ebook img

Characterizations of single valued neutrosophic automata using relations PDF

2021·1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterizations of single valued neutrosophic automata using relations

MalayaJournalofMatematik,Vol. 9,No. 1,283-285,2021 https://doi.org/10.26637/MJM0901/0047 Characterizations of single valued neutrosophic automata using relations V. Karthikeyan1 Abstract Reducibilityandstabilityrelationofsinglevaluedneutrosophicautomata(SVNA)areintroducedandprovedthat stabilityrelationisequivalencerelationinsinglevaluedneutrosophicautomata. Keywords Neutrosophicset,SingleValuedneutrosophicset,SingleValuedneutrosophicautomaton,Stabilityrelation. AMSSubjectClassification 03D05,20M35,18B20,68Q45,68Q70,94A45. 1DepartmentofMathematics,GovernmentCollegeofEngineering,Dharmapuri-636704,TamilNadu,India. *Correspondingauthor:[email protected] ArticleHistory:Received11November2020;Accepted22January2021 (cid:13)c2021MJM. Contents 1 Introduction.......................................283 2 Preliminaries......................................283 3 CharacterizationofSVNAusingrelations........284 4 Conclusion........................................285 References........................................285 1. Introduction Wangetal.[7]introducedthenotionofsinglevaluedneutro- sophicsets. The theory of neutrosophy and neutrosophic set was intro- ThenotionoftheautomatonwasfirstfuzzifiedbyWee duced by Florentin Smarandache in 1999 [6]. The neutro- [8]. The concept of single valued neutrosophic finite state sophicsetisthegeneralizationofclassicalsets,fuzzyset[9], machinewasintroducedbyTahirMahmood[5]. Inthispa- intuitionsticfuzzyset[1],intervalvaluedintuitionisticfuzzy per,theconceptofreducibiltyandstabilityrelationinsingle sets[2]andsoon. Theconceptoffuzzysetandintuitionstic valued neutrosophic automataare introduced. Alsoproved fuzzysetunsuccessfulwhentherelationisindeterminate. thatstabiltyrelationisanequivalencerelationinsinglevalued ThetheoryoffuzzysetswasintroducedbyZadeh neutrosophicautomata. in1965[9]asageneralizationsofcrispsets. Sincethenthe fuzzysetsandfuzzylogicareusedwidelyinmanyapplica- tionsinvolvinguncertainty. Attanasovintroducedtheconcept 2. Preliminaries ofintuitionisticfuzzysetsin1986[1]whichisanextension Inthissection,werecallsomedefinitionsandbasicresults offuzzyset. Inintuitionisticfuzzyset,eachelementofthe whichwillbeusedthroughoutthepaper. setrepresentingbyamembershipgradeandnon-membership grade. Someothergeneralizationsoffuzzysetsarebipolar Definition2.1. [5]AfuzzyautomataistripleF =(S,A,α) valuedfuzzyset[4],vagueset[3]andsoon. whereS,Aarefinitenonemptysetscalledsetofstatesand AneutrosophicsetN isclassifiedbyaTruthmem- set of input alphabets and α is fuzzy transition function in bershipfunctionT ,IndeterminacymembershipfunctionI , S×A×S→[0,1]. N N and Falsitymembership functionF ,where T ,I , andF N N N N Definition 2.2. [6] LetU be the universe of discourse. A arerealstandardandnon-standardsubsetsof]0−,1+[. neutrosophicset(NS)N inU ischaracterizedbyatruthmem- bershipfunctionT ,anindeterminacymembershipfunction N I andafalsitymembershipfunctionF ,whereT ,I ,and N N N N F arerealstandardornon-standardsubsetsof]0−,1+[.That N is N={(cid:104)x,(T (x),I (x),F (x))(cid:105),x∈U,T ,I ,F ∈]0−,1+[} N N N N N N andwiththecondition 0−≤supT (x)+supI (x)+supF (x)≤3+. N N N weneedtotaketheinterval[0,1]fortechnicalapplications insteadof]0−,1+[. Characterizationsofsinglevaluedneutrosophicautomatausingrelations—284/285 Definition2.3. [6]LetU betheuniverseofdiscourse. Asin- Definition3.4. LetF=(S,A,N)beanSVNA.Anequivalence glevaluedneutrosophicset(NS)N inU ischaracterizedbya relation R on a set S is said to be congruence relation if truthmembershipfunctionT ,anindeterminacymembership ∀q,q ∈Qandx∈A, q Rq impliesthatthenthereexists N i j i j functionI andafalsitymembershipfunctionF . q,q ∈Ssuchthat N N l k N={(cid:104)x,(TN(x),IN(x),FN(x))(cid:105),x∈U, TN,IN,FN ∈ [0,1].} ηN∗(qi,x,ql)>0,ηN∗(qj,x,qk)>0 ζN∗(qi,x,ql)<1,ζN∗(qj,x,qk)<1and Definition2.4. [5]F =(S,A,N)iscalledsinglevaluedneu- ρN∗(qi,x,ql)>0,ρN∗(qj,x,qk)<1. trosophic automaton (SVNA forshort), where S and A are non-emptyfinitesetscalledthesetofstatesandinputsymbols Definition 3.5. Let F = (S,A,N) be an SVNA. If qi and respectively,andN={(cid:104)ηN(x),ζN(x),ρN(x)(cid:105)}isanSVNSin qj, qi,qj ∈S are said to be reducible relation and it is de- S×A×S.ThesetofallwordsoffinitelengthofAisdenoted notedbyqiϒqj ifthereexistawordw∈A∗,qk∈Ssuchthat byA∗.Theemptywordisdenotedbyε,andthelengthofeach ηN∗(qi,w,qk)>0⇔ηN∗(qj,w,qk)>0 x∈A∗isdenotedby|x|. (ζN∗(qi,w,qk)>0⇔ζN∗(qj,w,qk)<1 ρN∗(qi,w,qk)>0⇔ρN∗(qj,w,qk)<1 Definition 2.5. [5] F =(S, A, N) be an SVNA. Define an SVNSN∗={(cid:104)ηN∗(x),ζN∗(x),ρN∗(x)(cid:105)}inS×A∗×Sby Example3.6. LetF =(S,A,N)beansinglevaluedneutro- (cid:40) sophicautomaton,where 1 ifq =q i j ηN∗(qi, ε, qj)= S={q1,q2,q3,q4}, A={x,y},andN aredefinedasbelow. 0 ifq (cid:54)=q i j (ηN∗,ζN∗,ρN∗)(q1,x,q4)=[0.6,0.4,0.5] (ηN∗,ζN∗,ρN∗)(q1,y,q2)=[0.3,0.5,0.4] (cid:40) (ηN∗,ζN∗,ρN∗)(q2,x,q3)=[0.5,0.1,0.3] ζN∗(qi, ε, qj)= 0 ifqi=qj (ηN∗,ζN∗,ρN∗)(q2,y,q4)=[0.7,0.4,0.3] 1 ifqi(cid:54)=qj (ηN∗,ζN∗,ρN∗)(q3,x,q2)=[0.1,0.7,0.5] (ηN∗,ζN∗,ρN∗)(q3,y,q4)=[0.2,0.4,0.6] (ηN∗,ζN∗,ρN∗)(q4,x,q1)=[0.6,0.2,0.4] (cid:40)0 ifq =q (ηN∗,ζN∗,ρN∗)(q4,y,q3)=[0.3,0.4,0.5] i j ρN∗(qi, ε, qj)= Thestatesq2andq3arereduciblesinceηN∗(q2,xy,q4)>0⇔ 1 ifq (cid:54)=q i j ηN∗(q3,xy,q4)>0ζN∗(q2,xy,q4)<1⇔ζN∗(q3,xy,q4)<1, andρN∗(q2,xy,q4)<1⇔ρN∗(q3,xy,q4)<1 ηN∗(qi,xy,qj)=∨qr∈Q[ηN∗(qi,x,qr)∧ηN∗(qr,y,qj)], ζN∗(qi,xy,qj)=∧qr∈Q[ζN∗(qi,x,qr)∨ζN∗(qr,y,qj)], Definition3.7. LetF =(S,A,N)beanSVNA.Iftwostates ρN∗(qi,xy,qj)=∧qr∈Q[ρN∗(qi,x,qr)∨ρN∗(qr,y,qj)], qi and qj are said to be stability related and it is denoted ∀qi,qj∈S, x∈A∗andy∈A. byqiΩqj ifforanywordw1∈A∗ thereexistsawordw2∈ A∗, q ∈Ssuchthat k ηN∗(qi,w1w2,qk)>0⇔ηN∗(qj,w1w2,qk)>0 3. Characterization of SVNA using ζN∗(qi,w1w2,qk)<1⇔ζN∗(qj,w1w2,qk)<1 relations ρN∗(qi,w1w2,qk)<1⇔ρN∗(qj,w1w2,qk)<1 Example3.8. LetF =(S,A,N)beansinglevaluedneutro- Definition3.1. LetF =(S,A,N)beanSVNA.IfF issaidto sophicautomaton,where bedeterministicSVNAthenforeachq ∈Qandx∈Athereex- i S={q ,q ,q ,q }, A={x,y},andN aredefinedasbelow. istsuniquestateqjsuchthatηN∗(qi,x,qj)>0.ζN∗(qi,x,qj)< 1 2 3 4 1,ρN∗(qi,x,qj)<1. (ηN∗,ζN∗,ρN∗)(q1,x,q4)=[0.3,0.4,0.5] (ηN∗,ζN∗,ρN∗)(q1,y,q2)=[0.5,0.2,0.4] Definition 3.2. Let Θ= p1,p2,...,pz be a partition of the (ηN∗,ζN∗,ρN∗)(q2,x,q3)=[0.7,0.1,0.4] statessetSsuchthatifηN∗(qi,x,qj)>0.ζN∗(qi,x,qj)<1, (ηN∗,ζN∗,ρN∗)(q2,y,q4)=[0.1,0.6,0.3] ρN∗(qi,x,qj)<1.forsomex∈Athenqi∈psandqj∈ps+1. (ηN∗,ζN∗,ρN∗)(q3,x,q2)=[0.2,0.5,0.4] Then Θ will be called periodic partition of order z ≥ 2. (ηN∗,ζN∗,ρN∗)(q3,y,q4)=[0.5,0.2,0.3] An SVNA F is periodic of period z≥2 if and only if z= (ηN∗,ζN∗,ρN∗)(q4,x,q1)=[0.6,0.3,0.3] Maxcard(Θ)wherethismaximumistakenoverallperiodic (ηN∗,ζN∗,ρN∗)(q4,y,q3)=[0.7,0.3,0.2] partitionsΘofF. IfF hasnoperiodicpartition, thenF is Foranywordw∈A∗,thereexistsawordxyy∈A∗ such calledaperiodic. Throughoutthispaperweconsideraperi- that odicSVNA. ηN∗(q1,wxyy,qk)>0⇔ηN∗(q4,wxyy,qk)>0 ζN∗(q1,wxyy,qk)<1⇔ζN∗(q4,wxyy,qk)<1 Definition3.3. LetF =(S,A,N)beanSVNA.ArelationR (ρN∗(q1,wxyy,qk)<1⇔ρN∗(q4,wxyy,qk)<1and onasetSissaidtobeanequivalencerelationifitisreflexive, ηN∗(q2,wxyy,ql)>0⇔ηN∗(q3,wxyy,ql)>0. symmetricandtransitive. ζN∗(q2,wxyy,ql)<1⇔ζN∗,(q3,wxyy,ql)<1. 284 Characterizationsofsinglevaluedneutrosophicautomatausingrelations—285/285 ρN∗(q2,wxyy,ql)>0⇔ρN∗(q3,wxyy,ql)<1. ρN∗(qi,u1u2u3,qn)<1⇔ρN∗(qk,u1u2u3,qn)<1. Thestatesq ,q andq ,q arestabilityrelated. Now,chooseu u =u. 1 4 2 3 2 3 Foranywordu ∈A∗thereexistswordu∈A∗andq ∈Ssuch Remark3.9. (i)Reducibilityrelationisnotanequivalence 1 n relationinSVNA.Sincetransitiverelationdoesnotexists. thatηN∗(qi,u1u,qn)>0⇔ηN∗(qk,u1u,qn)>0 ζN∗(qi,u1u,qn)<1⇔ζN∗(qk,u1u,qn)<1 Example3.10. LetF =(S,A,N)beasinglevaluedneutro- ρN∗(qi,u1u,qn)<1⇔ρN∗(qk,u1u,qn)<1. sophicautomaton,where Hence,q Ωq . i k S={q ,q ,q ,q }, A={x,y},andN aredefinedasbelow. 1 2 3 4 (ηN∗,ζN∗,ρN∗)(q1,x,q3)=[0.3,0.5,0.6] 4. Conclusion (ηN∗,ζN∗,ρN∗)(q1,y,q1)=[0.5,0.2,0.4] (ηN∗,ζN∗,ρN∗)(q2,x,q1)=[0.7,0.2,0.3] Inthispaperweintroducereducibilityandstabilityrelationin (ηN∗,ζN∗,ρN∗)(q2,y,q1)=[0.1,0.5,0.4] singlevaluedneutrosophicautomata. Wehaveshownbyex- (ηN∗,ζN∗,ρN∗)(q3,x,q4)=[0.3,0.4,0.5] amplethatreducibilityrelationisnotanequivalencerelation (ηN∗,ζN∗,ρN∗)(q3,y,q4)=[0.5,0.3,0.4] andprovethatstabilityrelationisanequivalencerelation. (ηN∗,ζN∗,ρN∗)(q4,x,q2)=[0.6,0.2,0.4] (ηN∗,ζN∗,ρN∗)(q4,y,q4)=[0.7,0.3,0.2] References In the above SVNA F ∃ a word yy ∈ A∗ such that [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and ηN∗(q1,yy,q1)>0⇔ηN∗(q2,yy,q1)>0 Systems,20(1986),87–96. ζN∗(q1,yy,q1)<1⇔ζN∗(q2,yy,q1)<1 [2] K. Atanassov, Interval valued intuitionistic fuzzy sets, (ρN∗(q1,yy,q1)<1⇔ρN∗(q2,yy,q1)<1 FuzzySetsandSystems,31(3)(1989),343–349. Thereforethestatesq andq arereducible. 1 2 Alsothereexistsawordxy∈A∗ suchthatηN∗(q2,xy,q1)> [3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. Syst.ManCybern.23(2)(1993),610–614. 0⇔ηN∗(q4,xy,q1)>0 [4] K.M.Lee,Bipolar-valuedfuzzysetsandtheiroperations, ζN∗(q2,xy,q1)<1⇔ζN∗(q4,xy,q1)<1 Proc.Int.Conf.onIntelligentTechnologies,(2000),307– (ρN∗(q2,xy,q1)<1⇔ρN∗(q4,xy,q1)<1 312. Thereforethestatesq andq arereduciblebutq andq are 2 4 1 4 notreducibleforanywordw∈A∗. [5] T.Mahmood,andQ.Khan,Intervalneutrosophicfinite switchboard state machine, Afr. Mat. 20(2)(2016),191- Hencereducibilityrelationisnottransitive. 210. Theorem3.11. LetF =(S,A,N)beanSVNA.Stabilityrela- [6] F.Smarandache,AUnifyingFieldinLogics,Neutroso- tiononSVNAF isanEquivalencerelation. phy: NeutrosophicProbability,setandLogic,Rehoboth: Proof. Let F =(S,A,N) be an SVNA. Clearly stability re- AmericanResearchPress,(1999). lationonSVNAF isreflexiveandsymmetric. Forproving [7] H.Wang,F.Smarandache,Y.Q.Zhang,andR.Sunder- stability relation is an equivalence relation it is enough to ramanSingleValuedNeutrosophicSets,Multispaceand provethatitistransitive. Multistructure,4(2010),410–413. LetqΩq andq Ωq . [8] W. G. Wee, On generalizations of adaptive algorithms i j j k ToproveqΩq ,weneedtoproveforanywordu ∈A∗,there andapplicationofthefuzzysetsconceptstopatternclas- i k 1 existsawordu∈A∗,q ∈Ssuchthat sificationPh.D.Thesis,PurdueUniversity,(1967). n ηN∗(qi,w1w2,qn)>0⇔ηN∗(qk,u1u,qn)>0 [9] L. A. Zadeh, Fuzzy sets, Information and Control, ζN∗(qi,w1w2,qn)<1⇔ζN∗(qk,u1u,qn)<1 8(3)(1965),338–353. ρN∗(qi,w1w2,qn)<1⇔ρN∗(qk,u1u,qn)<1. Sinceq Ωq foranywordu ∈A∗thereexistsawordu ∈A∗ i j 1 2 (cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63) andastateq ∈Ssuchthat m ISSN(P):2319−3786 ηN∗(qi,u1u2,qm)>0⇔ηN∗(qj,u1u2,qm)>0 MalayaJournalofMatematik ζN∗(qi,u1u2,qm)<1⇔ζN∗(qj,u1u2,qm)<1 ISSN(O):2321−5666 ρN∗(qi,u1u2,qm)<1⇔ρN∗(qj,u1u2,qm)<1. (cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63) Sinceq Ωq wehaveforanywordu u ∈A∗ thereexistsa j k 1 2 wordu ∈A∗,q ∈Ssuchthat 3 n ηN∗(qj,u1u2u3,qn)>0⇔ηN∗(qk,u1u2u3,qn)<1 ζN∗(qj,u1u2u3,qn)<1⇔ζN∗(qk,u1u2u3,qn)>0 ρN∗(qj,u1u2u3,qn)<1⇔ρN∗(qk,u1u2u3,qn)<1. ηN∗(qj,u1u2u3,qn)>0⇔ηN∗(qi,u1u2u3,qn)>0 ζN∗(qj,u1u2u3,qn)<1⇔ζN∗(qi,u1u2u3,qn)<1 ρN∗(qj,u1u2u3,qn)<1⇔ρN∗(qi,u1u2u3,qn)<1.[SinceqjΩqi]. ηN∗(qi,u1u2u3,qn)>0⇔ηN∗(qk,u1u2u3,qn)>0 ζN∗(qi,u1u2u3,qn)<1⇔ζN∗(qk,u1u2u3,qn)<1 285

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.