Coherent backscattering oflightfrom ultracold andopticallydense atomicensembles I.M. Sokolov1,2 and D.V. Kupriyanov1 1Department of Theoretical Physics, StatePolytechnicUniversity, 195251, St.-Petersburg, Russia 2InstituteforAnalyticalInstrumentation, RussianAcademyofSciences, 198103, St.-Petersburg, Russia C.I. Sukenik and M.D. Havey Old Dominion University, Department of Physics, Norfolk, Virginia 23529 Wereviewexperimentalandtheoreticalstudiesofcoherentbackscatteringofnearresonantradiationfroman 7 1 ultracoldatomicgasintheweaklocalizationregime. Recentaccomplishmentsinhighresolutionspectroscopy 0 ofatomicensemblesbasedonthecoherentbackscatteringprocessarediscussed. Wealsoproposeseveralnew 2 experimentalschemesfortime-dependentspectroscopyasappliedtomultiplescatteringintheregimeofweak localization. n a J I. INTRODUCTION 4 2 Thestudyofopticalphenomenaisanancientquantitativescientificdiscipline,withhistoricalrootsextendingmorethantwo ] millenniaintothepast. Itwasthereforeremarkablethat, asrecentlyastwentyyearsago, in1984,a completelynewclassical h optics effect was reported for the first time in the scientific literature. It was then that Ishimaru and Kuga [1] reported the p observationof coherentbackscattering(CBS) of light froma disorderedscattering sample. This reportwas quicklyfollowed - m by experimental and theoretical work [2, 3] that included explanation of the effect based on the classical physical optics of electromagneticwavescatteringinadisorderedmedium. Inthecoherentbackscatteringeffect,thereisanenhancementinthe o t intensityoflightscatteredinthenearlybackwardsdirectionfromaliquidoropticallydisorderedsolid. Theenhancementmay a be aslargeasa factorof two overthe usuallyexpectedaverageincoherentscatteredlightintensity. Further,the enhancement . s effect is concentrated in a cone-shaped interference profile typically a few milliradians in angular width. The fundamental c mechanism developed was that electromagnetic wave scattering along reciprocal, or time-reversed, multiple scattering paths i s preserves the relative phase. The result of phase preservation, after configurationaveraging, along the reciprocal paths leads y directlytopredictionofthemainfeaturesofthecoherentbackscatteringconeforsemiinfinitedisorderedscatteringsamples. h p Thebasiccoherentbackscatteringeffectisremarkablyrobust,andcanbeobservedinwavescatteringfromawiderangeof [ common natural and manmade materials [4–6]. In the optical regime, the quantitative features are also quite sensitive to the polarizationoftheincidentanddetectedwaves. TheCBSeffectisnotrestrictedtoscatteringofelectromagneticwaves,buthas 1 been observed, for example, in acoustics, ultrasonics, and in propagationof waves in the solid earth. For each of these areas v there has been a significant range of fundamentalstudies and developmentof practicalapplications [4, 5], particularly in the 4 1 areasofimagingordetectionofembeddedobjectswithindiffusivemedia. Anotherveryimportantassociatedresearchareais 7 connectedtolasingandwaveamplificationinrandommediahavinggain[7]. 6 It is our purpose in this review to consider the more specialized and more recent developments associated with coherent 0 backscatteringoflightinultracoldatomicgaseoussamples.SuchsampleshavecharacteristicallyveryhighQandstrongoptical . 1 resonances,makingthemuniqueincomparisontoscatteringfromclassicalcondensedorliquidsamples[8]. Further,forscatter- 0 ingfromsingleatoms,thevariedinfluencesofopticalandatomicpolarization,andtheresponsesofatomicsystemstoapplied 7 staticanddynamicfieldsarewellknowninthelinearresponseregime[9].Nonlinearresponsestoappliedelectromagneticfields 1 arealsowellstudied[10,11]. Thesecharacteristicsmaketheoreticalandexperimentalstudyofmesoscopicwavescatteringin : v atomicmediaanattractiveandaccessibleareaofresearch. i Mesoscaleprocessesindenseandcoldatomicvaporscanalsodisplayaconstellationoffundamentalandpotentiallyimportant X phenomena. One of these, strong localization of light[4], is a dynamic research area in its own right. Strong localization of r lightistheopticalanalogofAndersonlocalizationofelectrons[12],inwhichenergytransportthroughamediumissuppressed a byinterferencesmediatedbymultiplescatteringinaspatiallyrandommedium.Tworeportsofstronglocalizationincondensed systemshavebeenmadeintheliterature,oneintheopticalregime[13],andtheotherinthemicrowaveresponseofaquasi-one dimensional system [14]. Localization is expected to occur in the density range given by the Ioffe-Regel condition, kl < 1, wherekisthelocalwavevectorinthemediumandlthemeanfreepathforlightscattering. Inadiluteatomicvapor,themean freepathisl=1/ρσ,whereρistheatomdensity,andσ thelightscatteringcrosssection[4,8]. Lightlocalizationhasnotyet beenobservedinanatomicvapor,eventhoughthedensityandtemperatureregimeswhereitisexpectedtooccuraretechnically accessibleusingthetechniquesofultracoldatomicphysics[15]. Inadditiontotheintriguingpossibilityofstronglightlocalizationinanatomicgas,researchintootherlinearandnonlinear effectsinamultiplescatteringenvironmentisrelativelyundeveloped[16]. Therearealsopotentialtiestootherareasofmodern quantum optics research, including the developments of quantum memories in the form of polaritonic excitations [17, 18] in strongly scattering media. Manipulation of propagation and scattering in ultracold atomic gases, through application of electromagneticallyinducedtransparencyinvariousconfigurations[19–21],couldpotentiallyleadtocoherentcontrolofoptical 2 transport properties in such media. Similar techniques have been applied to nonlinear optical phenomena [22, 23] including four-wavemixing[24],nonlinearopticsatverylowlightlevels[25],andapplicationsofnonlinearopticswithsinglephotonsto quantuminformationprocessing[26]. Inthisreviewwefocusourdiscussiontonear-resonancemultiplelightscattering,intheweaklocalizationregime,inensem- blescomposedofultracoldatoms. Wereviewthevarioustheoreticalandexperimentalresultsinthisfield,withsomeemphasis onourtheoreticaldevelopment,butwithdueattentiontothemanyrecentexperimentalachievementsinthisareaofresearch.The main physicalobservableis the coherentbackscatteringcone, which is qualitativelycharacterizedby an overallenhancement andangularwidth.Wediscusstheinfluence,inthecoherentbackscatteringeffect,ofensemblesize,opticaldepth,hyperfineand Zeemanstructure,andspectraldetuningfromresonanceexcitation.Thefascinatingspatialvariationsintheangulardistribution ofbackscatteringlightproducedbyapplicationofexternalstaticmagneticfieldsofafewgaussarealsoreviewed. Adynamic area of theoreticalresearch, for whichthere are as yetonlya few experimentalresults, is the area of nonlinearopticaleffects incoherentbackscattering;wepresentanoverviewofthesestudiesaswell. Ofparticularinteresthereisthetimedevelopment oftheangulardistributionandspectralprofileofmultiplyscatterednear-resonanceradiation. Forobservationsofthetimede- velopmentof diffusely scattered light, experimentaland theoretical results show strong variations with light polarization and detuning. Inthebackscatteringdirection,thetheoreticalanalysisofthetimedevelopmentofthescatteredfluxrevealsavariety oftransienteffectsinthecoherentbackscatteringenhancement.Finally,weincludeinanappendixsomedetailsofthetheoretical developmentswhichwillbeofinteresttosomereaders. II. THEORETICALOVERVIEW A. Microscopicdescription Consideranatomicensembleconsistingofatomsseparatedontheaveragebyadistancelargerthanatypicalradiativewave- lengthλ. Letthisensemblescatterlowintensitylight,suchthattheinteractionprocesscanbedescribedproperlybyaperturba- tiontheoryapproach. ThenintheHeisenbergformalismtheoperatorforthepositivefrequencycomponentoftheelectricfield Eˆ(+)(r,t)atthepointrandatthemomentt,modifiedbytheprocessofmultiplescattering,canbeexpressedbythefollowing series Eˆ(+)(r,t) = Eˆ(+)(r,t) + Eˆ(+)(r,t) 0 a a X + ′Eˆ(+)(r,t) + ′Eˆ(+)(r,t) + ... ab abc ab abc X X Thisexpansion,writtenforthepositivefrequencycomponentoftheelectricfield,showshowthedifferentscatteringorders, startingfromsingleviadoubleandtriplescattering,uptothehigherorders,subsequentlycontributetotheoutgoingHeisenberg operator. Theindicesa,b,c,etc. enumeratetheatomsparticipatinginthescatteringprocess. Indoublescatteringa =b,butin 6 higherscatteringordersrecurrentscattering,inwhichsomeoftheindicescoincide,canoccur. Theexpansion(1)canbeprovedundertheassumptionthatatamicroscopicleveleachrandomlychosenandisolatedatomof theensemblescatterslightindependentlyfromitsenvironment. Thentheseriescanbegeneratedasanexpansionofevolution operatorsactingontheoriginal”non-dressed”operatorEˆ(+)(r,t)ignoringanyinterferenceininteractionsrelatingtodifferent 0 and well separated atoms. This makes possible independent evaluation of each scattering amplitude as well as the radiative correction of the excited state atomic Green function. In the case of weak interactions, when the incoming field does not noticeablymodifythedynamicsoftheatomicsubsystem,thefinaloperatorsofthepositive/negativefieldcomponentsEˆ(±)(r,t) preserve the canonical commutation relation between the non-perturbedoperators Eˆ(±)(r,t). Thus the transformation (1) is 0 unitary and the whole series reproducescorrectly the microscopic behavior of the Heisenberg field operator. This important propertyisbasedontheabsenceofanylossesoflightapartfromthescatteringchannel,see[27]. As a pedagogicalexample,which will be usedthroughoutourdiscussion, letus show howa doublescatteringterm can be 3 writteninthecaseofsuccessivescatteringonatom”one”firstandonatom”two”second 1 Eˆ(+)(r,t) = 12 r r r | − 2| 12 mX1,m′1mX2,m′2 Xν Xij 2π~ω 1/2 ω2 ω2 k 2 12 c2 c2 k,µ (cid:18) V (cid:19) X exp( iω t+ik r r +ik r +ikr ) 2 2 2 12 12 1 × − | − | × ek′ναˆν(mi′2m2)(ω12−k12v2)δi⊥j × αˆj(mµ′1m1)(ω−kv1)akµ (1) It is assumed here that, before interaction, the light subsystem is specified by the set of modes described by the wave vector k, frequency ω = ωk and the polarization vector ekµ. Then akµ is an annihilation operator of the mode in the Schro¨dinger representationand istherespectivequantizationvolume.Forlightscatteredfromatom”two”andpropagatingintoitsradiation zone, similar paramVeters are respectively defined as k′, ω′ and ek′ν. If atoms are moving in space with velocities v1 and v the input-outputtransformationsof the light frequency,as a result of successive quasi-elastic scattering events, is a direct 2 consequenceofthecombinedactionofRamanprocessesandtheDopplereffect. ω12 = ω − ωm′1m1 + (k12−k)v1 ω′ = ω2 =ω12 − ωm′2m2 + (k2−k12)v2 (2) ThelightscatteringisaccompaniedbyZeemantransitions m m′ and m m′ inthegroundstatesofthefirstand | 1i→| 1i | 2i→| 2i thesecondatoms.Theintermediateandoutputwavevectorsaregivenby ω r r ω r r k = 12 2− 1 2− 1 12 c r r ≈ c r r 2 1 2 1 | − | | − | ω r r ω r r k′ = k = 2 − 2 − 2 (3) 2 c r r ≈ c r r 2 2 | − | | − | wheretheobservationpointrtendstoinfinityandtheapproximatedexpressions,definedbythelastequationsandignoringall inelastic corrections, should be substituted in the Dopplerterms of (1). By r = r r we denotedthe relative distance 12 2 1 | − | betweenatom”one”andatom”two”whicharelocatedrespectivelyatspatialpointsr andr . Consideringthereciprocalscat- 1 2 teringpath,i.e.scatteringfromatom”two”firstandatom”one”seconditisonlynecessarytotransposetheindices1 2inthe ⇔ abovetransformations,andtheoutputfrequencywillobtainadifferentmagnitudeω . But,ascanbeverifiedstraightforwardly 1 forspecificscatteringchannelssuchastheforwardandbackwarddirections,thefollowingequalityissatisfied: ω′ =ω =ω . 2 1 Themostimportantcharacteristiccontributingto(1)isthescatteringtensor,whichcanbedefinedinoperatorformasfollows αˆ(m′m)(ω) = m′ m (dj)m′n(di)nm ji − | ih |~(ω ω ) + i~γ /2 nm n n − X m′ m α(m′m)(ω) (4) ≡ | ih | ji Hered andd arevectorcomponentsofthetransitiondipolemomentbetweenlower m , m′ andupper n states,ω isthe i j nm | i | i | i transitionfrequencyandγ isthenaturalrelaxationrateoftheupperstate. Aslongasγ hasapureradiativenaturethepartial n n transformationofthefieldoperatorineachscatteringevent,describedbytheamplitude(4),isunitary. Theδ⊥-symbolisdefinedas k k δ⊥ =δ 12i 12j (5) ij ij − k2 12 whichguaranteesthatthelightwavepropagatingbetweenthescatterersistransverse. Therearenoadditionalphysicalideasnecessarytorecoverthewholeseries(1). Othertermscontributingtothisexpansion, such as Eˆ(+)(r,t) fortriple scattering andthe higherorderterms, can be written similar to (1). For eachscattering sequence abc a,b,c,...thecorrespondingmultipleamplitudewillbeasubsequentproductofscatteringtensorsandthephotonGreenfunc- tionsinvacuum,thesebeingresponsibleforthelightpropagationbetweenthescatterers.Thustheentireseriescanberecovered byfollowingthesimplecombinatorialrulesformulatedinthebeginningofthissection. 4 B. Mesoscopicaveragingandmacroscopicdescription We restrictourdiscussionbyapplicationtotheexperimentsdirectedtowardsmeasurementofthe firstorderinterferenceor correlationpropertiesoflight,whicharedescribedbythefollowingcorrelationfunction D(E)(r,t;r′,t′) = Eˆ(−)(r′,t′)Eˆ(+)(r,t) (6) µν h ν µ i Heretheanglebracketsdenotestatisticalaveragingovertheinitialstateofatomsandlight.Inthecaseofanultracoldatomicgas thatisnotinaquantumdegeneratephase,thelocationofatomscanbevisualizedasthelocationofclassicalobjectsdistributed inacertainmacroscopicvolume.Thentherearethefollowingimportantprocessesgoverningtheaveragingprocedure. First, for a light ray propagating in any direction, there is a preferable coherent enhancementfor its forward propagation. This means that along any ray, for a short mesoscopic scale consisting of a large number of atoms, there is only a slight attenuation of the propagating wave. Such an attenuation comes from the events of incoherent scattering, which have small butnotnegligibleprobability. Then an importantmodificationshouldbe madefor the propagationofthe lightwave between anypairofneighboringatoms,seeexample(1),aswellasfortheincomingandoutgoingpartsofthelightpath. TheGreen’s functionresponsibleforthelightpropagationinavacuumshouldbereplacedbytheFourierimageoftheretarded-typeGreen’s functionresponsibleforthedispersionandintensityattenuationoftheforwardpropagatinglightinthebulkmedium, 1 1 δ⊥ exp[ik r ] D(R)(r ,r ,ω ) (7) ij r 12 12 → −~ ij 1 2 12 12 where ω is given by (2). The complex conjugateof Eq.(7) transformsits right-handside to the Fourier componentsof the 12 advanced-typeGreenfunction. In a homogeneousand isotropic medium, the Green’sfunctioncan be introducedby directmodificationof the exponential factorinthelefthandsideofEq.(7)throughabsorptionandrefractionindicesofthemedium.Butinaninhomogeneouspolarized atomicgasitbecomesaconsiderablymorecomplexproblem. Therefore,inanappendixwebrieflyreviewthepropertiesofthe retardedGreen’sfunctionandshowhowitcanbecalculatedinapplicationtotheproblemoflightpropagationthroughapolarized atomicensemble. Afteraveraging,theactuallightwaveinthesamplecanbevisualizedasasetofunknownzigzagpaths,whoseverticesconsist ofatomsscatteringthe lightfromthedirectionof forwardpropagation. Anyrandomlychosenpathcontainsa chainofatoms located at the vertices and their number is just associated with the scattering order. Each chain of atomic scatterers makes a partialcontributionto theformationoftheoutgoingwavesimilartohowitisdescribedbyexpressions(1)fortheHeisenberg operators. Theimportantdifferenceis that, as a resultofthe mesoscopicaveraging,the seriesconvergesrapidlyandonlythe multiplescatteringoftheloworderscontributesignificantlytotheformationofthecorrelationfunction(6). Secondly, it is remarkable that the coherence is not completely lost for scattering in the non-forward direction. For the light emerging from the sample in the backward direction the interference of multiple amplitudes for any selected chain of scattererssurvivesstatisticalaveraging. Thisisknownasthecoherentbackscattering(CBS)effect,whichiscloselyrelatedto weaklocalizationoflight. Comparingtheexpression(1)withasimilaronewrittenforthereciprocalEˆ(+)(r,t)term,theCBS 21 effectas well as the criteria of its observationcan be clearly seen. If scattered lightis detected at any randomangle, such as k′+k=0,theinterferencecontributionbecomesquitesensitivetotheatomslocations. Inasampleconsistingofmanyatoms 6 theinterference,beingaveragedoverallpossiblecombinationsofatomicpairs,willbenegligiblecomparingwithladder(non- interference)term. Butthiswouldnotbethecaseinobservationofthescatteringinthebackwardornear-backwarddirection, wherek′+k 0. WeakoscillationscausedbyatomicmotionorRamantypescatteringstillsurvive. Butthesealsobecome → negligibleinthecaseofelasticscatteringoncoldandslowlymovingatoms. C. Observablecharacteristicsincoherentbackscattering Normally the relevant quantity for discussing the scattering process is a differential cross-section, which is defined as the normalizedfluxofthescatteredlightemergingthesampleintheobservationdirection. Intermsofthecorrelationfunctionthe cross section is givenby expression(6) consideredat coincidentspatial and time arguments: r = r′, t = t′. In this section weillustratebycertainphysicalexamplesthatthespectrally-sensitiveandtime-dependentmeasurementsofthelightcorrelation function (6) provide us further informationthan the measurementof the cross-section only. We concentrate ourselveson the timedependenceofthecorrelationfunction,whichcorrespondstothefollowingobservationschemes. First, the excitationof theensemblecanbe initiatedbya coherentlightpulse. Inthiscase theoriginalcorrelationfunction willbefactorizedintheproduct (E)(r,t;r′,t′) = (−)(r′,t′) (+)(r,t) (8) Dµν Eν Eµ 5 where (+)(r,t)isacoherentfieldcomponentofthelaserlightpulse.Thenthescatteredresponse(6),whoseshapeisadistorted µ E copyoftheoriginalpulseprofile,canprovideuswithcomparativeinformationabouthowthisresponseissensitivetotheeffects ofsingleandhigherordersofthemultiplescattering.Theappropriateanalysisofthescatteredpulsecanbemadebythemethods oftime-dependentspectroscopy. Second,atomicmotion,whichalwaysexistsinarealisticsample,leadstoarandomlow-frequencymodulationofthescatter- ingtermsbecauseoftheDopplereffect. Asclearlyseenintheexampleofdoublescattering(1),suchamodulationisdescribed byvelocitiesv andv consideredasstochasticparametersinthefrequencytransformation(2). Thentheprobeofthesample 1 2 withamonochromaticcoherentwaveoffrequencyωwillbemodifiedinresponseasanon-monochromaticscatteredwavewith the output correlation function (6) decaying as a function of t t′. Taken at coincident spatial arguments r = r′ and for a − point-likephotodetector,thecorrelationfunctioncanbeexpressedintheform c D(E)(r,t;r,t′) = e−iωRτI (τ) (9) 2π µν µν whereω denotesthecarrierfrequencyofthescatteredlight,whichingeneralcanbeshiftedfromtheinputfrequencyωbecause R of the inelastic Raman effect. The outgoingintensityin any selected polarizationchannelis describedby the Pointingvector I k′/k′(forµ=ν)andisgivenbythecorrelationfunctionconsideredatcoincidenttimest=t′.Thedependenceonτ =t′ t µν − intherighthandsidecomesfromthespectraldistributionofthescatteredmodes.TheFouriertransform ∞ I(ω)= dτei(ω−ωR)τI (τ) (10) µµ µ=1,2 Z−∞ X givesusthespectraldistributionofthescatteredintensityinthevicinityoftheRamanfrequency.Aswesee,theknowledgeofthe spectraldistribution(10)providesuswithquiteimportantinformationaboutthevelocitydistributionandpossiblecorrelations existing in an atomic ensemble confined with a magneto-optic trap. The corresponding spectral selection can be done by heterodynedetectionandthelightbeatingspectroscopymethod[28]. Weconcludethetheoreticaloverviewbythefollowingremark. Ifanatomicsamplewereexcitedwithmonochromaticmode andtheeffectofatomicmotionwereneglected,thenallthecharacteristicsofthescatteredlightwouldbecompletelydescribed insidethecross-sectionformalism. Thespectrallysensitiveandtime-dependentanalysisgivesusmoreaccesstotheimportant physicalinformationconcerningthelightpropagationandinternaldynamicsoftheatomicgasinthemagnetooptictrap. III. EXPERIMENTALOVERVIEW A. Apparatus Inthissectionwegiveabroadoverviewofanexperimentalapparatususedtomeasurelightscatteringinanensembleofatoms consistingofanultracold,dilutegasofatomic85Rbconfinedinamagneto-opticaltrap(MOT).Thedescriptionhererefersin particulartothatofRef. [27];thephysicsoftheprocessissuchthatthedescribedapproachisquitegeneral.Inthepresentcase, the MOT operateson the 5s2S F = 3 5p2P F = 4 hyperfinetransition and producesa nearly Gaussian cloud of 1/2 0 3/2 → approximately108atomsatatemperature 100µK.Thepeakdensityatthecenterofthetrapis 3x1010cm−3. TheGaussian ∼ ∼ radiusofthesampleisr 1mm,determinedbyfluorescenceimaging.Measurementofthespectralvariationofthetransmitted 0 ∼ lightgivesa peakopticaldepth,throughthecenterofthetrap, ofb =6 -8. Fora Gaussianatomdistributionin thetrap, the 0 weak-fieldopticaldepth,onresonanceandthroughthecenterofthetrap,isgivenbyb = √2πn σ r , wheren isthepeak 0 0 0 0 0 trapdensityandσ istheresonancecrosssection,seesectionIVA. 0 Note thatfor an isolated transitionthe near resonancecrosssection for lightscatteringσ and the respectiveopticaldepthb varywithprobefrequencysuchthat b b= 0 , (1) 1+(2∆/γ)2 where∆=ω ω ,andω istheprobefrequency,whileω is(inthepresentcase)theF =3 F =4resonancefrequency. L 0 L 0 0 − → Separate lasers are used to provide the trapping and probe light. In both cases, a continuous wave diode laser having a bandwidth 1MHzisused.Afulldescriptionofthemaster-slavelasersystemandvacuumhardwarecanbefoundin[27]. The ∼ laserintensityforboththetrappingandprobelightismodulatedwithanacousto-opticmodulator(AOM)-usedasanoptical switch-whichgeneratesnearlyrectangularpulsesofadjustableduration. The20dBresponseislimitedbytheAOMtoabout 60ns. Thelaserlightissubsequentlycoupledintoasinglemodefiberopticpatchcord.ThecombinationoftheAOMswitching andfibercouplingresultsinan 65dBattenuationofthelaserlightwhenswitchedoff. Aweakprobelaseristunedinarange ∼ of severalγ aroundthe trappingtransition. The probelaser is linearly polarized in the verticaldirection. The probebeam is directedintotheMOTasshowninFigure1. 6 Pump Laser LP BS WP MOT Field Lens Field Lens Chopper Lenses Display CCD Camera PMT Figure1: Aschematicdiagramofatypicalexperimentalarrangement. Showninthefigureisamagnetoopticaltrap(MOT),linearpolarizers (LP)whichselectthedetectedpolarizationchannels,abeamsplitter(BS),waveplates(WP)andaphotomultipliertube(PMT)todetectthe fluorescencesignalsfortimedependentmeasurements. Forcontinuouswavemeasurements,acharge-coupleddevice(CCD)cameraisused. Thegenericdisplayisamultichannelscalarfortimedependentmeasurements. Dependingontheexperimenttobeperformed,lightscatteredbytheatomsisdetectedeitherinthebackwarddirectionona liquidnitrogencooledcharge-coupleddevice(CCD)cameraorinadirectionatsomeotheranglerelativetotheincidentprobe beamusingaphotomultipliertube(PMT). B. CoherentBackscatteringMeasurements For measurements of the CBS cone, great care must be taken to suppress multiple and back reflections from optics in the detectionopticalpath. A majorsourceof unwantedback-scatteredlightisfromthe vacuumviewportsonthe MOT chamber. Windows are typically wedged and V-type anti-reflection (AR) coated for 780 nm on the probe laser entrance and exit ports andontheCCDcamera. TheARcoatingcharacteristicallyresultsinlessthan0.25%reflectivityat780nm. Additionally,the entranceportwindowcanbemountedonaultrahighvacuumbellows,allowingredirectionofunwantedreflectionsawayfrom thedetector. Afterexitingthefiber,theprobebeamwasexpandedandcollimatedbyabeamexpandertoa1/e2 diameterofabout8mm. Thepolarizationoftheresultingbeamwasselectedandthenthebeampassedthroughanonpolarizingandwedgedbeamsplitter thattransmitsapproximatelyhalfofthelaserpowertotheatomicsample. Thebackscatteredradiationisdirectedbythesame beam splitter to a field lens of 45 cm focal length, which condenses the light on the focal plane of the CCD camera. The diffractionlimitedspatialresolutionwasabout100µrad,whilethepolarizationanalyzingpowerisgreaterthan2000at780nm. Anyoneofthefourpolarizationchannelsthatarecustomarilystudiedincoherentbackscatteringcanbeselectedbyinsertingor removingthequarterwaveplate,andadjustingthelinearpolarizationanalyzerlocatedbeforethefieldlens. C. Time-DependentScatteringMeasurements Formeasurementsoftime-dependentlightscattering,lightsignalsaredetectedinadirectionawayfromthecoherentbeam. In a typical geometry, as shown in Figure 1, detection could be in a direction orthogonalto the probe laser propagationand polarizationdirections. For example, in Ref. [29], the lightwas collected in an effectivesolid angle of about0.35mrad, and refocussed to match the numerical aperture of a 400 µm multimode fiber. A linear polarization analyzer is placed between the MOT and the field lens to collect signals in orthogonal linear polarization channels, which we label as parallel ( ) and k perpendicular( ).Thedifferentialpolarizationresponseiscalibratedagainsttheknownlinearpolarizationdirectionoftheprobe ⊥ laser, and the measured20 % differencein polarizationsensitivity is used to correctthe signals taken in the two polarization channels.Thefiberoutputiscoupledthrougha780nm(5nmspectralwidth)interferencefiltertoanear-infraredsensitiveGaAs- cathodephotomultipliertube.ThePMToutputisamplifiedanddirectedtoadiscriminatorandmultichannelscalar,whichserves totime sortandaccumulatethedatainto5nsbins. Aprecisionpulsegeneratorisusedto controlthetimingoftheMOTand probelasersandfortriggeringthemultichannelscalar. Finally, we pointoutthatin thistype ofexperimentthe quantitativeresultsobtaineddependonthe relativediameterof the pumpingbeamandthesamplesize. Themaineffectisinthecontributionofsinglescatteringincomparisonwiththemultiple 7 1.10 y sit n e nt d i 1.05 e al c s 1.00 -3 -2 -1 0 1 2 3 angle (mrad) Figure2: Acoherentbackscatteringconeinthehelicitynon-preservingchannelassociatedwiththeF0 =3→F =4transitioninultracold atomic85Rb.ReprintofFig.3fromRef.[30];copyright1999bytheAmericanPhysicalSociety. Figure3:Dependenceontheinversesamplesizeofthefullwidthathalfmaximumofthecoherentbackscatteringconeforvariouspolarization channels.Thepeakopticaldepthisfixedatfiveforthesecalculations.CalculationsrefertoMonte-Carlosimulationsoflightscatteringonthe F0 =3→F =4resonancetransitioninultracoldatomic85Rb. scatteringsignals.Forapumpbeamlargeincomparisonwiththesamples,thereissignificantsinglescatteringfromtherelatively lowdensityperiphery,whileforanarrowprobebeamalargerportionofthesignalisduetoscatteringfromthedenserregions ofthesample. IV. CBSOBSERVATIONINANULTRACOLDATOMICGASINTHECONTINUOUSWAVEREGIME A. Theenhancementfactorandconeshape FirstobservationoftheCBS effectinanultracoldatomicgaswasreportedbyLabeyrieetal. inRef. [30]. InFigure2we reproducetheexperimentalgraphfromthatpapershowingtheconefeatureinthespatialprofileofthebackscatteredlight. The experimentwasdonewithatomsof85Rbandthescatteredlightwasobservedasaresponsetoaprobelasertunednear-resonance withtheclosedhyperfinetransitionF = 3 F = 4oftherubidiumD line. Therubidiumatomsformaconvenientsample 0 2 → formeasurementsandthedependenceofFigure2showsatypicalbehavioroftheCBSconefromanensembleoftheseatoms. ThemeasurementsshowninFigure2[30]weremadewithacircularpolarizedcwmonochromaticprobelaser,andthescattered lightwasdetectedinthechannelwithorthogonalhelicity,whichrelatestotheRayleighprocessforthesinglescatteringevent. The graph shown in Figure 2 gives us the following two importantparameters of the CBS process. The main informative 8 parameteristheso-calledenhancementfactor,whichisdefinedas I α=1+ C (1) I +I L S and shows the maximumenhancementof the backscatteredintensity. As was discussed in the theoreticaloverview,the addi- tionalintensityinthescatteredlightisaresultofconstructiveinterferencebetweendirectandreciprocalscatteringpathsandis describedbythecrosstermsI inthenumeratorof(1). ThedenominatorconsistsofthesinglescatteringcontributionI and C S non-interferingladdercontributionsI ofthesecondandhigherordersofmultiplescattering. Asisclearfromthestructureof L Eq. (1),forclassicaltypedipolescattererswithonlyRayleighscatteringchannels,theenhancementfactorαshouldapproach 2iftheopticaldepthb tendstoinfinity. Butitisalsoclearlyseenthatthisisnotthecasefortheexperimentalgraphshownin 0 Figure2. Aswas pointedoutlater in [31]the relativelysmallmagnitudeof theenhancementfactorisa directconsequenceofmulti- Zeeman-levelatomic structure. The physics of the process was reiterated within an analytical microscopic theory developed byMu¨ller,etal. [32]. Theenhancementofafactoroftwocanbeachievedonlyifdirectandreciprocalscatteringamplitudes describethetimereversalprocesses. Otherwise,forweakfieldscattering,theinterferencealwaysleadstoanenhancementless thanafactoroftwo.Recoveryofthefactoroftwointheenhancementfactorwasclearlydemonstratedinexperimentsonatomic Sr by Bidel, et al. [33]; in this case scattering is on a J = 0 J = 1 transition. The differencesbetween the Sr and Rb 0 → cases, including the role of nonzero atom velocity, was emphasized in Wilkowski, et al. [34]. Finally, we point out that the interferencesincoherentbackscatteringcanbedestructiveinspecialscatteringchannels. Belowwediscusssuchanexampleof destructivelyinterferingchannels,wheretheenhancementfactorislessthanunity. Thesecondimportantcharacteristicoftheconeshapeisitsangularwidth.Forsimpleevaluationandasapedagogicalmodel, onecanimagineasemi-infinitehomogeneousmediumandapplythediffusionapproachtoestimatethestatisticaldistributionof spatialseparationsofthefirstandlastscatterersinascatteringchain. Itisonlythelocationofthesescatterersthatdetermines thephaseoftheinterferenceinthecrossterm. Thisstraightforwardlyleadstothefollowingestimationoftheconeangle 1 θ′ (2) CBS ∼ kl 0 where l = 1/n σ is the free path for a resonancephoton migratingin the sample, n is the density of scatterers and σ is 0 0 0 0 0 theresonancecrosssection. Howevertheapplicationofthisestimationtorealexperimentswithatomicscatterersconfinedina MOTfailsandquantitativelydisagreeswithobservabledata. As was shown by precise Monte-Carlo modelling in [27], and was also discussed in [35], the cone angular width does not depend on the diffusion length in the case of an atomic cloud with a Gaussian-type density distribution. For the density distribution r2 n(r)=n exp( ) (3) 0 −2r2 0 wheren isapeakdensityinthemiddleofthecloudandr istheradiusofthecloud,therelevantestimationofconeangleis 0 0 givenby 1 θ (4) CBS ∼ kr 0 ThisisillustratedbytherespectivedependenciesshowninFigure3, whichshowsthelineardependenceoftheconewidthon inversesamplesize r−1 in variouspolarizationchannelsofthe F = 3 F = 4 transitionof 85Rb. Since forthe Gaussian 0 0 → cloudtheopticaldepthisgivenbyb =√2πσ n r weseethattheestimations(2)and(4)differbyafactorofb andexpression 0 0 0 0 0 (2)givesalargerconeanglewidththanisactuallymeasured. TheCBS imagesin the planeorthogonaltothe incidentandbackscattereddirectionsaredifferentfor differentpolarization channels. Normallythepolarizationchannelsarediscussedforcircularandlinearinputandoutputpolarizations. Circularpo- larizationisnormallydefinedintermsofhelicities(hel)withrespecttotheframeofwavepropagation,whilelinearpolarization directions (lin) are defined with respect to a laboratory frame. The scattered light is detected either in the same polarization channelastheinputlightorinanorthogonalpolarizationchannel. Thereisaspatialasymmetryinthelinearpolarizationchan- nel. Thisincludesa largercone widthin the verticaldirectionforthe lin lin channelwith the lines ofasymmetryalongthe k bisectorsofthedetectedlinearpolarizationdirectionsinthelin linchannel. Thedetailsofthefeaturesintheconeshapeare ⊥ discussedinRef. [36]. B. Theinfluenceofhyperfinestructure Ininitialstudiesofcoherentbackscatteringinatomicsamples,itwasassumedthatfornear-resonancescatteringthehyperfine structure of the excited atomic state is unimportant (other than for the degeneracies of the transitions under consideration). 9 F=4 120.7 MHz 52P 3/2 F=3 63.4 MHz F=2 29.3 MHz F=1 780 nm ω » F =3 52S 0 1/2 3.03 GHz F =2 0 85 Rb, I=5/2 Figure4:Hyperfineenergylevelsofrelevanttransitionsinatomic85Rb. ParticularlyfortheF = 3 F = 4 ”closed”transitionin85Rb thenearesthyperfinesatellite F = 3 F = 3islocated 0 0 → → at 120 MHz, see Figure 4. This is about20 times the naturalline width γ 5.9 MHz and arguesfor the unimportanceof − ∼ theoff-resonanttransitions. Howeveraswaspredictedin[27]thereisanasymmetryintheCBSenhancementforthespectral scanningneartheresonance,thisbeingcausedbytheinterferenceamongallthehyperfinetransitions. Theasymmetricshape is more clearly seen in the case of circular polarization. This indicates the non-trivial spectral behavior of the Raman-type cross/interferencetermsandtheRaman-typeladdertermsneartheresonance. Theexperimentalverificationofthiseffectwasmadein[37,38]andinFigure5wereproducetheillustrativegraphfrom[37] for the helicity preservingscattering channel. In the calculationsthe influence of possible heatingeffects, where the Doppler broadening kv (v = 2k T/m is the most probable velocity in the atomic ensemble) was varied from 0 to 0.25γ. The 0 0 B heatingmechanismmakestheenhancementweakerbutthespectralshapebroader.Comparingtheresultsonecanseethatthere p is a qualitativeagreementbetween theoreticalcalculationsand experimentaldata. However they differ quantitativelyand the enhancement,observedintheexperimentinthewings,isevenlargerthanitstheoreticalprediction. Aswasmentionedin[37] themainpossiblereasonofsuchacontradictionbetweenexperimentandtheoryisintheopticalpumpingprocess,whichtends to orientatomic spins along the probe beam. For 100%orientationthis effect can increase the enhancementup to maximum valueoftwo. Theenhancementofafactoroftwowouldbeachievablebecauseforspinorientedensemblethereisnothesingle scattering contribution. Then there would be only two constructively interfering amplitudes if the double scattering channel could be isolated. This effects is similar to the enhancement factor behavior in a strong magnetic field, as discussed in the followingsection. Weconcludethissectionbyemphasizingthattherearealsosignificantvariationsintheenhancementfactorevenforresonant scatteringondifferentF F transitions. Thisisdueprimarilytothedifferentdegeneraciesassociated withthetransitions. 0 → Experimentalconfirmationofthese variations, and comparisonswith Monte-Carloand modelcalculationshaverecentlybeen reportedbyWilkowski,etal. [39]. C. Influenceofanexternalmagneticfield TheinfluenceofanexternalmagneticfieldonthemultiplescatteringinopticallydenseatomicensembleswasstudiedinRefs. [40–42]. Theuniqueconditionsofultracoldatomicensembles,wherethereisnegligibleinhomogeneousDopplerbroadening, makepossiblethespectroscopicmanipulationwithamagneticfieldfortheZeemansplittingoftheatomiclevelsatthelevelof thenaturallinewidth.InRef. [40],whichhasnodirectrelationtotheCBSphenomenon,theFaradayrotationofquasi-resonant lightinanopticallythickcloudoflasercooledrubidiumatomswasexperimentallystudied. MeasurementsyieldalargeVerdet 10 constantintherange2000000/T/mmandamaximalpolarizationrotationof1500. TheFaradayeffectwasinitiated Figure5: Comparisonofexperimentalandtheoreticalenhancementspectrainthehelicity-preservingpolarizationchannelassociatedwithan F0 = 3 → F = 4resonance transition. Theoretical spectrashow modificationbyDoppler broadening, whichisvariedfromkv0 = 0to kv0 =0.25γ,inanensembleof85Rbatomshavingapeakdensityofn0 =1.6×1010cm−3andaGaussianradiusr0=1mm. bytheZeemansplittinginthegroundandintheupperstate,whichledtodifferencesintherefractionindicesforσ andσ + − polarizationoftheprobelight. ItisjusttheabsenceoftheDopplereffectandthepossibilitytoscanthesamplenearthenatural resonancelinewhichpermitssuchahugeVerdetconstanttobeobtained. As a nextstep it was recognizedthata weakmagneticfield, with Zeemansplitting comparablewith the naturalline width, shouldmodifytheCBSprocessitself. Thepresenceofthemagneticfieldmanifestsitselfinthescattererdipoleresponsetothe electric field in a manner similar to the Hanle effect in a fluorescence geometry. As was shown in experiment[41] the polar shape of the CBS cone in the linear polarizationscattering channelfollowsthe magnitudeand directionof the magnetic field vector. InthetheoreticaldiscussionofRef. [41]anattemptwasmadetoclassifytheinfluenceofamagneticfieldintermsof thewellknownFaraday,Cotton-MoutonandHanleeffects.Butasisclearinmultiplescattering,andparticularlyinthemultiple scatteringregimeofCBS,thereisonlyaconvenientanalogywiththesebasicopticalprocesses. The remarkable manifestation of a magnetic field was recently observed in Ref. [42]. There it was observed that the enhancement factor can be increased with magnetic field up to its maximal value of two. This unusual behavior ap- pears due to lifting of degeneracy in the helicity scattering channel for the spectrally selected Zeeman hyperfine transition F = 3,M = 3 F = 4,M = 4 of 85Rb, which can be done by applying a rather strong external magnetic field. For 0 0 → this transition there is no Raman-type scattering in the single scattering response. If only double scattering dominates in the helicitypreservingscatteringresponsethereshouldbeafactoroftwoenhancementofthescatteredintensity.IntheFigure6we reproducedthebasicgraphof[42],showingtheexperimentalverificationofthiseffect.Letusalsopointoutthatthereisadirect analogy of the behavior of the enhancementfactor in a magnetic field with its spectral behavior in a spin-oriented ensemble predictedin[37]. D. TheCBSprocessinthesaturationregime RecentexperimentsbyChaneliere,etal. [43]ontheresonancetransitioninatomicstrontiumandbyBalik,etal. [29]inru- bidium,haveshownthatasignificantreductioninthecoherentbackscatteringenhancementcanoccurwithincreasingintensity oftheprobelaser. Bothnon-lineareffectsandadditionalinelasticscatteringcomponentscancontributetothisreduction. The- oreticalandmodelstudieshaveshownsimilarqualitativeeffects[44–46],althoughtheyhaveyettobequantitativelycompared withexperiment. Inthestrontiumexperiment,aMOTcontaining7 107atomsatatemperatureof 1mKandwithaGaussianradiusof 0.7 × ∼ ∼ mmwasilluminatedwithnearresonantlight. Theensembleofcoldatomshadapeakopticaldepthofb =3.5andkl = 104, 0 0 resulting in a regimeof weak localization. In the absence of MOT light and magneticfield gradients, a resonantprobebeam illuminated the sample for a variable period of 5 to 70 µs. The probe pulse duration was adjusted so as to keep the total number of scattered photonsbelow 400 for all intensities investigated, therebyminimizing mechanicaleffects of the light on thecoldatomsample. ACBSconewasthenrecordedinthehelicitypreservingchannel(hel hel),wheresinglescatteringis k