ebook img

Classification of the Second Minimal Odd Periodic Orbits in the Sharkovskii Ordering PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Classification of the Second Minimal Odd Periodic Orbits in the Sharkovskii Ordering

CLASSIFICATION OF THE SECOND MINIMAL ODD PERIODIC ORBITS IN THE SHARKOVSKII ORDERING UGURG.ABDULLA,RASHADU.ABDULLA,MUHAMMADU.ABDULLA, 7 ANDNAVEEDH.IQBAL 1 0 2 Abstract. Thispaperpresentsfullclassificationofsecondminimaloddperiodic orbitsofacontinuousendomorphismsontherealline. A(2k+1)-periodicorbit n a (k≥3)iscalledsecondminimalforthemap f,if2k−1isaminimalperiodof J f in the Sharkovskii ordering. We prove that there are 4k−3 types of second 0 minimal(2k+1)-orbits,eachcharacterizedwithuniquecyclicpermutationand 1 directedgraphoftransitionswithaccuracyuptoinverses. ] S D h. 1. IntroductionandMainResult t a Let f :I→I beacontinuousendomorphism,andI beanon-degenerateinterval m on the real line. Let fn :I →I be an n-th iteration of f. A point c∈I is called a [ periodic point of f with period m if fm(c)=c, fk(c)(cid:44)c for 1≤k<m. The set of 1 mdistinctpoints v c,f(c),···,fm−1(c) 5 9 is called the orbit of c, or briefly m-orbit or periodic m-cycle. In his celebrated 6 2 paper [7], Sharkovskii discovered a law on the coexistence of periodic orbits of 0 continuousendomorphismsontherealline. . 1 0 Theorem 1.1 (Sharkovski). [7] Let the positive integers be totally ordered in the 7 followingway: 1 : v i (1) 1(cid:47)2(cid:47)22(cid:47)23(cid:47)···(cid:47)22·5(cid:47)22·3(cid:47)···(cid:47)2·5(cid:47)2·3(cid:47)···(cid:47)9(cid:47)7(cid:47)5(cid:47)3. X r Ifacontinuousendomorphism, f :I →I,hasacycleofperiodnandm(cid:47)n,then f a alsohasaperiodicorbitofperiodm. This result played a fundamental role in the development of the theory of dis- cretedynamicalsystems. Aconceptuallynovelproofwasgivenin[6]. Following thestandardapproach,wecharacterizeeachperiodicorbitwithcyclicpermutations anddirectedgraphsoftransitionsordigraphs. Considerthem-orbit: B={β <β <···<β } 1 2 m DepartmentofMathematics,FloridaInstituteofTechnology,Melbourne,FL32901. 1 2 U.G.ABDULLA,R.U.ABDULLA,M.U.ABDULLA,ANDN.H.IQBAL Definition1.2. If f(β)=β for1≤s ≤m,withi=1,2,...,m,thenBisassociated i si i withcyclicpermutation (cid:32) (cid:33) 1 2 ... m π= s s ... s 1 2 m Definition1.3. Letωbetheorderreversingpermutation (cid:32) (cid:33) 1 2 ... m−1 m ω= m m−1 ... 2 1 Then,givenacyclicpermutationπ,it’sinverseisobtainedasπ−1=ω◦π◦ω. Inthesequel<a,b>meanseither[a,b]or[b,a]. Definition 1.4. Let Ji = [βi,βi+1]. The digraph of m-orbit is a directed graph of transitions with vertices J ,J ,···,J and oriented edges J → J if J ⊂ < 1 2 m−1 i s s f(βi),f(βi+1)>. Definition1.5. Theinversedigraphofm-orbitisadigraphassociatedwithinverse cyclicpermutationπ−1. Equivalently,inversedigraphisobtainedfromthedigraph ofm-orbitbyreplacingeach J with J . i m−i (cid:2) (cid:3) (cid:2) (cid:3) Definition 1.6. A continuous function P : β ,β → β ,β is called the P- f 1 m 1 m linearizationof f ifP (β)= f(β)andPisalinearfunctionineachinterval J f i i i Definition 1.7. The arrangement of the minimums and maximums of the map P f intheopeninterval(β ,β )willbecalledthetopologicalstructureoftheperiodic 1 m orbit. The proof of Sharkovskii’s theorem significantly uses the concept of minimal orbit. Definition 1.8. n-orbit of f is called minimal if n is the minimal period of f in Sharkovski’sordering. Definition1.9. Digraphofthem-orbitcontainstherededgeJi→JsifJs=< f(βi),f(βi+1)>. The structure of the minimal orbits is well understood [8, 3, 5, 4, 1]. Minimal oddorbitsarecalledStefanorbits,duetothefollowingcharacterization: Theorem1.10(Stefan). [8,4]Thedigraphofam=2k+1minimaloddorbithas theuniquestructuregiveninfig.1andcyclicpermutation2uptoaninverse. (cid:32) (cid:33) 1 2 3 ··· k k+1 k+2 k+3 ··· 2k 2k+1 (2) k+1 2k+1 2k ··· k+3 k+2 k k−1 ··· 2 1 Themaingoalofthispaperisthecharacterizationofsecondminimaloddorbits. Definition 1.11. A (2k+1)-orbit, k ≥3 is called second minimal if 2k−1 is the minimalperiodof f intheSharkovskiiordering. SECONDMINIMALODDPERIODICORBITS 3 Jk+2 Jk+3 ... J4 J2k Jk+1 J1 Jk Jk−1 ... J3 J2 Figure1. DigraphofMinimalOddOrbit TopologicalStructure Count max 1 min-max 1 min-max-min 1 max-min 2 max-min-max 2k−3 max-min-max-min-max 2k−5 Table1. TopologicalStructureofall4k−3secondminimal(2k+ 1)-orbits Let B(i,j),1≤i≤ j≤2k+1besubsetsofa(2k+1)-orbitdefinedas (3) B(i,j)={β ∈B:i≤k≤ j} k Definition1.12. A(2k+1)-orbitiscalledsimpleifeither (1) B(k+2,2k+1)ismappedto B(1,k+1);and B(1,k+1)ismappedto B(k+ 2,2k+1)exceptonepoint;or (2) B(1,k)ismappedtoB(k+1,2k+1);andB(k+1,2k+1)ismappedtoB(1,k) exceptonepoint. We say a simple (2k+1)-orbit is of type + (resp. type −) if (1) (resp. (2)) is satisfied. Ourmainresultreads: Theorem1.13. Secondminimal(2k+1)-orbits,k≥3,aresimple. Thereare4k−3 possibletypesofsecondminimal(2k+1)-orbitsofsimplepositivetype, eachwith unique digraph and cyclic permutation. Their inverses represent all second mini- mal (2k+1)-orbits of simple negative type. The topological structure of all 4k−3 types of second minimal (2k+1)-orbits is presented in table 1. The topological structure of their inverses is obtained by replacing “max” and “min” with each other respectively. The P-linearization of the 4k−3 types (and their inverses) presentsanexampleofacontinuousmapwithasecondminimal(2k+1)-orbit. Theorem 1.13 in the particular case k =3 was proved in [2]. Second minimal orbits play important role in the problem on the distribution of periodic windows within the chaotic regime of the bifurcation diagram of the one-parameter family 4 U.G.ABDULLA,R.U.ABDULLA,M.U.ABDULLA,ANDN.H.IQBAL of unimodal maps. It is revealed in [2] that the first appearance of all the orbits is alwaysaminimalorbit,whilethesecondappearanceisasecondminimalorbit. Thestructureoftheremainderofthepaperisasfollows: InSection2,werecall somepreliminaryfacts. Theorem1.13isprovedinSection3. 2. PreliminaryResults Lemma2.1. Thedigraphofanm-orbit,B={β <β <···<β },m>2,possesses 1 2 m thefollowingproperties[4]: (1) Thedigraphcontainsaloop: ∃r suchthat J →J . ∗ r∗ r∗ (2) ∀r, ∃r(cid:48) and r(cid:48)(cid:48) such that Jr(cid:48) → Jr → Jr(cid:48)(cid:48); moreover, it is always possible tochooser(cid:48) (cid:44)r unlessmisevenandr=m/2,anditisalwayspossibleto chooser(cid:48)(cid:48)(cid:44)runlessm=2. (3) If(cid:2)β(cid:48),β(cid:48)(cid:48)(cid:3)(cid:44)(cid:2)β1,βm(cid:3),β(cid:48),β(cid:48)(cid:48)∈B,then∃Jr(cid:48) ⊂(cid:2)β(cid:48),β(cid:48)(cid:48)(cid:3)and∃Jr(cid:48) (cid:42)(cid:2)β(cid:48),β(cid:48)(cid:48)(cid:3)such that Jr(cid:48) →Jr(cid:48)(cid:48). (4) Thedigraphofacyclewithperiodm>2containsasubgraph J →···J r∗ r forany1≤r≤m−1. Definition 2.2. A cycle in a digraph is said to be primitive if it does not consist entirelyofacycleofsmallerlengthdescribedseveraltimes. Lemma 2.3 (Straffin). [9, 4] If f has a periodic point of period n > 1 and its associateddigraphcontainsaprimitivecycleJ →J →···→J →J oflength 0 1 m−1 0 m,thenfhasaperiodicpointyofperiodmsuchthat fk(y)∈J ,(0≤k<m). k Lemma 2.4 (Converse Straffin). [4] Let f have a periodic point of period n>1 with digraph D. Suppose f is strictly monotonic on each subinterval Ji =[βiβi+1] for 1≤i≤n−1. If f has an orbit of period m in the open interval (β ,β ) then 1 n either D contains a primitive cycle of length m, or m is even and D contains a primitivecycleoflengthm/2. 3. ProofsofMainResults 3.1. DigraphsofSecondMinimalOddOrbits. Proof. Let f :I →I beacontinuousendomorphismthathasa2k+1-orbit(k≥4) which is second minimal. Let B={β1<β2<···<β2k+1} be the ordered elements of this orbit; Let r =max{i| f(β)>β}. Such an r exists since f(β )>β and ∗ i i ∗ 1 1 f(β2k(cid:12)+1)(cid:12)<β(cid:12)2k+(cid:12)1. So,Jr∗→Jr∗;Let(cid:12)B−=(cid:12) (cid:8)β(cid:12) ∈B(cid:12) |β≤βr∗(cid:9),B+=(cid:8)β∈B|β>βr∗(cid:9);We have(cid:12)(cid:12)B−(cid:12)(cid:12)+(cid:12)(cid:12)B+(cid:12)(cid:12)=2k+1andhence(cid:12)(cid:12)B−(cid:12)(cid:12)(cid:44)(cid:12)(cid:12)B+(cid:12)(cid:12). Assume,withoutlossofgenerality, (cid:12)(cid:12)(cid:12)B−(cid:12)(cid:12)(cid:12)>(cid:12)(cid:12)(cid:12)B+(cid:12)(cid:12)(cid:12). Let r =max(cid:8)i<r∗| f(βi)≤βr∗(cid:9). We have f(βr)≤βr∗, f(βr+1)>βr∗, andhence J →J . FromLemma2.1itfollowstheexistenceofthesubgraph r r∗ (4) (cid:8)J →···→J →J r∗ r r∗ Assumethat(4)presentstheshortestpath. Sincethereare2kintervals,itslengthis atmost2k+1andatleast2k−1. Indeed,ifitslengthis2k−2orless,thenLemma 2.3 implies the existence of an odd periodic orbit of period 2k−3 or less. Let us SECONDMINIMALODDPERIODICORBITS 5 change the indices of intervals in (4) successfully as r =r ,···,r =r and write ∗ 1 m path(4)as (5) (cid:8)J →···→J →J r1 rm r1 where m=2k−2, 2k−1, or 2k; For simplicity we are going to use the notation a i for β. In the sequel the notation in the second row of the cyclic permutation i b means that either of the entries a or b are valid choices for the image of the node inthesamecolumnofthefirstrow; J →[a,b]means f(r)=aand f(r +1)=b, ri i i thenotation(cid:104)J ,J (cid:105)meanstheunionof J , J , andalltheintervalsbetweenthem. r s r s(cid:68) (cid:69) Notethatif J →J and J →J then J → J ,J . ri rj ri rk ri rj rk Since(5)istheshortestpathwehave (6a) J (cid:57)J for j>i+1,1≤i≤m−2; ri rj (6b) J (cid:57)J for2≤i≤m−1; ri r1 wealsohave (7a) J (cid:57)J for1< j<i,4≤i≤m,i− jeven; ri rj unless i=m=2k, j=2. Indeed, otherwise according to Lemma 2.3 an odd orbit of length less than 2k−1 must exist. From (6) and (7) we can infer the relative positionoftheintervalstobeeither ··· Jr5 Jr3 Jr1 Jr2 Jr4 Jr6 ··· Figure2. Relativepositionsofintervalsinthesub-graphoflength mwhen J totherightof J r2 r1 or ··· Jr6 Jr4 Jr2 Jr1 Jr3 Jr5 ··· Figure3. Relativepositionsofintervalsinthesub-graphoflength mwhen J totheleftof J r2 r1 If m=2k then the path (5) contains all 2k intervals. From the proof of Theo- rem 1.10 (for example, see Proposition 8 in [4]) it follows that the corresponding periodic orbit is minimal. Thus, we need only to focus in cases m=2k−1 and m=2k−2. 6 U.G.ABDULLA,R.U.ABDULLA,M.U.ABDULLA,ANDN.H.IQBAL Lemma 3.1. The case when m=2k−1 produces exactly 2 second minimal (2k+ 1)-orbits. Cyclic permutations are given in (8) and (9), and the corresponding digraphsarepresentedinfig.4andfig.5respectively. (cid:32) (cid:33) 1 2 ··· k−2 k−1 k k+1 k+2 ··· (8) k+1 2k+1 ··· k+5 k+2 k+4 k+3 k ··· (cid:32) (cid:33) 1 2 ··· k−2 k−1 k k+1 k+2 k+3 ··· (9) k 2k+1 ··· k+5 k+4 k+2 k+3 k+1 k−1 ··· Jk+2 Jk+3 Jk+4 Jk+5 ... J2k−2 J2k−1 J2k Jk+1 J1 Jk Jk−1 Jk−2 Jk−3 ... J4 J3 J2 Figure4. Digraphoffirstcyclicpermutation(8)whenm=2k−1. Jk+2 Jk+3 Jk+4 Jk+5 ... J2k−2 J2k−1 J2k Jk+1 J1 Jk Jk−1 Jk−2 Jk−3 ... J4 J3 J2 Figure5. Digraphofsecondcyclicpermutation(9)whenm=2k−1 Proof. Whenthelengthofthepath(5)is2k−1wehaveexactlyoneinterval, call it J˜, missing. Since J → J , J (cid:57) J for i>1 odd, one of the endpoints r2k−1 r1 r2k−1 ri of J mustbemappedtosomeelementoftheorbitwhichseparates J and J . r2k−1 r1 r3 Since(cid:8)J →J ,but J (cid:57)J itfollowsthattheendpointof J whichseparates r1 r2 r1 r3 r1 J and J , must be mapped to the element of the orbit which separates J and r1 r2 r1 J . Therefore, unless there is an interval between J and J , the element of the r3 r1 r3 orbit which separates J and J will be an image of two distinct elements of the r1 r3 orbit. Hence, J˜is between J and J , and the distribution of the intervals is as r1 r3 in fig. 6 or fig. 6 reflected about the center point k+1. Note that the distribution (cid:12) (cid:12) (cid:12) (cid:12) describedinfig.6isrelevantduetoourassumption(cid:12)(cid:12)B−(cid:12)(cid:12)>(cid:12)(cid:12)B+(cid:12)(cid:12). Theothercasewill (cid:12) (cid:12) (cid:12) (cid:12) provide the associated inverse digraph with (cid:12)(cid:12)B+(cid:12)(cid:12)>(cid:12)(cid:12)B−(cid:12)(cid:12). Hence, the structure is as itisdescribedinfig.6. This implies the following cyclic permutation. Note the possible alternation of imagesofelements1,k+2,k−1,andk. SECONDMINIMALODDPERIODICORBITS 7 Jr2k−1 Jr2k−3 ··· Jr3 J˜ Jr1 Jr2 ··· Jr2k−4 Jr2k−2 1 2 3 k−1 k k+1 k+2 2k−1 2k 2k+1 (cid:12) (cid:12) (cid:12) (cid:12) Figure6. Completeintervalforcasewhenm=2k−1with(cid:12)(cid:12)B−(cid:12)(cid:12)>(cid:12)(cid:12)B+(cid:12)(cid:12) (10)  k+1k1 ······ (cid:104)kk−+12, k+k4(cid:105) kk++13 kk++k21 kk+−31 kk+−42 ······  (1) Case(1): f(k−1)=k+2⇒ f(k)=k+4 (2) Case(1) : f(1)=k+1⇒ f(k+2)=k;Thisproducesasimplepositivetype(2k+ 1 1)-orbit given in (8) and fig. 4 with topological structure max-min-max. Next weanalyzethedigraphtoshowthattherearenoprimitivecyclesofevenlength ≤2k−2,whichwouldimplybyStraffin’slemmaanexistenceofoddperiodicorbit oflength≤2k−3. FromLemms2.4itthenfollowsthatthetheP-linearizationof theorbit(8)presentsanexampleofcontinuousmapwithsecondminimal(2k+1)- orbit. Wesplittheanalysisintotwocases: (a) Considerprimitivecyclesthatcontain J . Withoutlossofgeneralitychoose 1 J as the starting vertex. First assume that cycle doesn’t start with chain 1 J1→Jk+1. Since J2k+1−i→Ji, i=1,...,k−1,anysuchcyclecanbeformed only by adding on to the starting vertex J1 pairs (J2k+1−i,Ji),i=1,...,k−1. Therefore, thelengthofthecycle(bycounting J twice)willbealwaysan 1 odd number. On the contrary, if cycle starts with chain J1 → Jk+1, then to closeitatJ thesmallestrequiredevenlengthis2k. 1 (b) Consider primitive cycles that don’t contain J . Obviously, such a cycle 1 doesn’tcontainJ2,J3,...,Jk−3orJk+4,Jk+5,...,J2k−1,J2ksincethesevertices have red edges connecting them all the way to J . Additionally, this cycle 1 cannotcontainJk+1orJksinceJ1istheonlyvertex(besidesJk+1itself)with adirectededgeto Jk+1,and Jk+1 istheonlyvertexwithdirectededgeto Jk. This leaves 4 vertices: Jk−2,Jk−1,Jk+2,Jk+3. Since Jk+2→Jk−1, Jk+3→Jk−2 and Jk+2(cid:11)Jk−1, Jk+3(cid:11)Jk−2,anycycleformedbythesefourverticeswill consist of a starting vertex followed (or ending vertex preceded) by pairs (Jk+2,Jk−1), (Jk+3,Jk−2) added arbitrarily many times, and hence no cycles ofevenlengthcanbeproduced. (3) Case(1) : f(1)=k⇒ f(k+2)=k+1,thenwehavetheperiod4-suborbit 2 {k−1,k+1,k+2,k+3},acontradiction. (4) Case(2): f(k−1)=k+4⇒ f(k)=k+2 (5) Case(2) : f(1)=k+1⇒ f(k+2)=kthenwehavetheperiod2-suborbit{k,k+2}, 1 acontradiction. (6) Case(2) : f(1)=k⇒ f(k+2)=k+1;Thisproducesasimplepositivetype(2k+ 2 1)-orbitgivenin(9)andfig.5withtopologicalstructuremax-min-max.Werepeat theargumentfromCase(1) . Firstweanalyzethedigraphtoshowthatthereare 1 noprimitivecyclesofevenlength≤2k−2. Wesplittheanalysisintotwocases: (a) Considerprimitivecyclesthatcontain J . Withoutlossofgeneralitychoose 1 J as a starting vertex. First assume that cycle starts with the edge J → 1 1 Jj, with j taking any value between k+3 and 2k. Since J2k+1−i→Ji, i= 8 U.G.ABDULLA,R.U.ABDULLA,M.U.ABDULLA,ANDN.H.IQBAL 1,...,k−2, any such cycle can be formed only by adding to starting vertex J1 pairs (J2k+1−i,Ji),i=1,...,k−2. Therefore, the length of the cycle (by counting J twice) will be always an odd number. If the cycle starts with 1 theedge J1→Jk+2,thentheonlydifferencefromthepreviouscasewillbe theadditionofthepairs(Jk+2,Jk−1)and/or(Jk+2,Jk)arbitrarilymanytimes. Hence, only cycles of odd length will be produced. On the contrary, if the cycle starts with the chain J1 → Jk+1 or J1 → Jk, then to close it at J1 the smallestrequiredevenlengthis2k. (b) Consider primitive cycle that doesn’t contain J . Obviously, such a cycle 1 doesn’t contain J2,J3,...,Jk−2 or Jk+3,Jk+4,...,J2k−1,J2k since these ver- tices have red edges connecting them all the way to J . Additionally, this 1 cycle cannot contain Jk+1 since J1 is the only vertex (besides Jk+1 itself) withdirectededgetoJk+1. Thisleaves3vertices: Jk,Jk−1,Jk+2connectedas Jk(cid:11)Jk+2(cid:11)Jk−1. Therefore,thistriplecanonlyproducecycleswhenpairs (Jk+2,Jk−1)and(Jk+2,Jk)areaddedtoastartingvertex. Therefore,nocycle ofevenlengthcanbeproduced. (cid:3) Now,observethatwhenthelength,m,ofpath(5)is2k−2itiscomprisedof2k− 2 distinct intervals and thus there are 2 additional intervals required to complete the periodic orbit of period 2k+1. From path (5) and the rules (6) it follows that the relative distribution of the 2k−2 intervals is in one of the following 2 forms illustrated in fig. 7 or fig. 8. Call the two missing intervals J˜ and Jˆ. There are 2k−1 slots in fig. 7 or fig. 8 where we can place each of these extra intervals for a total of (2k−1)2 pairs. However, since swapping the locations of J˜and Jˆdoes not affect the analysis let us consider the distribution given in fig. 8 in the upper triangularmatrix(11)where(i,j)indicatesplacing J˜inpositioniand Jˆinposition j. Jr2k−3 ··· Jr5 Jr3 Jr1 Jr2 Jr4 Jr6 ··· Jr2k−2 Figure7. Relativepositionsofintervalsinthesub-graphoflength m=2k−2when J totherightof J r2 r1 or Jr2k−2 ··· Jr6 Jr4 Jr2 Jr1 Jr3 Jr5 ··· Jr2k−3 Figure8. Relativepositionsofintervalsinthesub-graphoflength m=2k−2when J totheleftof J r2 r1 SECONDMINIMALODDPERIODICORBITS 9 (1,1) (1,2) (1,3) ··· (1,2k−3) (1,2k−2) (1,2k−1) (2,2) (2,3) ··· (2,2k−3) (2,2k−2) (2,2k−1) . . . . (3,3) ··· . . (11) ... (i,i) ··· (i,2k−i+2) ... ... ... ... (2k−1,2k−1) Thenextlemmaspecifiesalltheentries(i,j)inmatrix(11),suchthatinsertion of(J˜,Jˆ)in(i,j)canproducesecondminimaloddorbits. Lemma 3.2. Fix the entry point, i, for J˜, then to produce second minimal 2k+1 orbit, Jˆcanonlybeplacedin (1) position2k−1wheni=1, (2) positions2k−ior2k−i+1for1<i<k, (3) andpositionk+1wheni=k. ··· Jrw+2 Jrw J˜ Jrw−2 Jrw−4 ··· Jrw−5 Jrw−3 Jrw−1 Jrw+1 ··· i−2 i−1 i i+1 i+2 2k−i−1 2k−i+2 Figure9. Relativeorderingwhenm=2k−2and J˜isinpositioni Proof. Let1<i<kfork>3. Lettheintervalimmediatelytotheleftof J˜becalled J , or, the w-th distinct interval in path (5). From the relative positions of the rw intervalsinfig.3itisclearthatw=2(k−i+1). Asdepictedinfig.9,theintervals totherightof J˜,haveasetpath. J mapsonlyto J , J mapsonlyto J , rw−4 rw−3 rw−2 rw−1 etc. Notethatwhiletheexactpointsthattheseintervalsmaptomightchangeupon the insertion of Jˆ, the overall structure must remain the same in order to preserve path(5). 10 U.G.ABDULLA,R.U.ABDULLA,M.U.ABDULLA,ANDN.H.IQBAL However, this pattern can no longer be continued indefinitely for interval J . rw J must be mapped to J , by definition. This implies that one end point of rw rw+1 J is mapped arbitrarily to the left of J , and the other endpoint is mapped rw rw+1 arbitrarilytotherightof J . Accordingto(6), J can’tmaptoanyoddinterval rw+1 rw greaterthanJ . AssumingthatJ isn’ttherightmostinterval,orinotherwords rw+1 rw+1 w+1<2k−3,thentheendpointof J thatmapstotherightof J ,mustmapto rw rw+1 a point separating J and J . This could either be a point directly in between rw+1 rw+3 J and J ,oranewpointbetween J and J ,upontheinsertionof Jˆ. rw+1 rw+3 rw+1 rw+3 Notethatifw+1=2k−3,orinotherwords J istherightmostinterval,then rw+1 J nolongerexists. Ratherthanmappingtoapointseparating J and J ,an rw+3 rw+1 rw+3 endpointof J willjustmaptotherightof J . rw rw+1 WhileitisclearhowoneendpointofJ willmaptotherightofJ ,itismuch rw rw+1 less clear how an endpoint of J will map to the left of J . According to (7), rw rw+1 J cannotmapto J orany J wherek<wandiseven. Thus,thearbitrarypoint rw r1 rk totheleftof J thatanendpointof J mustmapto,mustbeseparating J and rw+1 rw r1 J . Thus, the missing interval Jˆmust be inserted between J and J . Note rw+1 r1 rw+1 thataccordingtothepreviouslymentionedpositionalnotation,thisincludesallthe positionsk+1,k+2,...,2k−i,2k−i+1. SupposethattheintervalJˆisinsertedintoapositiontotheleftof2k−i. Assume, without loss of generality, that the interval Jˆ is inserted into position 2k−i−1 (betweenintervals J and J ifw≥6,andbetween J and J ifw=4),asthe rw−3 rw−5 r1 r2 contradictionwillbethesame. Theintervalimmediatelytotherightof Jˆhassome trouble mapping to the interval indexed one greater than itself. In the situation where Jˆis placed in position 2k−i−1, the interval immediately to the right of Jˆ is J , which has trouble mapping to J . One endpoint of J must map to rw−3 rw−2 rw−3 the left of J , while the other must map to the right of J . Again, according rw−2 rw−2 to (7), J can’t map to a lesser odd interval, or J . Thus, the only available rw−3 r1 pointtotheleftof J andtotherightof J ,isthepointindexedk+1,ortheleft r1 rw−2 endpoint of J . However, it is important to note that the largest indexed interval, r1 J ,mustalsomapbackto J . Andaccordingto(7), J can’tmaptoalesser r2k−2 r1 r2k−2 eveninterval,specificallyincluding J . Therefore,anendpointof J mustmap r2 r2k−2 to the left of J , but can not map to the left of J . The only point that fits this r1 r2 description is the one indexed k+1. Thus, the point k+1 is already taken, and an endpoint of J can not map to the point indexed k+1. Furthermore, there are rw−3 no open points that are both to the right of J and to the left of J . This is an rw−2 r1 immediatecontradiction,asitisnowimpossibleforanendpointof J tomapto rw−3 therightof J ,makingitimpossiblefor J tocontain J . rw−2 rw−3 rw−2 Now suppose instead w=4. If this is the case, then Jˆis inserted between J r1 and J . Again,theimageof J mustcontainonly J and J . Thus,oneendpoint r2 r1 r1 r2 of J must map to the right of J , but can not map to the right of J . Therefore, r1 r1 r3 theleftendpointof J mustmaptothepointseparating J and J . Now, J must r1 r1 r3 r2 maptoJ ,butcannotmapbacktoJ . Thus,oneoftheendpointsofJ mustmap r3 r1 r2 to a point separating J and J . Both the left endpoint of of J and an endpoint r1 r3 r1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.