψEihψE−̟/ς|. 0.15 1 (59) 0 0.5 5 −5 We might be able to deduce from this formula the quan- 0 0 tization of the variable γ by the formal trick A = γ −5 5 i∂/∂̟A . γ’ − ei̟γ|̟=0 J’ D. Probabilitydistributionsonphaseorotherspaces FIG.2. Calculatedphasespaceprobabilitydensity(Eq. IIID)with J = γ = 0, ς = ǫ = η = 1 and zoom in the range J′ : 5 InFigure2areshowntwo-dimensionalpicturesoftheprob- 5, γ′: 5 5. − ÷ − ÷ abilitydensity (J) J,γ J,γ 2with ′ ′ N |h | i| (J)= E˜M dE˜pE(J)= 1e(cid:16)Jη˜+4ǫ1η2(cid:17) (60) TofhtehsetufodlyloowfitnhgisFeoxuprrieersstiroannsafmoromu:ntstoanalyzethebehavior N η Z0 and, F(x)= 1 +∞due ixuuαe δ(lnu)2e iβu2, (63) − − − J′,γ′ J,γ = 1 e−4ǫ(J˜−J˜′)2 ǫ 1/2 √2π Z0 h | i N(J)N(J′) (cid:16)π(cid:17) withα=2ǫηJ˜+1/2,β =ςγ,andδ =2ǫη2. Fromtheupper +∞dE˜pe−iςE˜(γ−γ′)e−ǫ(cid:16)J˜+2J˜′−ηlnE˜(cid:17)2. (61) bound × We fix theZp0arameters (J,γ) and sweep (J′,γ′) in the R |F(x)|≤ 2δ e(α+4δ1)2 , (64) R space. Parameters ǫ = η = ς = J = 1 are chosen fo×r r we see that it can be made arbitrarily small at large η. The an example. That gives a nice picture of the expected good localizationofthesestatesinthephasespaceplane(J,γ ). map ′ ′ Let us explore another representation, picking = L2(R) as a companion Hilbert space and as coHntinu- x xJ,γ 2 = ǫη2 e−ǫ(J˜+2ǫ1η)2 ous basis the eigen-distributions of the operator d2/dx2 7→|h | i| π3 [17]: to each eigenvalue E˜ correspond the sy−mmetric +∞duu2ǫηJ˜+1/2e 2ǫη2(lnu)2e i(ςγu2+xu) 2 (65) ψE+(x) = √4π1√E˜ cos(√E˜x)andtheantisymmetricψE−(x) = ×(cid:12)(cid:12)Z0 − − (cid:12)(cid:12) i sin(√E˜x) (the phase i is chosenfor convenience). define(cid:12)saprobabilitydistributionontherealline. As(cid:12)shownin √4−π√E˜ − Figur(cid:12)e3,itgivesaninsightintothelocalizationofth(cid:12)ecoher- A degeneracyof order2 is presenthere and shouldbe taken entstatesviewedaswavepacketsonthelinex Randtheir into account by including a factor 2 in the spectral measure ∈ spreadinginfunctionoftherescaled“time”γ. dE˜ ψE ψE appearingin(41). Weshouldcautionagainstthe | ih | riskofconfusionwiththepositionrepresentation:thesymbol xshouldnotberegardedingeneralasanelementofthespec- IV. CONCLUSION trumofthepositionoperatorA ,andinstead,weshouldview q thestates(IIIC)asspecialwavepacketsinrepresentation“x”. We have presented two methods for constructing families Wefindfrom(IIIC)(afterthechangeu=√E˜), of coherentstates adapted to the quantumdescription of un- xJ,γ = ǫη2 e−2ǫ(J˜+2ǫ1η)2 boTunhdeefidrmstoatpiopnrosaocnhtfhoellroewalsltihnee.Malkin-Mankotreatmentof h | i π3 r quadraticHamiltoniansandismoreofalgebraicnature,rest- + ∞duu2ǫηJ˜+1/2e 2ǫη2(lnu)2e i(ςγu2+ux), (62) inguponcanonicalcommutationrulesandinvarianceprinci- − − ×Z0 ples. Wehaveconsideredtheexampleofaparticlesubmitted 8 a broad range of possibilities in choosing the three main in- 0.07 gredientsoftheCSconstruction: thefunctionE J(E)on 7→ aclassicallevel,and,onaquantumlevel,theprobabilitydis- tributions J pE(J) and the frequencyfunction E αE. 7→ 7→ Of course, the selection should be ruled by the requirement γ = 0 ofmanageablequantumoperatorscombinedwith acceptable semi-classicalproperties. In a next publication we will examine in a more compre- PD 0.035 γ = −2 hensivewaythefollowingpoints: (i) generalizationofthefirstmethodtoarbitrarypotentials, γ = −4 (ii) algebraic and domain properties of position and mo- mentumoperatorsyieldedbythesecondapproach, 0 (iii) detailedcomparisonofthetwoapproacheswithregard −10 −5 0 5 10 15 20 25 30 x tolocalizationpropertiesinphasespaceandinconfig- urationspace. FIG.3. Calculatedprobabilitydensities(Eq. IIID)ontherealline x RwithJ=0,ς =ǫ/2=η=1,forthevaluesγ = 4, 2, 0. ∈ − − ACKNOWLEDGEMENT Onecannoticethespreadingofthewavepacket. TheworkofVGBwaspartiallysupportedbyFAPESP,the to a constant force (i.e. linear potential) and obtained fami- FederalTargetedProgram”Scientificandscientific-pedagog- liesofstatesfulfillingsemi-classicalexigences.Wehavealso ical personnel of innovative Russia”, contract No P789 and givensomeinsightaboutgeneralizationtoarbitrarypotentials. RussiaPresidentgrantSS-1694.2012.2.GitmanthankCNPq Thesecondapproachisofprobabilisticnature. Itprovides andFAPESPforpermanentsupport. [1] Special issue on coherent states: mathematical and physical [11] F.A.Berezin, Generalconcept ofquantization, Comm.Math. aspectsS.T.Ali, J.-P.Antoine, F.BagarelloandJ.-P.Gazeau Phys.,40,153(1975). (Ed.),J.Phys.A,toappear(2012). [12] J.R. Klauder, Quantization Without Quantization, Ann. Phys. [2] R.Glauber,Phys.Rev.Lett.1084-(1963);Phys.Rev.1302529- (NY)237,147-160(1995). (1963); J.R.Klauder, E.C.Sudarshan, Fundamentals of Quan- [13] J.R.Klauder. BeyondConventionalQuantization. Cambridge tumOptics,(Benjamin,1968) UniversityPress,Cambridge,2000. [3] I.A.Malkin,V.I.Man’ko,DynamicalSymmetriesandCoherent [14] M. Hongoh, Coherent states associated with the continuous States of Quantum Systems, (Nauka, Moscow, 1979) pp.320; spectrumofnoncompactgroups,J.Math.Phys.,18,2081-2085 SovietPhys.JETP28(1969)527 (1977). [4] R.Gilmore,Geometryofsymmetrizedstates, Ann.Phys.(NY) [15] J.BenGelounandJ.R.Klauder,Ladderoperatorsandcoher- 74391-463(1972). entstatesforcontinuousspectra,J.Phys.A:Math.Theor.,42, [5] A. M. Perelomov, Coherent states for arbitrary Lie groups, 375209(2009). Commun.Math.Phys.26222-236(1972). [16] J. Guerrero, F.F. Luˆpez-Ruiz, V. Aldaya and F. Cossio, Har- [6] A.M.Perelomov,GeneralizedCoherentStatesandTheirAppli- monicstatesforthefreeparticle, J.Phys.A44445307, 1–26 cations,Springer-Verlag,1986. (2011). [7] S.T. Ali, J-P. Antoine, and J-P. Gazeau, Coherent States, [17] D.M. Gitman, I.V. Tyutin, B.L. Voronov, Self-adjoint Exten- Wavelets and Their Generalizations, Springer-Verlag, New sionsinQuantumMechanics.Generaltheoryandapplications York,Berlin,Heidelberg,2000. toSchroedingerandDiracequationswithsingularpotentials, [8] J.P. Gazeau and J. Klauder, Coherent States for Systems with Birkha¨userPublisher(2012)inpress. DiscreteandContinuousSpectrum,J.Phys.A:Math.Gen.,32, [18] V.G. Bagrov and D.M. Gitman, Exact Solutions of Relativis- 123-132(1999). ticWaveEquations,Math.itsAppl.,Sov.ser.,Vol39(Kluwer, [9] S.T. Ali, B. Heller and J.P. Gazeau, Coherent states and Dordrecht1990) Bayesian duality, J. Phys. A: Math. Theor., 41, 365302 1-22 [19] J.P.GazeauandR.Kanamoto,Action-anglecoherentstatesand (2008). relatedquantization,arXiv:1110.6678v1[quant-ph] [10] J.P.Gazeau,CoherentStatesinQuantumPhysics,Wiley-VCH, Berlin,2009.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.