ebook img

Closed loop finite element modeling of piezoelectric smart structures PDF

13 Pages·2015·1.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Closed loop finite element modeling of piezoelectric smart structures

ShockandVibration13(2006)1–12 1 IOSPress Closed loop finite element modeling of piezoelectric smart structures a b a,∗ a GuangMeng ,LinYe ,Xing-jianDong andKe-xiangWei aStateKeyLab. ofVibration,Shock&Noise,ShanghaiJiaoTongUniversity,Shanghai,200030,People’sRepublic ofChina bCentreforAdvancedMaterialsTechnology,SchoolofAerospace,MechanicalandMechatronicEngineering (J07),TheUniversityofSydney,Sydney,NSW2006,Australia Received25July2004 Revised9November2004 Abstract.Theobjectiveofthispaperistodevelopageneraldesignandanalysisschemeforactivelycontrolledpiezoelectricsmart structures. Theschemeinvolvesdynamicmodelingofasmartstructure,designingcontrollawsandclosed-loopsimulationina finiteelementenvironment. Basedonthestructureresponsesdeterminedbyfiniteelementmethod,amodernsystemidentification techniqueknownasObserver/KalmanfilterIdentification(OKID)techniqueisusedtodeterminethesystemMarkovparameters. TheEigensystemRealizationAlgorithm(ERA)isthenemployedtodevelopanexplicitstatespacemodeloftheequivalentlinear system for control law design. The Linear Quadratic Gaussian (LQG) control law design technique is employed to design a controllaw. ByusingANSYSparametricdesignlanguage(APDL),thecontrollawisincorporatedintotheANSYSfiniteelement model toperform closed loop simulations. Therefore, the control lawperformance can be evaluated inthecontext of afinite elementenvironment. Finally,numericalexampleshavedemonstratedthevalidityandefficiencyoftheproposeddesignscheme. Withoutanyfurthermodifications,thedesignschemecanbereadilyappliedtoothercomplexsmartstructures. Keywords: Vibration control, eigensystem realization algorithm, system identification, finite element method, piezoelectric materials 1. Introduction Advancedapplications,suchaslarge-scalespacestructures,jetfightersandconceptautomobiles,havestructural requirements including high strength, lightweight, high structural damping and low acoustic noise. Attempts at achievingthese characteristicshaverecentlystimulatedextensiveresearchintosmartstructures, whichhavebeen widelyappliedinthefieldofactivevibrationcontrolofstructures. Piezoelectricmaterials,suchasleadzirconate titanate(PZT),havecoupledmechanicalandelectricalproperties. Bondingorembeddingpiezoelectricpatchesina smartstructurecanactassensorstomonitororasactuatorstocontroltheresponseofthestructure[1]. Todesignpiezoelectricsmartstructuresforactivevibrationcontrol,bothstructuraldynamicsandcontroltheory need to be considered. The finite element method, a widely accepted and powerful tool for analyzing complex structures,iscapableofdealingwiththepiezoelectricsmartstructures. Specialfiniteelementshavebeendeveloped toaccountforpiezoelectriceffect[2–4]. ANSYS,oneofthemostwidely-usedcommerciallyavailablefiniteelement analysis (FEA) codes, has the ability to model piezoelectric materials. Unfortunately, finite element models are always of high-orderand can not be used directly in controllerdesign whereas most controllaw design methods require an explicit mathematical model of the system to be controlled. To overcome this difficulty, the mode ∗Correspondingauthor.Tel.:+862154744990109;Fax:+862154747451;E-mail:[email protected]. ISSN1070-9622/06/$17.00©2006–IOSPressandtheauthors. Allrightsreserved 2 G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures superpositiontechniqueiswidelyusedtotransformthecoupledfiniteelementequationsofmotioninthephysical coordinates into a set of reduced uncoupled equations in the modal coordinates, and then the state space model of the system is developed[5–7]. Commonly, the MatLAB Control System Toolbox is used for the control law designandthenclosedloopsimulationis performedbasedonthestate spacemodel[6,8]. As canbeseen, in all theseresearchworks[5–8],dynamicmodelingofthesmartstructuresanddesignofthecontrolsystemsareusually carriedoutseparatelywithouttakingtheinteractionbetweenthestructureandthecontrolsystemintoaccount. Due to theincreasinginterestin the designofcomplexpiezoelectricsmart structuresandthe needforfast andsimple implementation of piezoelectric control systems, it is necessary to develop a general design scheme of actively controlledpiezoelectricsmartstructures. Inthispaper,amodernsystemidentificationtechniqueisemployedtodevelopanexplicitstatespacemodelfor controllaw designfromthe outputof a commercialfinite elementcodeANSYS. Systemidentificationtechnique dealswiththerealizationofamodelfromtheexperimentresultsforthepurposeofcontrollawdesign. Thisrequires theconstructionofaminimumordermodelfromthetestdatathatcharacterizesthedynamicsofthesystematthe selectedcontrolandmeasurementpositions. Afiniteelementsimulationprovidestimehistoriesofthevariablesof apiezoelectricsmartstructuresystem,butdoesnotgenerateanexplicitmathematicalmodelofthesystem. Finite elementsimulationsareanalogoustoperformingexperimentalinvestigationswheretheonlydirectoutputsaretime responses. Therefore,thestructuralresponsesdeterminedbyfiniteelementsimulationsareemployedastheinput toanidentificationtechniqueknownasObserver/KalmanfilterIdentification(OKID)[9,10]approachthatidentifies theMarkovparametersofanasymptoticallystableobserver. ThesystemMarkovparametersarethendetermined recursivelyfromthe Markovparametersof the observersystem, fromwhich a state space realization is obtained using the Eigensystem Realization Algorithm (ERA) [9,11]. The LQG design method is employed to design a controllawbasedonthestatespacemodel. ANSYSparametricdesignlanguage(APDL)isthenusedtointegrate thecontrollawintotheANSYSfiniteelementmodeltoperformclosedloopsimulations[12]. Insummary,undertheinteractionofstructureandcontroldisciplines,theobjectiveofthispaperistodevelopa generalanalysisanddesignschemeofpiezoelectricsmartstructures. TheproposedschemecanmakeuseofANSYS andimplementauserselectedcontrolalgorithm. ByusingAPDL,thecontrollawisincorporatedintotheANSYS finiteelementmodelofthesmartstructureto performclosedloopsimulations. Theproposeddesignschemecan furtherreducecost,aswellasshortendesigncycletimeforsmartstructures. Withoutanyfurthermodifications,it canbereadilyappliedtolargeflexiblespacestructures. 2. Fromfiniteelementmodeltostatespacemodel 2.1. Finiteelementmodel Modelingofpiezoelectricsmartstructuresbythefiniteelementmethodanditsimplementationforactivevibration controlproblemshasbeenpresented[2–4,13,14]. Theglobalmatrixequationsgoverningasmartstructuresystem canbewrittenas: (cid:1) (cid:2)(cid:3) (cid:4) (cid:1) (cid:2) (cid:3) (cid:4) (cid:1) (cid:2) (cid:3) (cid:4) (cid:3) (cid:4) M 0 u¨ C 0 u˙ K K u F 0uu 0 φ¨ + 0uu 0 φ˙ + KuTu Kuφ φ = Fu (1) uφ φφ φ where u denotes structural displacement, φ denotes electric potential, and a dot above a variable denotes a time derivative;FudenotesthestructuralloadandFφdenotestheelectricload;MuuandKuuarethestructuralmassand stiffness matrix, respectively, Kuφ is the piezoelectriccouplingmatrix and Kφφ is the dielectric stiffness matrix, Cuu isthedampingmatrix,whichisusuallyassumedtobealinearcombinationofthestructuralmassmatrixMuu andthestructuralmatrixKuu [Cuu]=α[Muu]+β[Kuu] (2) Theconstant α andβ are the dampingparameters[15]. It is notableto pointoutthat proportionaldampingis assumedbutnotrequiredforsystemidentification. Asmentionedbefore,thecommercialfiniteelementcodeANSYScanbeutilizedtomodelthepiezoelectricsmart structurewithprescribedinputstoobtainasetofcorrespondingoutputtimehistories. Thenextstepistoemploya systemidentificationtechnique,usingthetimehistoriesofoutputsandinputsoftheANSYSfiniteelementmodel, todeterminean“equivalentlinearsystem”foruseasacontrollawdesignmodel. G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures 3 2.2. IdentificationofthesystemMarkovparametersbyOKIDapproach TheObserver/KalmanfilterIdentification(OKID)[9,10]methodwasdevelopedtocomputetheMarkovparameters ofalinearsystem,whicharethesameasitspulseresponsesamples. Themethodisformulatedentirelyinthetime domain,andiscapableofhandlinggeneralresponsedata. OneofthekeystotheOKIDalgorithmistheintroduction ofanobserverintotheidentificationprocess. ThefirststepoftheprocessisthecalculationoftheobserverMarkov parameters. Then the system Markov parameters are determined recursivelyfrom the Markov parameters of the observersystem. Inthefollowingwesummarizeitinbrief. Firstly,considerageneraldiscretemultivariablelinearsystemexpressedinthestatespaceformat x(i+1)=Ax(i)+Bu(i) (3) y(i)=Cx(i)+Du(i) wherexisann×1statevector,uanm×1inputorcontrolvector,yaq×1outputvector. MatricesA,B,CandD arerespectivelythestatematrix,inputmatrix,outputmatrix,anddirectinfluencematrix. Theintegeriisthesample indicator. Theinput-outputdescriptionoftheabovesystemwithzeroinitialconditionscanbeobtainedfromEq.(3) as (cid:5)i−1 y(i)= Yτu(i−τ −1)+Du(i) (4) τ=0 wheretheparameters Y =CAτB τ together with D, are known as the Markov parameters of the system, which are also the system pulse response samples. ToreducethenumberofMarkovparametersneededtoadequatelymodelasystem,anobserverisintroduced intotheOKIDtechnique. If(A,C)isanobservablepair,thenthereexistsanobserveroftheform (cid:1)x(i+1)=A(cid:1)x(i)+Bu(i)−M[y(i)−(cid:1)y(i)] =(A+MC)(cid:1)x(i)+(B+MD)u(i)−My(i) (5) yˆ(i)=C(cid:1)x(i)+Du(i) ThematrixM canbeinterpretedasanobservergain. ConsiderthespecialcasewhereM isadeadbeatobserver gainsuchthatalleigenvaluesofA+MCarezero,theestimatedstatexˆconvergestothetruestatex(i)afteratmost nstepswherenistheorderofthesystem. Equation(5)thenbecomes x(i+1)=(A+MC)x(i)+(B+MD)u(i)−My(i) (6) y(i)=Cx(i)+Du(i) Theinput-outputdescriptionofthesysteminEq.(6)is n(cid:5)−1 y(i)= Y¯τ[u(i−τ −1)y(i−τ −1)]T +Du(i) i(cid:1)n (7) τ=0 where Y¯ =[C(A+MC)τ(B+MD)−C(A+MC)τM]=[Y¯(1) Y¯(2)] τ τ τ Y¯τ andD aretheMarkovparametersofanobserversystem. Aparticularfeatureofthedeadbeatobserveristhat theMarkovparameters Y¯τ willbecomeidenticallyzeroafterafinitenumberoftimesteps. Thestandardrecursive least-squarestechniqueisusedtosolveEq.(7)andthentheobserverMarkovparametersarecomputed. Thereisan algebraicrelationshipbetweentheMarkovparametersoftheobserversystemandthoseoftheactualsystem τ(cid:5)−1 Yτ =CAτB =Y¯τ(1)+ Y¯i(2)Yτ−i−1+Y¯τ(2)D (8) i=0 A complete description for the computation of the Markov parameters is given in reference [9,16]. Once the Markovparametersof the observersystem are identified, the actual system Markovparameterscan be recovered accordingtoEq.(8). TheactualsystemMarkovparametersarethenusedtoobtainastatespacemodelofthesystem byarealizationprocedurecalledtheEigensystemRealizationAlgorithm(ERA)[9,11]. 4 G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures 2.3. MinimumrealizationbytheEigensystemRealizationAlgorithm TheEigensystemRealizationAlgorithm(ERA)isasystemrealizationmethodthathasbeenstudiedextensively[9, 11]. Itdeterminesa state space model(Ar,Br,Cr,Dr) of a structurefromthe systemMarkovparameters. The algorithmbeginsbyformingthel×lblockHankelmatrixdenotedbyH(l,τ) ⎡ ⎤ Y Y ··· Y τ τ+1 τ+l−1 ⎢ Y Y ··· Y ⎥ ⎢ τ+1 τ+2 τ+l ⎥ H(l,τ)=⎢ . . . ⎥ (9) ⎣ . . . ⎦ . . . Y Y ···Y τ+l−1 τ+l τ+2l−2 TheorderofthesystemisdeterminedfromthesingularvaluedecompositionofH(l,0) H(l,0)=UΣVT (10) wherethematrixU andV areunitarymatrices. Assume Σ=diag[σ1σ2···σnσn+1···σN] (11) with σ (cid:1)σ (cid:1)···(cid:1)σ (cid:1)σ (cid:1)···σ 1 2 n n+1 N Chooseanumberδasazerothresholdsuchthat σ σ n >δ n+1 (cid:2)δ (12) σ σ 1 1 thenthematrixH(l,0)is consideredto haverankn. Take Σn as an×n diagonalmatrixofthefirst n singular valuesin Σ. UnandVncorrespondtothesingularvaluesin Σn. Equation(10)thenbecomes H(l,0)=UnΣnVnT (13) Definingaq×lqmatrixETandanm×lmmatrixET madeupofidentityandnullmatricesoftheform q m EqT =[Iq 0q×(l−1)q], EmT =[Im 0m×(l−1)m] (14) adiscrete-timeminimalorderrealizationofthesystemcanbewrittenas Ar =Σ−n1/2UnTH(l,1)VnΣ−n1/2 (15a) Br =Σ1n/2VnTEm (15b) Cr =EqTUnΣ1n/2 (15c) ThedirectinfluencematrixDr canbeidentifiedbysolvingEq.(7). Theabovestatespacemodelofthesystem dynamicsisusedtodesignaLQGbasedrobustcontroller. G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures 5 3. Controlalgorithmandclosedloopsimulation 3.1. LQGdesign Inpractice,themodelingofthesmartstructureisseldomperfectandthesystemparameterslikedensity,elastic stiffness anddampingusually varyduringthe courseof operationof the structuredue to corrosion, damage, etc. Moreover,thesystemmightbesubjectedtovaryingdynamicloadswhichmayexcitemultiplemodesofvibration[7]. A LQG based robust controller which is less sensitive to system parameter variations, and also works efficiently whenmultiplemodesofvibrationarepresentintheresponse,isanexcellentchoiceforcontrollingthevibrationsof suchsystems. Inthissection,therobustcontrollerdesignusingtheLQGisdiscussed. Consideringtheprocessand measurementnoisew(i)andv(i),thestatespaceequationforthepiezoelectricsmartstructurecanbewrittenas x(i+1)=A x(i)+B u(i)+Gw(i) r r (16) y(i)=C x(i)+D u(i)+v(i) r r IntheLQGalgorithm,theprocessnoisew(i)andthemeasurementnoisev(i)arebothassumedtobestationary, zero-mean,Gaussianwhite,andtohavecovariancematricessatisfying E{w(i)wT(j)}=V1δi,j E{v(i)vT(j)}=V2δi,j (17) whereE{·}denotestheexpectedvalue,δi,j denotestheKroneckerdelta. Inaddition,w(i) andv(i) areassumed tobeuncorrelated. Thecontrollerconsistsofastatefeedbackmoduleandastateestimationmodule. Theformer correspondstothefollowingcontrollaw u(i)=−Kx(i) (18) inwhichK denotesthefeedbackgainmatrix. Thefeedbackgainmatrixisobtainedsoastominimizethequadratic costfunctionoftheform (cid:12) (cid:13) (cid:5)∞ J =E [xT(i)Qx(i)+uT(i)Ru(i)] (19) i=1 whereQ is asymmetricpositivesemi-definitematrixandR is asymmetricpositive-definitematrix. Theoptimal feedbackgainmatrixthatminimizestheabovecostfunctionisgivenby K =(R+BrTP1Br)−1BrTP1Ar (20) wherethepositivedefinitematrixP1 isthesolutiontothefollowingalgebraicRiccatiequation ATrP1Ar −P1−ATrP1Br(R+BrTP1Br)−1BrTP1Ar+Q=0 (21) In Eq. (18) it is assumed that all of the states are available for feedback. However, in practice only the system outputsareavailableforfeedback. Toestimatethestatesofthesystemfromsensoroutputs,astateestimatorbased ontheKalmanfilterisdesigned (cid:1)x(i+1)=Ar(cid:1)x(i)+Bru(i)+L[y(i)−Crxˆ(i)−Dru(i)] (22) wherexˆ(i)denotestheestimatedstateandtheobservergainmatrixisobtainedform L=ArP2CrT(CrP2CrT+V2)−1 (23) inwhichthepositiveP2 satisfiesthefollowingalgebraicRiccatiequation ATrP2Ar +GV1GT−ArP2CrT(CrP2CrT+V2)−1CrP2ATr −P2 =0 (24) NotethatthestatevectorinEq.(18)shouldbereplacedbytheestimatedstatexˆ(i). OneofthemeritsoftheLQG techniqueliesintheseparationprinciple,whichstatesthatthedesignofthefeedbackandtheestimatorcanbecarried outseparately. AblockdiagramoftheLQGcontrollerisshowninFig.1. 6 G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures State estimator System dynamics w B G r xˆ(i) x(i) _ L z-1 -K Br z-1 A A C r r r C v r Fig.1.Ablockdiagramofthediscrete-timeLQGcontroller. F e v v ANSYS model of a s smart structure LQG controller Fig.2.Blockdiagramoftheclosed-loopsimulation. TheselectionofQ andRisvitalinthecontroldesignprocess. QandRarethefreeparametersofdesignand stipulatetherelativeimportanceofthecontrolresultandthecontroleffort. AlargeQputshigherdemandoncontrol result,andalargeRputsmorelimitoncontroleffort[17]. TheoptimalvaluesforQandRaretypicallyobtained bytrial-and-errormethods. Inthispaper,QiscomputedfromCr with Q=CrTCr (25) WeightingmatrixRcanbesetasρIwithρasascalardesignparameter. Therefore,thechallengingtaskofchoosing QandRreducestochoosingoneparameterρ. Consequently,thecontrolperformancesuchassettlingtimeandthe maximumvalueoftheactuatorvoltagecanbetunedthroughchangingthevalueofρ. Thisprocedureisusedinthe illustrativeexamplepresentednext. 3.2. Closedloopsimulationinfiniteelementenvironment Inthissection,byusingANSYSparametricdesignlanguage(APDL),theANSYSfiniteelementmodelofasmart structureismodifiedtoacceptcontrollawsandperformclosed-loopsimulations. Therefore,thecontrollawcanbe evaluatedin thecontextoffiniteelementenvironment. Theblockdiagramoftheanalysisis showninFig.2. Fe isthevibrationgeneratingforce. Theinstantaneousvalueofthevibrationgeneratingforceisdefinedateachtime steps. vs isthesensorsignalatasensorlocation. Forinstance,foracantileverplate,verticalvelocitycanserveas sensorsignal. vaistheactuatorvoltageanditisdeterminedbytheLQGcontrollerusingFeandvs. Inthisstudy,toconstructanANSYSfiniteelementmodelforapiezoelectricsmartstructure,SOLID45elements are used for the metal part and SOLID5 elements are used for the piezoelectric part of the structure. A macro hasbeenwrittentoperformthetransientanalysis, inwhichthecontrollawis accepted. Inthetransientanalysis, theinstantaneousvalueofthesensorsignaliscalculatedatatimestepbyusingtheclassicalNewmarkintegration method. Thenthe feedbackvoltage, whichwill be used as the inputto the piezoelectricactuatorduringthe next timestep,isdeterminedbytheLQGcontroller. Thisprocesswillcontinueforthepredefinedtimedurationofthe computedresponse. Throughtheresultsoftransientanalysis,thecontrollawcanbeevaluatedinthefiniteelement G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures 7 Fig.3.Theconfigurationofanactivelycontrolledcantileverplate. simulation. Ifthecontrollawperformanceisnotadequate,thecontrollawcanberedesignedandevaluatedagain untilthedesiredperformanceisobtained. 4. Illustrativeexample Inthis section, a cantileveredplate is considered. Thestructureconsists of a hostaluminumplate (700mm× 150mm×1.2mm),APC-850piezoelectricpatches(70mm×15mm×0.5mm)andvelocitysensors. Theadhesive layers are neglected. The piezoelectric patches work as actuators are perfectly bonded on the upper and lower surfacesoftheplatestructureatthesamelocation. Itisassumedthatthesamemagnitudebuttheoppositedirection ofelectricfieldisappliedtotheupperandlowerpiezoelectricpatchessoas tocreateapurebendingmomentfor vibrationsuppression. Velocity sensors are bondedon top of the actuators. The configurationof the structureis shown in Fig. 3. As can be seen in Fig. 3, there are three actuator pairs marked with actuator 1, actuator 2 and actuator3separately. Also,therearethreevelocitysensorsmarkedwithsensor1,sensor2andsensor3separately. ItshouldbepointedoutthatinANSYSfiniteelementmodeltheelasticandinertialpropertiesofthesensorsarenot takenintoaccount. Thetransversevelocitiesatsensorlocationsarecalculatedateachtimestepandthenserveas sensorsignals. ThematerialpropertiesofAPC850andaluminumarelistedbelow. APC850: E11 =E22 =63.0GPa,ν12=0.35,ρ=7600kg/m3, G12 =G23=24.6GPa,G13=30.6GPa, d31=-1.75×10−10m/V,d33=4.0×10−10m/V Aluminum: E =69.0GPa,G=27.0GPa,ρ=2700kg/m3 ThefiniteelementmodelforthecantileveredplatewithpiezoelectricpitchesisshowninFig.4. Atotalof17248 three-dimensionalsolidelementsareusedtomeshthestructure. Amongthoseelements,1008SOLID5elementsare utilizedtomodelpiezoelectricpatches,and16240SOLID45elementsareemployedtomodelhoststructure. The timestepischosenas0.0025. Whitenoiseisselectedastheinputsignalsinceitsatisfiestheconditionofpersistentexcitation,asrequiredbya reliableidentification[18]. FiniteelementsimulationusingANSYSisperformedtoobtainasetofcorresponding outputtimehistories. Theinput-outputtimehistoryisdiscretizedatasamplingrateof400Hzforsystemidentifi- cation. Theaforementionedsystemidentificationtechniqueisthenemployed,usingthetimehistoriesofinputsand outputs,tosetupastatespacemodelforuseasacontrollawdesignmodel. Assumeanorderforthesystemtobe identified,denotedbyn. Inthisstudy,onlythefirst6modesaretakenintoaccount,thus n ischosenas12. The identifiedmodelisoforder12andisgivenintheAppendix. 8 G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures Fig.4.Finiteelementmodelofanactivelycontrolledcantileverplate. 0 ERA ERA 0 ANSYS ANSYS -15 B) B) e(d -20 e(d -30 d d u u gnit -40 gnit -45 a a M M -60 -60 -75 -80 1 10 100 1000 1 10 100 1000 Frequency (Rad/Sec) Frequency (Rad/Sec) (a) From actuator 1 to sensor 3 (b) From actuator 3 to sensor 2 Fig.5.Frequencyresponsefunctions. 10 Control off 8 Control on m) 6 m 4 ( nt 2 e m e 0 c a -2 pl s Di -4 -6 -8 -10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Time (Sec) Fig.6.Displacementresponsetoimpulseexcitation. Frequencyresponsefunctionscanbeobtainedfromthestatespacemodel. Forbrevity,onlytwoofthemareshown inFig.5. TheresultsfromtheANSYSfiniteelementmodelarealsoshowninFig.5forthepurposeofcomparison. Excellentagreementisobservedbetweenthetworesultsexceptforthefrequencyrangeabove300rad/sec. Formost structuresystemsunderpracticalloadingconditions,onlythefirstfewmodesplayanimportantpartinthevibration response of the system. Therefore, it can be concluded that the state space model developed by identification techniquecharacterizesthedynamicsofthesystemandcanbeusedforcontrollawdesign. FortheLQGcontroller,thefreeparametersρ,V1andV2 selectedasρ=0.001,V1 =10−3InandV2 =10−6Iq. Asmentionedpreviously,theseparametersaredeterminedbytrailanderrormethodstomosteffectivelycontrolthe G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures 9 100 60 150 Actuator Voltage (V) -55000 Actuator Voltage (V) --244200000 Actuator Voltage (V) 1-0550000 -100 -60 -100 -150 -80 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Time (Sec) Time (Sec) Time (Sec) (a) Actuator 1 (b) Actuator 2 (c) Actuator 3 Fig.7.Timehistoryofactuatorvoltageforcase1. 8 Control off 6 Control on ) m m 4 ( nt e 2 m e c 0 a pl s -2 Di -4 -6 0 1 2 3 4 5 Time (Sec) Fig.8.Displacementresponsetorandomexcitation. structure. Atthesametime,theseparametersarelimitedforthesakeofthebreakdownvoltageofthepiezoelectric materials. Themaximumvoltageperthicknessofthepiezoelectricmaterialistakenas300Vmm −1. Thefeedback gainmatrixK isgivenintheAppendix. OncetheLQGcontrollerdesigniscompleted,APDLisusedtointegrate controllaw intothe ANSYS finite elementmodelto performclosed loopsimulations. Finally, thecontrollaw is evaluatedinthefinite elementsimulation. Ifthe controllawperformanceis notadequate,the controllawcanbe redesignedandevaluatedagainuntilthedesiredperformanceisobtained. The external load is assumed to be applied at the free end of the plate and the dynamic responses at the free end,i.e.thetipdisplacements,aregiventoevaluatethecontrollaw. Forcase1,atransverseimpulsiveloadingof 0.1Nisappliedatthefreeendoftheplatefor0.1s. Transientresponsesoftheplatetipdisplacementareshown in Fig.6. Results whenthe controlis offarealso shownforcomparison. Actuatorvoltagesareshownin Fig.7. Ascanbeseen,thecontrollersuccessfullydampsthevibrationoftheplate. Theactuatorvoltagesarelowerthan the breakdownvoltage of piezoelectricmaterials. For case 2, bandedlimited white noise in the frequencyrange 0–200rad/sec is appliedat the free end ofthe plate. The plate tip displacementandactuatorvoltages are shown inFigs8and9respectively. Thecontrollerisalsoeffectiveincontrollingtherandomvibration. Still,theactuator voltagesarelowerthanthebreakdownvoltageofpiezoelectricmaterials. 5. Conclusions Undertheinteractionofstructureandcontroldisciplines,ageneralschemeofanalyzinganddesigningpiezoelectric smartstructuresissuccessfullydevelopedinthispaper. Theschemeinvolvesusingamodernsystemidentification 10 G.Mengetal./Closedloopfiniteelementmodelingofpiezoelectricsmartstructures 100 80 8 0 60 150 Actuator Voltage (V) --24642 000000 Actuator Voltage (V) -2240000 Actuator Voltage (V) 1-0550000 -40 -60 -100 -80 -60 -150 -10 0 -80 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 Time (Sec) Time (Sec) Time (Sec) (a) Actuator 1 (b) Actuator 2 (c) Actuator 3 Fig.9.Timehistoryofactuatorvoltageforcase2. techniqueto developanequivalentlinearmodelfromtheoutputsofthecommercialfiniteelementcodeANSYS. Standardcontrollawdesigntechniquesarethenusedtodesigncontrollaws. ByusingANSYSparametricdesign language(APDL),theresultingcontrollawsarethenincorporatedintotransientanalysisforevaluation. Resultsof anumericalstudyapplyingthismethodologytovibrationcontrolofacantileveredplatewithpiezoelectricactuators arepresented. Numerical results indicate that the equivalent linear models developed by employing a system identification technique can represent the input-outputrelationship of a finite simulation very well. The proposedscheme can integrateauserselectedcontrolalgorithmintotheANSYSfiniteelementmodeltoperformclosedloopsimulation. Thecontrollaw can beevaluatedin the contextof a finite elementenvironment. The techniquepresentedin this papermaybealsoappliedtootherdifferentvibrationcontrolproblems,basedonpassiveorhybridtechniques. Acknowledgements Support from the National Natural Science Foundation of China (NSFC) under Grant No. 50390063 and the foundation of National Key Lab. of Defense Technology under Grant No. 51463040403JW0301 is gratefully acknowledged. Theauthorsalsogratefullyacknowledgethehelpfulsuggestionofthereviewers. References [1] M.SunarandS.S.Rao, Recent advances insensing andcontrol offlexible structures via piezoelectric materials technology, Applied MechanicsReviews52(1999),1–16. [2] A.Benjeddou,Advancesinpiezoelectricfiniteelementmodelingofadaptivestructuralelements: asurvey,Computers&Structures76 (2000),347–363. [3] J.Mackerle,Smartmaterialsandstructures-afinite-elementapproach:abibliography(1986–1997),ModellingandSimulationinMaterials ScienceandEngineering6(3)(1998),293–334. [4] J.Mackerle, Smartmaterials and structures –afinite element approach –an addendum: abibliography (1997–2002), Modelling and SimulationinMaterialsScienceandEngineering11(5)(2003),707–744. [5] X.Q.Peng,K.L.LamandG.R.Liu,Activevibrationcontrolofcompositebeamswithpiezoelectrics: afiniteelementmodelwiththird ordertheory,JournalofSoundandVibration209(4)(1998),635–650. [6] S.X.XuandT.S.Koko,Finiteelementanalysisanddesignofactivelycontrolledpiezoelectricsmartstructures,FiniteElementinAnalysis andDesign40(2004),241–262. [7] C.P.SmyserandK.Chandrashekhara,Robustvibrationcontrolofcompositebeamsusingpiezoelectricdevicesandneuralnetworks,Smart Materials&Structures6(1997),178–189. [8] ChyanbinHwu,W.C.ChangandH.S.Gai,Vibrationsuppressionofcompositesandwichbeams,JournalofSoundandVibration272(1) (2004),1–20. [9] J.-N.JuangandM.Phan,Identificationandcontrolofmechanicalsystems,CambridgeUniversityPress,NewYork,2001. [10] J.-N.Juang,M.PhanandLucasG.Horta,IdentificationofObserver/Kalmanfiltermarkovparameters: theoryandexperiments,Journal ofGuidance,ControlandDynamics16(2)(1993),320–329.

Description:
By using ANSYS parametric design language (APDL), the control law is Closed loop finite element modeling of piezoelectric smart structures . If (A, C) is an observable pair, then there exists an observer of the form .. Support from the National Natural Science Foundation of China (NSFC) under
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.