ebook img

Chemo-Enzymatic Synthesis of Enantiopure Aliphatic Amino Acids PDF

130 Pages·2017·5.43 MB·Italian
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemo-Enzymatic Synthesis of Enantiopure Aliphatic Amino Acids

POLITECNICO DI MILANO Scuola di Ingegneria Industriale e dell’Informazione Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta” Corso di Laurea Magistrale in Ingegneria Chimica Chemo-Enzymatic Synthesis of Enantiopure Aliphatic Amino Acids Relatore: Prof. Davide Tessaro Tesi di Laurea Magistrale di: Nicolò Rossi Matricola: 863867 A.A 2017-2018 ABSTRACT The synthesis of aliphatic amino acids with high optical purity is of major importance in synthetic chemistry, since such compounds find use in a variety of tailor-mad oligopeptides with biological or pharmacological activity. Biocatalysis, being based on the exploitation of enzymes with intrinsical high selectivity, may represent in this view a preferential technology. In this thesis work, we carry out an enzyme-mediated selective hydrolysis of amino acid thioesters based on a thienylic core in presence of an organic base (trioctylamine), which promotes their racemization. In such conditions, a dynamic kinetic resolution takes place, and we were able to synthesize a series of variously substituted thienylglycines presenting high enantiomeric excess in high yield. The successive reduction of the thienylic core promoted by Ni Raney in presence of hydrazine permits to obtain the corresponding long-chain alkylic amino acid with retention of enantiomeric excess. In conclusion, we were able to devise and put in practice a new synthetic strategy for the obtainment of long-chain alpha amino acids, based on the consecutive action of a biocatalyst and an inorganic catalyst which furnishes products in high yield and excellent enantiomeric excess. ABSTRACT IN LINGUA ITALIANA La sintesi di ammonoacidi alifatici ad elevata purezza ottica presenta una grossa importanza, in quanto tali composti trovano uso, oltre che per se stessi, nella sintesi di oligopeptidi a struttura nota aventi diverse applicazioni. La biocatalisi, fondata sull'uso di enzimi ad alta selettività, può rapprentare una via preferenziale in quest'ottica. In questo lavoro di tesi si sfrutta un'idrolisi enzimatica selettiva di tioesteri di amminoacidi basati su di un nucleo tienilico in presenza di una base organica che ne favorisce la racemizzazione, in modo da essere in condizioni di risoluzione cinetica dinamica. Tramite tale metodo, una serie di tienilglicine variamente sostituite è stata ottenuta con elevato eccesso enantiomerico ed alta conversione. Una successiva riduzione del nucleo tienilico mediata di Ni Raney ha permesso di ottenere i corrispondenti amminoacidi alchilichi con ritenzione della purezza ottica. In conclusione, è stata progettata e realizzata una nuova via di sintesi per amminoacidi a lunga catena basata sull'azione successiva di un catalizzatore biologico e di un catalizzatore inorganico. SUMMARY ESTRATTO IN LINGUA ITALIANA _________________________________________ 10  1.1 Amino Acids ___________________________________________________________ 13  1.2 Synthesis of α-Amino Acids ______________________________________________ 15  1.2.1 Strecker Synthesis __________________________________________________ 16  1.2.2 Amination of α-Halogen Acids ________________________________________ 17  1.2.3 Amination via Molecular Rearrangement _______________________________ 19  1.3 Synthesis of Entiomerically Pure Amino Acids _______________________________ 21  1.4 Asymmetric Synthesis ___________________________________________________ 24  1.4.1 Non-enzymatic Catalytic Asymmetric Synthesis _________________________ 25  1.4.2 Enzymatic Asymmetric Synthesis _____________________________________ 26  1.5 Kinetic Resolution ______________________________________________________ 27  1.5 Deracemization Process _________________________________________________ 28  1.5.1 Dynamic Kinetic Resolution __________________________________________ 29  1.5.2 Stereoinversion of Crixivan __________________________________________ 30  1.6 Fermentation __________________________________________________________ 31  1.7 Other Resolution Methods ________________________________________________ 33  1.7.1 Crystallization Procedures ___________________________________________ 33  1.7.2 Diastereoisomeric Salts ______________________________________________ 35  1.8 Paper Chromatographic Approaches _______________________________________ 37  2.1 Introduction ___________________________________________________________ 38  2.2 Dynamic Enzymatic Resolution of Thioesters ________________________________ 38  2.2.1 Kinetic α-Proton Acidity of Thioesters _________________________________ 39  2.2.2 Thioester as Substrates for Hydrolytic Enzyme __________________________ 42  2.2.3 Demonstration of Dynamic Enzymatic Resolution of Thioesters ____________ 43  2.2.4 Conclusion ________________________________________________________ 44  2.3 Previous work _________________________________________________________ 44  2.3.1 DKR of α-aryl Amino Acid Thioesters _________________________________ 47  2.3.1 DKR of aryl and aliphatic Amino Acid Thioesters ________________________ 48  3.1 introduction ___________________________________________________________ 50  3.2 Preparation of Substrates ________________________________________________ 51  3.2.1 Production of D,L-2-ThienylGlicyne ___________________________________ 52  3.2.2 Production of D,L NBoc Thienyl-Glycine _______________________________ 53 3.2.3 Production of D,L NBoc Thinyl-Glycine thioester ________________________ 54  3.3 Dynamic Kinetic Resolution of D,L NBoc Thienyl-Glycine-Thioester Mediated by Solution of Subtilisin Carlsberg ______________________________________________ 55  3.4 Deprotection of Enantiomerically Pure Amino Acids __________________________ 57  3.5 Production of aliphatic amino acids by reduction with RaNi ____________________ 58  3.6 Conclusion & Prospects _________________________________________________ 59  4.1 Procedures for the production of enantiopure nor-Leucine _____________________ 60  4.1.1 Production of D,L-2-Thienylglycine ____________________________________ 60  4.1.2 Production of D,L-NBoc-2-Thienylglycine ______________________________ 62  4.1.3 Production of D,L-NBoc-2-Thienylglycine Thioester ______________________ 63  4.1.4 Enzymatic hydrolysis of D,L-NBoc-2-Thienylglycine Thioester _____________ 64  4.1.5 Deprotection of enantiopure NBoc-2-Thienylglycine ______________________ 65  4.1.6 Reduction of enantiopure 2-Thienylglycine______________________________ 65  4.2 Procedures for the production of Isoleucina/Alloleucina _______________________ 66  4.2.1 Production of D,L-3-Thienylglycine ____________________________________ 66  4.2.2 Production of D,L-NBoc-3-Thienylglycine ______________________________ 68  4.2.3 Production of D,L-NBoc-3-Thienylglycine Thioester ______________________ 69  4.2.4 Enzymatic hydrolysis of D,L-NBoc-3-Thienylglycine Thioester _____________ 70  4.2.5 Deprotection of enantiopure NBoc-3-Thienylglycine ______________________ 71  4.2.6 Reduction of enantiopure 3-Thienylglycine______________________________ 71  4.3 Procedures for the production of Heptanoic Amino Acid _______________________ 73  4.3.1 Production of D,L-Me-2-Thienylglycine ________________________________ 73  4.3.2 Production of D,L-NBoc-Me-2-Thienylglycine ___________________________ 75  4.3.3 Production of D,L-NBoc-Me-2-Thienylglycine Thioester __________________ 76  4.3.4 Enzymatic hydrolysis of D,L-NBoc-2-Thienylglycine Thioester _____________ 77  4.3.5 Deprotection of enantiopure NBoc-Me-2-Thienylglycine __________________ 78  4.3.6 Reduction of enantiopure Me-2-Thienylglycine __________________________ 78  4.4 Procedures for the production of Octanoic Amino Acid ________________________ 79  4.4.1 Production of D,L-Et-2-Thienylglycine _________________________________ 79  4.4.2 Production of D,L-NBoc-Et-2-Thienylglycine ____________________________ 82  4.4.3 Production of D,L-NBoc-Et-2-Thienylglycine Thioester ___________________ 83  3.4.4 Enzymatic hydrolysis of D,L-NBoc-Et-2-Thienylglycine Thioester __________ 84  4.4.5 Deprotection of enantiopure NBoc-Et-2-Thienylglycine ___________________ 84  4.4.6 Reduction of enantiopure Et-2-Thienylglycine ___________________________ 85 4.5 Eluents Used for TLC ___________________________________________________ 86  4.6 Preparation OPATBC ___________________________________________________ 86  4.7 HPLC Analysis of the Biotrasformation Product _____________________________ 87  4.8 HPLC Analysis of the Deprotection ________________________________________ 91  4.9 HPLC Analysis of the Reduction __________________________________________ 98  4.10 MS Spectra __________________________________________________________ 102  4.11 NMR Spectra ________________________________________________________ 111 INDEX OF FIGURES Figura 1 - Substrati utilizzati _________________________________________________ 12  Figura 2 - Sintesi norLecina a partire da NBoc-2-ThGlySEt ________________________ 12  Figure 3 - Amino Acids Classification __________________________________________ 13  Figure 4 - Heminhendral Crystals _____________________________________________ 34  Figure 5 - Phase Diagrams __________________________________________________ 36  Figure 6 - Time course for α-proton exchange for thioesters of α-phenylpropionic acid as monitored by 1H NMR. H = α- proton signal intensity at each time point. H0 = initial α- t proton signal intensity. ______________________________________________________ 41  Figure 7 - Proton Exchange Rate of Thioester of α-Aryl-Amino Acids _________________ 45  Figure 8 - Proton Exchange Rates of Thioesters of non-α-aryl-substituted-amino amino acids ________________________________________________________________________ 47  Figure 9 - CLEA ___________________________________________________________ 49  Figure 10 - Selected Substrates _______________________________________________ 52  INDEX OF TABLES Table 1 - α-Proton Exchange Rate of Different Thioesters (Drueckhammer) ____________ 40  Table 2- Rates of R-Proton Exchange for R-Phenylpropionate Thioesters (1, X = Ph) ____ 41  Table 3 - Rates of Enzymatic Hydrolysis of Ethyl Butyrate and Ethyl Thiobutyrate (µmol/(min*g of enzyme))____________________________________________________ 43  Table 4 - Resolution of 1l,m with Subtilisin Carlsberg under Nonracemizing and Racemizing Conditions ________________________________________________________________ 43  Table 5 summarized the dynamic kinetic resolution of compounds 1, 4-8 _______________ 48  Table 6 - Results of DKR with CLEA ___________________________________________ 50  Table 7 - Results of DKR of ThienylGlycine Thioesters _____________________________ 56  Table 8 - Measured Optical Power of ThienylGlycines _____________________________ 56 INDEX OF SCHEMES Scheme 1 - Strecker Synthesis ________________________________________________ 16 Scheme 2 - Modified Strecker Syntheses ________________________________________ 17 Scheme 3 - Cahours synthesis, X=Cl or Br ______________________________________ 17 Scheme 4 - Hell-Volhard-Zelinsky _____________________________________________ 18 Scheme 5 - Gabriel Synthesis _________________________________________________ 18 Scheme 6 - Curtius and Sieber Synthesis ________________________________________ 19 Scheme 7 - Darapsky Synthesis _______________________________________________ 20 Scheme 8 - Huang, Lin and Li Synthesis ________________________________________ 21 Scheme 9 - Asymmetric Synthesis ______________________________________________ 22 Scheme 10 - Kinetic Resolution _______________________________________________ 23 Scheme 11 - Deracemization Processes _________________________________________ 23 Scheme 12 - Asymmetric Synthesis of L-DOPA ___________________________________ 26 Scheme 13 - Enzymatic Asymmetric Synthesis of L-t-Leucine ________________________ 27 Scheme 14 - Asymmetric Oxidation (b) _________________________________________ 27 Scheme 15 - Kinetic Hydrolysis (d) ____________________________________________ 28 Scheme 16 - Acid Hydrolysis _________________________________________________ 28 Scheme 17 - DKR by Hydantoinase/Racemase ___________________________________ 29 Scheme 18 - Stereoinversion of Hafner and Wellner ______________________________ 30 Scheme 19 - Stereoinversion of Crixivan ________________________________________ 31 Scheme 20 - Diastereoisomeric Salts ___________________________________________ 36 Scheme 21 - Resonance of Thioester ___________________________________________ 39 Scheme 22 - Racemization of Thioester _________________________________________ 39 Scheme 23 - General System Used to Measure α-Proton Exchange Rate (Drueckhammer) _ 40 Scheme 24 - Hydrolysis of Ethyl butyrate and Ethyl Thiobutyrate with various enzyme ____ 42 Scheme 25 - General System to Measure α-Proton Exchange rate by 1H NMR (Previous Work) ___________________________________________________________________ 45 Scheme 26 - System Used to Measure α-Proton Exchange Rate of Aryl and Aliphatic Amino Acid Thioesters ____________________________________________________________ 46 Scheme 27 - DKR of α-Aryl Amino Acid Thioesters ________________________________ 47 Scheme 28 - DKR of Aryl and Aliphatic Amino Acid Thioester with CLEA and DBU _____ 50 Scheme 29 - General Procedure to produce Aliphatic α-Amino Acids _________________ 51 Scheme 30 - Production of D,L-2-ThGly ________________________________________ 52 Scheme 31 - Production of Ethyl-Thienyl Aldehyde ________________________________ 53 Scheme 32 - Protection Reaction ______________________________________________ 54 Scheme 33 - Production of D,L-2-NBoc-ThGly Thioester ___________________________ 54 Scheme 34 - DKR of NBoc-2-ThGlySEt _________________________________________ 55 Scheme 35 - Racemization mechanism __________________________________________ 55 Scheme 36 - Deprotection Reaction ____________________________________________ 57 Scheme 37 - Reduction of Thiophen Ring ________________________________________ 58 Scheme 38 - Synthesis of D,L-2-ThGly (1) _______________________________________ 60 Scheme 39 - Synthesis of D,L-2-ThGly (2) _______________________________________ 61 Scheme 40 - Synthesis of D,L-2-ThGly (3) _______________________________________ 61 Scheme 41 - Synthesis of D,L-NBoc-2-ThGly _____________________________________ 62 Scheme 42 - Synthesi of D,L NBoc-2-ThGly _____________________________________ 63 Scheme 43 - Enzymatic Hydrolysis of D,L NBoc-2-ThGly Thioester ___________________ 64 Scheme 44 - Deprotection Reaction of NBoc-2-ThGly ______________________________ 65 Schema 45 - Reduction of 2-ThGly _____________________________________________ 65 Scheme 46 - Synthesis of D,L-3-ThGly (1) _______________________________________ 66 Scheme 47 - Synthesis of D,L-3-ThGly (2) _______________________________________ 67 Scheme 48 - Synthesis of D,L-3-ThGly (3) _______________________________________ 68 Scheme 49 - Synthesis of D,L-NBoc-3-ThGly _____________________________________ 68 Scheme 50 - Synthesi of D,L NBoc-3-ThGly _____________________________________ 69 Scheme 51 - Enzymatic Hydrolysis of D,L NBoc-3-ThGly Thioester ___________________ 70 Scheme 52 - Deprotection Reaction of NBoc-3-ThGly ______________________________ 71 Scheme 53 - Reduction of 3-ThGly _____________________________________________ 72 Scheme 54 - Synthesis of D,L-Me-2-ThGly (1) ____________________________________ 73 Scheme 55 - Synthesis of D,L-Me-2-ThGly (3) ____________________________________ 74 Scheme 56 - Synthesis of D,L-Me-2-ThGly (3) ____________________________________ 74 Scheme 57 - Synthesis of D,L-NBoc-Me-2-ThGly _________________________________ 75 Scheme 58 - Synthesi of D,L NBoc-Me-2-ThGly __________________________________ 76 Scheme 59 - Enzymatic Hydrolysis of D,L NBoc-Me-2-ThGly Thioester _______________ 77 Scheme 60 - Deprotection Reaction of NBoc-Me-2-ThGly __________________________ 78 Scheme 61 - Reduction of Me-ThGly ___________________________________________ 78 Scheme 62 - Synthesis of D,L Et-2-ThGly (1) _____________________________________ 79 Scheme 63 - Synthesis of D,L Et-2-ThGly (2) _____________________________________ 80 Scheme 64 - Synthesis of D,L Et-2-ThGly (3) _____________________________________ 81 Scheme 65 - Synthesis of D,L-NBoc-Et-2-ThGly __________________________________ 82 Scheme 66 - Synthesi of D,L NBoc-Et-2-ThGly ___________________________________ 83 Scheme 67 - Enzymatic Hydrolysis of D,L NBoc-Et-2-ThGly Thioester ________________ 84 Scheme 68 - Deprotection Reaction of NBoc-Et-2-ThGly ___________________________ 84 Scheme 69 - Reduction of Et-2-ThGly __________________________________________ 85 ESTRATTO IN LINGUA ITALIANA Gli amminoacidi sono composti organici caratterizzati dalla presenza simultanea di un gruppo carbossilico (-COOH) e di un gruppo amminico (-NH2). Ne esistono diverse classi, ma la più importante è quella degli α-amminoacidi, i quali possiedono i due gruppi funzionali connessi allo stesso atomo di carbonio. La principale caratteristica che rende tali amminoacidi così interessanti è la presenza, in posizione α, di un centro chirale. Essi trovano apllicazione in diversi campi, ma vengono usati soprattutto come “building blocks” nella sintesi di svariati farmaci. Nei primi anni del XX secolo, visto il continuo aumento della richiesta di amminoacidi varie vie di sintesi furono sviluppate e migliorate. Si passò dall’estrazione alla sintesi chimica o ai primi processi fermentativi. Negli anni cinquanta il caso del talidomide, un farmaco usato dalle donne in gravidanza come sedativo e anti-nausea, determinò un punto di svolta per la sintesi dei farmaci. Il talidomide veniva fino a quel momento venduto in forma racema, solo che ci si accorse, dopo la nascita di 10'000 bambini malformati, che effettivamente un enantiomero agiva da farmaco mentre l’altro incideva negativamente sulla crescita del feto. Quindi furono imposti maggiori controlli sui farmaci ed iniziò di conseguenza la ricerca a nuovi metodi per sintetizzare composti enantiomericamemte puri. Tra le tante tecniche scoperte una è particolarmente interessante: la risoluzione cinetica dinamica. Essa si basa su un sistema composto da un substrato chirale capace di racemizzare spontaneamente nelle condizioni di reazione e da un enzima capace di convertire selettivamente uno solo dei due enantiomeri. In sostanza, da una miscela racema è possibile ottenere un solo enantiomero convertendo tutto il composto iniziale. Questo lavoro di tesi si inserisce nell’ampliamento della risoluzione cinetica dinamica sviluppata dal gruppo di ricerca del prof. S. Servi. Tale tecnica è basata sull’uso di tioesteri di amminoacidi N-protetti, i quali hanno l’idrogeno in posizione α sufficientemente acido da permettere la racemizzazione tra i due enantiomeri del composto in presenza di una base. Inizialmente tale tecnica venne provata su tioesteri di α-amminoacidi aromatici con ottimi risultati: grande resa ed elevato eccesso enantiomerico. Essa fu condotta tramite l’utilizzo di un sistema bifasico (acqua/MTBE), di una base organica idrofobica (TOA, triottilammina) capace di estrarre il protone in posizione α e dell’Alcalasi© come enzima. Purtroppo, per quanto riguarda i tioesteri di amminoacidi alifatici, tale sistema non risulta funzionare. Infatti,

Description:
Scuola di Ingegneria Industriale e dell'Informazione. Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”. Corso di Laurea
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.