ebook img

Chromatin dynamics in cellular function PDF

156 Pages·2006·2.419 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chromatin dynamics in cellular function

Results and Problems in Cell Differentiation 41 Series Editors D. Richter, H. Tiedge BrehonC.Laurent (Ed.) Chromatin Dynamics in Cellular Function With14Figuresand1Table 123 BrehonC.Laurent,PhD DepartmentofOncologicalSciences MountSinaiSchoolofMedicine OneGustaveL.LevyPlace Box1130 NewYork,NY10029 USA ISSN0080-1844 ISBN-103-540-33685-0SpringerBerlinHeidelbergNewYork ISBN-13978-3-540-33685-3SpringerBerlinHeidelbergNewYork LibraryofCongressControlNumber:2006925339 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 PrintedinGermany Theuseofregisterednames,trademarks,etc.inthispublicationdoesnotimply,evenintheabsence ofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulations andthereforefreeforgeneraluse. Coverdesign:Design&ProductionGmbH,Heidelberg TypesettingandProduction:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Printedonacid-freepaper 31/3150/YL–543210 Contents StructureandFunctionofProteinModulesinChromatinBiology K.L.Yap,M.-M.Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 HistoneLysineAcetylationRecognition bytheBromodomain . . . . . . . . . . . . . . . . . . . . . . 2 3 HistoneLysineMethylationRecognition . . . . . . . . . . . 4 4 ChromosomalDNA/HistoneBinding . . . . . . . . . . . . . 8 5 ChromosomalProtein–ProteinInteractions . . . . . . . . . 11 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . 17 8 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . 17 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TheGenerationandRecognitionofHistoneMethylation M.S.Torok,P.A.Grant . . . . . . . . . . . . . . . . . . . . . . . . . 25 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 TheNucleosomeandChromatinStructure . . . . . . . . . . 26 2.1 ChromatinDomains . . . . . . . . . . . . . . . . . . . . . . 27 2.2 HistoneModifications . . . . . . . . . . . . . . . . . . . . . 27 3 HistoneMethylation . . . . . . . . . . . . . . . . . . . . . . 28 3.1 LysineMethylation . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 ArginineMethylation . . . . . . . . . . . . . . . . . . . . . . 31 3.3 HistoneDemethylation . . . . . . . . . . . . . . . . . . . . . 32 4 HistoneModificationBindingProteins . . . . . . . . . . . . 33 4.1 Chromodomains . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 TudorandMalignantBrainTumorDomains . . . . . . . . . 35 4.3 WD40Domain . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 HistoneModificationCrosstalkwithMethylation . . . . . . 36 6 ConclusionsandFuturePerspectives . . . . . . . . . . . . . 38 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 VI Contents HistoneUbiquitylationandtheRegulationofTranscription M.A.Osley,A.B.Fleming,C.-F.Kao . . . . . . . . . . . . . . . . . . 47 1 RegulationofHistoneUbiquitylation . . . . . . . . . . . . . 47 1.1 TheUbiquitinConjugatingPathway . . . . . . . . . . . . . . 49 1.2 FactorsRegulatingHistoneUbquitylation . . . . . . . . . . 50 2 RelationshipBetweenHistoneH2BUbiquitylation andHistoneH3Methylation . . . . . . . . . . . . . . . . . . 55 3 RoleofHistoneUbiquitylationinGeneExpression . . . . . . 57 3.1 UbiquitylatedH2B . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 UbiquitylatedH2A . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 UbiquitylatedH4 . . . . . . . . . . . . . . . . . . . . . . . . 65 4 AdditionalCellularRolesofUbiquitylatedHistones . . . . . 66 5 SummaryandPerspectives . . . . . . . . . . . . . . . . . . . 66 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HistoneDynamicsDuringTranscription: ExchangeofH2A/H2BDimersandH3/H4Tetramers DuringPolIIElongation C.Thiriet,J.J.Hayes . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 1 ABriefHistoryofChromatinandTranscription . . . . . . . 77 2 RNAPolymeraseActivityInducesHistoneExchange withFreePools . . . . . . . . . . . . . . . . . . . . . . . . . 79 3 HistoneExchangeMaybeDuetoRNAPolIIElongation ThroughNucleosomes . . . . . . . . . . . . . . . . . . . . . 80 4 ExchangeofH3/H4TetramersDuringTranscription . . . . . 82 5 H2A/H2BvsH3/H4Exchange . . . . . . . . . . . . . . . . . 83 6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 TheRolesofChromatinRemodellingFactorsinReplication A.Neves-Costa,P.Varga-Weisz. . . . . . . . . . . . . . . . . . . . . 91 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2 HistoneModificationsandDNAReplication . . . . . . . . . 94 3 HistoneChaperonesandDNAReplication . . . . . . . . . . 94 4 ATP-DependentRemodellingFactors andChromatinDynamicsinDNAReplication . . . . . . . . 97 4.1 Energy-DependentChromatinRemodellersHaveRoles inDNARepair . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 ISWIComplexesFacilitateDNAReplicationinChromatin . . 98 4.3 ISWIComplexeshaveRoles intheReplicationofChromatinStructures . . . . . . . . . . 99 4.4 ISWIComplexesTargetReplicationSites . . . . . . . . . . . 100 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Contents VII ChromatinModificationsinDNARepair A.J.Morrison,X.Shen . . . . . . . . . . . . . . . . . . . . . . . . . . 109 1 OverviewofChromatinModifications . . . . . . . . . . . . . 109 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 109 1.2 ChromatinModifications . . . . . . . . . . . . . . . . . . . . 110 2 HistoneModificationsinDNARepair . . . . . . . . . . . . . 111 2.1 H2AandH2B . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.2 H3andH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3 Chromatin-ModifyingComplexesinDNARepair . . . . . . 115 3.1 Histone-ModifyingComplexes . . . . . . . . . . . . . . . . . 115 3.2 Chromatin-RemodelingComplexes . . . . . . . . . . . . . . 115 4 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . 117 4.1 AdditionalChromatinModifiersinDNARepair . . . . . . . 117 4.2 RecruitmentandFunctionofChromatinModifiers inDNARepair . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3 ChromatinModificationsandCancer . . . . . . . . . . . . . 120 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 MechanismsforNucleosomeMovement byATP-dependentChromatinRemodelingComplexes A.Saha,J.Wittmeyer,B.R.Cairns . . . . . . . . . . . . . . . . . . . 127 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2 NucleosomeSpecialization . . . . . . . . . . . . . . . . . . . 128 3 TheNucleosome:ABiophysicalChallengeforRemodelers . 129 3.1 RemodelerFamilies:Discovery,Functions,andProperties. . 130 3.2 RemodelersElicitDNA- and/orNucleosome-dependentATPaseActivity . . . . . . . 132 3.3 NucleosomeSlidingandAccessibility . . . . . . . . . . . . . 133 3.4 TheSWI/SNFandISWIRemodelers areATP-dependentDirectionalDNATranslocases . . . . . . 134 4 RemodelersResembleDNAHelicases/Translocases . . . . . 135 4.1 DNATranslocationfromanInternalNucleosomalSite . . . . 136 4.2 Helicases/TranslocasesProvideModels forDNATranslocationbyRemodelers. . . . . . . . . . . . . 137 4.3 ApplyingPrinciplesofTranslocases toRemodelNucleosomes . . . . . . . . . . . . . . . . . . . . 138 4.4 DNATranslocationMayUnderlieDNATwisting . . . . . . . 141 5 ChromatinRemodeling EnablesSpecializedBiologicalFunctions . . . . . . . . . . . 142 5.1 NucleosomeAssemblyandSpacing . . . . . . . . . . . . . . 142 VIII Contents 5.2 HistoneOctamerTransfer . . . . . . . . . . . . . . . . . . . 143 5.3 NucleosomeEjection . . . . . . . . . . . . . . . . . . . . . . 143 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 ResultsProblCellDiffer(41) L.Brehon:ChromatinDynamicsinCellularFunction DOI10.1007/010/Published online:17February2006 © Springer-VerlagBerlinHeidelberg2006 StructureandFunctionofProteinModules inChromatinBiology KyokoL.Yap·Ming-MingZhou((cid:1)) StructuralBiologyProgram,DepartmentofPhysiologyandBiophysics, MountSinaiSchoolofMedicine,NewYorkUniversity,1425MadisonAvenue, NewYork,NY10029-6574USA [email protected] Abstract Chromatin-mediated gene transcription or silencing is a dynamic process in which binding of various proteins or protein complexes can displace nucleosomal his- tones from DNA to relieve repression or drive the gene into a highly repressed, silent state.CovalentmodificationstoDNAandhistonesassociatedwithchromatinstructural change play a crucial role in transcriptional regulation, with particular modifications on certain residues associated with a specific transcriptional outcome. In recent years a number of structural domains have been identified within chromatin-associated pro- teins,includingDNAorRNAbindingdomains,protein-proteininteractiondomainsand domainsthatrecognizespecificcovalentmodificationstohistonetails.Inthisreviewwe discussthestructuralfeaturesoftheseproteinmodulesandthefunctionalrolestheyplay inchromatinbiology. 1 Introduction Gene transcriptional regulation at the chromatin level is coordinated by a number of proteins and protein complexes that interact with nucleosomal DNA and histone proteins. The addition and removal of covalent modifica- tions to chromatin allow for another level of transcriptional controlbeyond thegeneticcode.Toattainthisgoal,oneneedstounderstandthemechanisms underlying the regulation and transduction of genetic information. Grow- ing evidence supports the view that a genome-wide epigenetic mechanism, imposedatthelevelofgenomicDNA-packinghistoneproteinsthroughpost- translational amino acid modifications including acetylation, methylation, phosphorylation,andubiquitination, playsafundamentalroleincontrolling thecapacityofthegenomeforinformationstorageandretrievalinresponse to physiological and environmental stimuli, and for inheritable changes of gene function and expression. Site- and state-specific modifications on cer- tain amino acid residues within nucleosomal histones have been associated with a specific transcriptional outcome, e.g. gene repression or activation. Indeed, the “histone code hypothesis” (Strahl and Allis 2000; Turner 2002) postulates that different combinations of modifications, either in combina-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.