ebook img

clinical prediction models for diagnosis of appendicitis in children with abdominal pain PDF

117 Pages·2016·1.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview clinical prediction models for diagnosis of appendicitis in children with abdominal pain

UUnniivveerrssiittyy ooff RRhhooddee IIssllaanndd DDiiggiittaallCCoommmmoonnss@@UURRII Open Access Master's Theses 2011 CCLLIINNIICCAALL PPRREEDDIICCTTIIOONN MMOODDEELLSS FFOORR DDIIAAGGNNOOSSIISS OOFF AAPPPPEENNDDIICCIITTIISS IINN CCHHIILLDDRREENN WWIITTHH AABBDDOOMMIINNAALL PPAAIINN Dale W Steele University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses RReeccoommmmeennddeedd CCiittaattiioonn Steele, Dale W, "CLINICAL PREDICTION MODELS FOR DIAGNOSIS OF APPENDICITIS IN CHILDREN WITH ABDOMINAL PAIN" (2011). Open Access Master's Theses. Paper 107. https://digitalcommons.uri.edu/theses/107 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. CLINICAL PREDICTION MODELS FOR DIAGNOSIS OF APPENDICITIS IN CHILDREN WITH ABDOMINAL PAIN BY DALE W. STEELE A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN DEPARTMENT OF COMPUTER SCIENCE AND STATISTICS UNIVERSITY OF RHODE ISLAND 2011 MASTER OF SCIENCE THESIS OF DALE W. STEELE APPROVED: Thesis Committee: Major Professor Liliana Gonzalez John P. Burkett Alfred Ordon˜ez Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2011 ABSTRACT Appendicitis is common in children, but remains difficult to diagnose accu- rately. Theclinicianmustintegrateinformationfromthehistory,physicalexamina- tion and screening laboratory tests to decide whether to reassure, order diagnostic imaging, or proceed to the operating room. This process is best framed as a deci- sion problem with two thresholds; a lower threshold, below which further testing may be unnecessary, and an upper threshold, above which further testing need not delay appendectomy. The goal of this analysis was to model the probability of appendicitis. This project analyzes observations by 23 physicians on 143 children with ab- dominal pain evaluated in a Pediatric Emergency Department. Clinicians recorded the presence or absence of various signs and symptoms, and provided their gestalt estimate of the probability of appendicitis (priorprob) prior to obtaining screen- ing laboratory tests such as white blood cell count (wbc). A final diagnosis of appendicitis was confirmed pathologically in 45 (31.5%) patients. Exploratory plots utilize nonparametric exploratory kernel density and locally weighted scatterplot smoothing. Missing data is imputed using both single and multiple imputation. Receiver Operator Characteristic curves illustrate the supe- riordiscriminationofalogisticclinicalfactorsmodelvs. thePediatricAppendicitis Score which dichotomizes wbc. The Akaike Information criteria provide support for a model that substitutes gestalt clinical probability (priorprob) for individual clinical factors. The bootstrap is used to produce bias-corrected calibration plots for each model and to estimate confidence intervals for coefficients. To account for the correlation within physicians, Generalized Linear Mixed models with clinician specific randomeffect(s) were fit using maximum likelihood and Bayesianmethods. The apparent importance of gender in exploratory plots is confirmed using parametric models. Contrary to prior studies, the presence of fever reduces the probability of appendicitis. Conditional predictions from the preferred (random intercept) Bayesian model suggest that one can most confidently omit imaging in girls with low clinical suspicion (priorprob) and low white blood cell counts (wbc). Conversely, the best case for proceeding directly to the operating room can be made for boys with both high priorprob and high wbc. When levels of priorprob and wbc are discordant, imaging, or further observation, will be necessary. ACKNOWLEDGMENTS To all those who helped me learn a little Statistics — Shira Dunsiger, who patiently re-taught high school algebra — Jo Hogan for “If you wanted to study French Literature, you need to speak French.” — Orlando Merino, who never seemed to skip steps — Liliana Gonzalez for her warmth, patience and attention to detail — John Burkett, for his elegant lectures, insightful critiques and sense of humor — Profs Ordonez and Akhlaghi for being members of my defense committee — the wizards who created the Open Source tools used to produce this thesis— children with abdominal pain who inspire a desire to do better. iv DEDICATION To my mother, Margaret O’Shaughnessy Steele — a teacher with a lifelong passion for learning. v TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x CHAPTER 1 INTRODUCTION AND STUDY DESIGN . . . . . . . . . . . 1 1.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . 1 1.2 Justification and Significance of the Problem . . . . . . . . . . . 1 1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . 3 1.4 Reproducible Research . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . 7 1.7 Missing Data Management . . . . . . . . . . . . . . . . . . . . . 12 1.7.1 Missing Values . . . . . . . . . . . . . . . . . . . . . . . 12 1.7.2 Simple Imputation . . . . . . . . . . . . . . . . . . . . . 12 1.7.3 Multiple Imputation . . . . . . . . . . . . . . . . . . . . 12 vi Page List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 CLINICAL PREDICTION MODEL DEVELOPMENT . . . 15 2.1 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Models Using Factors from the Pediatric Appendicitis Score . . 16 2.2.1 Redundancy Analysis . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Variable Clustering . . . . . . . . . . . . . . . . . . . . . 19 2.3 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Multiple Logistic Regression Models . . . . . . . . . . . . 22 2.4 Model Using Gestalt Estimate of Probability . . . . . . . . . . . 25 2.5 Bootstrap Estimation and Validation . . . . . . . . . . . . . . . 26 2.6 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.1 Using the Bootstrap to Assess Internal Validity . . . . . 28 2.6.2 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Clinician Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 GENERALIZED LINEAR MIXED MODELS (GLMM) . . . 36 3.1 Random Slope and Intercept Model . . . . . . . . . . . . . . . . 36 3.2 Random Intercept Model . . . . . . . . . . . . . . . . . . . . . . 37 List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 BAYESIAN APPROACHES . . . . . . . . . . . . . . . . . . . . 39 4.1 Bayesian Logistic Regression . . . . . . . . . . . . . . . . . . . . 39 4.1.1 Logistic Regression Model: Children’s Hospital of Philadelphia Data . . . . . . . . . . . . . . . . . . . 40 vii Page 4.1.2 Logistic Regression Models - HCH data . . . . . . . . . . 41 4.1.3 Logistic Model for HCH with priors from CHOP dataset 42 4.2 Bayesian Generalized Linear Mixed Models . . . . . . . . . . . . 43 4.2.1 Varying-intercept . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 Varying-intercept, varying-slope, no correlation between intercepts and slopes . . . . . . . . . . . . . . . . . . 47 4.2.3 Varying-intercept, varying-slope, Correlation ρ between intercepts and slopes . . . . . . . . . . . . . . . . . . 49 4.3 Predictions from Bayesian Random Intercepts Model . . . . . . 51 List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 CONCLUSIONS AND FUTURE RESEARCH . . . . . . . . . 56 List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 APPENDIX Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A.1 Chapter 1 R Code . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A.2 Chapter 2 R Code . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A.3 Chapter 3 R Code . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A.4 Chapter 4 R Code . . . . . . . . . . . . . . . . . . . . . . . . . . 82 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 viii

Description:
for a model that substitutes gestalt clinical probability (priorprob) for individual The bootstrap is used to produce bias-corrected calibration plots.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.