Results and Problems in Cell Differentiation 41 Series Editors D. Richter, H. Tiedge BrehonC.Laurent (Ed.) Chromatin Dynamics in Cellular Function With14Figuresand1Table 123 BrehonC.Laurent,PhD DepartmentofOncologicalSciences MountSinaiSchoolofMedicine OneGustaveL.LevyPlace Box1130 NewYork,NY10029 USA ISSN0080-1844 ISBN-103-540-33685-0SpringerBerlinHeidelbergNewYork ISBN-13978-3-540-33685-3SpringerBerlinHeidelbergNewYork LibraryofCongressControlNumber:2006925339 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 PrintedinGermany Theuseofregisterednames,trademarks,etc.inthispublicationdoesnotimply,evenintheabsence ofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulations andthereforefreeforgeneraluse. Coverdesign:Design&ProductionGmbH,Heidelberg TypesettingandProduction:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Printedonacid-freepaper 31/3150/YL–543210 Contents StructureandFunctionofProteinModulesinChromatinBiology K.L.Yap,M.-M.Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 HistoneLysineAcetylationRecognition bytheBromodomain . . . . . . . . . . . . . . . . . . . . . . 2 3 HistoneLysineMethylationRecognition . . . . . . . . . . . 4 4 ChromosomalDNA/HistoneBinding . . . . . . . . . . . . . 8 5 ChromosomalProtein–ProteinInteractions . . . . . . . . . 11 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . 17 8 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . 17 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TheGenerationandRecognitionofHistoneMethylation M.S.Torok,P.A.Grant . . . . . . . . . . . . . . . . . . . . . . . . . 25 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 TheNucleosomeandChromatinStructure . . . . . . . . . . 26 2.1 ChromatinDomains . . . . . . . . . . . . . . . . . . . . . . 27 2.2 HistoneModifications . . . . . . . . . . . . . . . . . . . . . 27 3 HistoneMethylation . . . . . . . . . . . . . . . . . . . . . . 28 3.1 LysineMethylation . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 ArginineMethylation . . . . . . . . . . . . . . . . . . . . . . 31 3.3 HistoneDemethylation . . . . . . . . . . . . . . . . . . . . . 32 4 HistoneModificationBindingProteins . . . . . . . . . . . . 33 4.1 Chromodomains . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 TudorandMalignantBrainTumorDomains . . . . . . . . . 35 4.3 WD40Domain . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 HistoneModificationCrosstalkwithMethylation . . . . . . 36 6 ConclusionsandFuturePerspectives . . . . . . . . . . . . . 38 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 VI Contents HistoneUbiquitylationandtheRegulationofTranscription M.A.Osley,A.B.Fleming,C.-F.Kao . . . . . . . . . . . . . . . . . . 47 1 RegulationofHistoneUbiquitylation . . . . . . . . . . . . . 47 1.1 TheUbiquitinConjugatingPathway . . . . . . . . . . . . . . 49 1.2 FactorsRegulatingHistoneUbquitylation . . . . . . . . . . 50 2 RelationshipBetweenHistoneH2BUbiquitylation andHistoneH3Methylation . . . . . . . . . . . . . . . . . . 55 3 RoleofHistoneUbiquitylationinGeneExpression . . . . . . 57 3.1 UbiquitylatedH2B . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 UbiquitylatedH2A . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 UbiquitylatedH4 . . . . . . . . . . . . . . . . . . . . . . . . 65 4 AdditionalCellularRolesofUbiquitylatedHistones . . . . . 66 5 SummaryandPerspectives . . . . . . . . . . . . . . . . . . . 66 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HistoneDynamicsDuringTranscription: ExchangeofH2A/H2BDimersandH3/H4Tetramers DuringPolIIElongation C.Thiriet,J.J.Hayes . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 1 ABriefHistoryofChromatinandTranscription . . . . . . . 77 2 RNAPolymeraseActivityInducesHistoneExchange withFreePools . . . . . . . . . . . . . . . . . . . . . . . . . 79 3 HistoneExchangeMaybeDuetoRNAPolIIElongation ThroughNucleosomes . . . . . . . . . . . . . . . . . . . . . 80 4 ExchangeofH3/H4TetramersDuringTranscription . . . . . 82 5 H2A/H2BvsH3/H4Exchange . . . . . . . . . . . . . . . . . 83 6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 TheRolesofChromatinRemodellingFactorsinReplication A.Neves-Costa,P.Varga-Weisz. . . . . . . . . . . . . . . . . . . . . 91 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2 HistoneModificationsandDNAReplication . . . . . . . . . 94 3 HistoneChaperonesandDNAReplication . . . . . . . . . . 94 4 ATP-DependentRemodellingFactors andChromatinDynamicsinDNAReplication . . . . . . . . 97 4.1 Energy-DependentChromatinRemodellersHaveRoles inDNARepair . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 ISWIComplexesFacilitateDNAReplicationinChromatin . . 98 4.3 ISWIComplexeshaveRoles intheReplicationofChromatinStructures . . . . . . . . . . 99 4.4 ISWIComplexesTargetReplicationSites . . . . . . . . . . . 100 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Contents VII ChromatinModificationsinDNARepair A.J.Morrison,X.Shen . . . . . . . . . . . . . . . . . . . . . . . . . . 109 1 OverviewofChromatinModifications . . . . . . . . . . . . . 109 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 109 1.2 ChromatinModifications . . . . . . . . . . . . . . . . . . . . 110 2 HistoneModificationsinDNARepair . . . . . . . . . . . . . 111 2.1 H2AandH2B . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.2 H3andH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3 Chromatin-ModifyingComplexesinDNARepair . . . . . . 115 3.1 Histone-ModifyingComplexes . . . . . . . . . . . . . . . . . 115 3.2 Chromatin-RemodelingComplexes . . . . . . . . . . . . . . 115 4 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . 117 4.1 AdditionalChromatinModifiersinDNARepair . . . . . . . 117 4.2 RecruitmentandFunctionofChromatinModifiers inDNARepair . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3 ChromatinModificationsandCancer . . . . . . . . . . . . . 120 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 MechanismsforNucleosomeMovement byATP-dependentChromatinRemodelingComplexes A.Saha,J.Wittmeyer,B.R.Cairns . . . . . . . . . . . . . . . . . . . 127 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2 NucleosomeSpecialization . . . . . . . . . . . . . . . . . . . 128 3 TheNucleosome:ABiophysicalChallengeforRemodelers . 129 3.1 RemodelerFamilies:Discovery,Functions,andProperties. . 130 3.2 RemodelersElicitDNA- and/orNucleosome-dependentATPaseActivity . . . . . . . 132 3.3 NucleosomeSlidingandAccessibility . . . . . . . . . . . . . 133 3.4 TheSWI/SNFandISWIRemodelers areATP-dependentDirectionalDNATranslocases . . . . . . 134 4 RemodelersResembleDNAHelicases/Translocases . . . . . 135 4.1 DNATranslocationfromanInternalNucleosomalSite . . . . 136 4.2 Helicases/TranslocasesProvideModels forDNATranslocationbyRemodelers. . . . . . . . . . . . . 137 4.3 ApplyingPrinciplesofTranslocases toRemodelNucleosomes . . . . . . . . . . . . . . . . . . . . 138 4.4 DNATranslocationMayUnderlieDNATwisting . . . . . . . 141 5 ChromatinRemodeling EnablesSpecializedBiologicalFunctions . . . . . . . . . . . 142 5.1 NucleosomeAssemblyandSpacing . . . . . . . . . . . . . . 142 VIII Contents 5.2 HistoneOctamerTransfer . . . . . . . . . . . . . . . . . . . 143 5.3 NucleosomeEjection . . . . . . . . . . . . . . . . . . . . . . 143 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 ResultsProblCellDiffer(41) L.Brehon:ChromatinDynamicsinCellularFunction DOI10.1007/010/Published online:17February2006 © Springer-VerlagBerlinHeidelberg2006 StructureandFunctionofProteinModules inChromatinBiology KyokoL.Yap·Ming-MingZhou((cid:1)) StructuralBiologyProgram,DepartmentofPhysiologyandBiophysics, MountSinaiSchoolofMedicine,NewYorkUniversity,1425MadisonAvenue, NewYork,NY10029-6574USA [email protected] Abstract Chromatin-mediated gene transcription or silencing is a dynamic process in which binding of various proteins or protein complexes can displace nucleosomal his- tones from DNA to relieve repression or drive the gene into a highly repressed, silent state.CovalentmodificationstoDNAandhistonesassociatedwithchromatinstructural change play a crucial role in transcriptional regulation, with particular modifications on certain residues associated with a specific transcriptional outcome. In recent years a number of structural domains have been identified within chromatin-associated pro- teins,includingDNAorRNAbindingdomains,protein-proteininteractiondomainsand domainsthatrecognizespecificcovalentmodificationstohistonetails.Inthisreviewwe discussthestructuralfeaturesoftheseproteinmodulesandthefunctionalrolestheyplay inchromatinbiology. 1 Introduction Gene transcriptional regulation at the chromatin level is coordinated by a number of proteins and protein complexes that interact with nucleosomal DNA and histone proteins. The addition and removal of covalent modifica- tions to chromatin allow for another level of transcriptional controlbeyond thegeneticcode.Toattainthisgoal,oneneedstounderstandthemechanisms underlying the regulation and transduction of genetic information. Grow- ing evidence supports the view that a genome-wide epigenetic mechanism, imposedatthelevelofgenomicDNA-packinghistoneproteinsthroughpost- translational amino acid modifications including acetylation, methylation, phosphorylation,andubiquitination, playsafundamentalroleincontrolling thecapacityofthegenomeforinformationstorageandretrievalinresponse to physiological and environmental stimuli, and for inheritable changes of gene function and expression. Site- and state-specific modifications on cer- tain amino acid residues within nucleosomal histones have been associated with a specific transcriptional outcome, e.g. gene repression or activation. Indeed, the “histone code hypothesis” (Strahl and Allis 2000; Turner 2002) postulates that different combinations of modifications, either in combina-