MalayaJournalofMatematik,Vol. 9,No. 1,283-285,2021 https://doi.org/10.26637/MJM0901/0047 Characterizations of single valued neutrosophic automata using relations V. Karthikeyan1 Abstract Reducibilityandstabilityrelationofsinglevaluedneutrosophicautomata(SVNA)areintroducedandprovedthat stabilityrelationisequivalencerelationinsinglevaluedneutrosophicautomata. Keywords Neutrosophicset,SingleValuedneutrosophicset,SingleValuedneutrosophicautomaton,Stabilityrelation. AMSSubjectClassification 03D05,20M35,18B20,68Q45,68Q70,94A45. 1DepartmentofMathematics,GovernmentCollegeofEngineering,Dharmapuri-636704,TamilNadu,India. *Correspondingauthor:[email protected] ArticleHistory:Received11November2020;Accepted22January2021 (cid:13)c2021MJM. Contents 1 Introduction.......................................283 2 Preliminaries......................................283 3 CharacterizationofSVNAusingrelations........284 4 Conclusion........................................285 References........................................285 1. Introduction Wangetal.[7]introducedthenotionofsinglevaluedneutro- sophicsets. The theory of neutrosophy and neutrosophic set was intro- ThenotionoftheautomatonwasfirstfuzzifiedbyWee duced by Florentin Smarandache in 1999 [6]. The neutro- [8]. The concept of single valued neutrosophic finite state sophicsetisthegeneralizationofclassicalsets,fuzzyset[9], machinewasintroducedbyTahirMahmood[5]. Inthispa- intuitionsticfuzzyset[1],intervalvaluedintuitionisticfuzzy per,theconceptofreducibiltyandstabilityrelationinsingle sets[2]andsoon. Theconceptoffuzzysetandintuitionstic valued neutrosophic automataare introduced. Alsoproved fuzzysetunsuccessfulwhentherelationisindeterminate. thatstabiltyrelationisanequivalencerelationinsinglevalued ThetheoryoffuzzysetswasintroducedbyZadeh neutrosophicautomata. in1965[9]asageneralizationsofcrispsets. Sincethenthe fuzzysetsandfuzzylogicareusedwidelyinmanyapplica- tionsinvolvinguncertainty. Attanasovintroducedtheconcept 2. Preliminaries ofintuitionisticfuzzysetsin1986[1]whichisanextension Inthissection,werecallsomedefinitionsandbasicresults offuzzyset. Inintuitionisticfuzzyset,eachelementofthe whichwillbeusedthroughoutthepaper. setrepresentingbyamembershipgradeandnon-membership grade. Someothergeneralizationsoffuzzysetsarebipolar Definition2.1. [5]AfuzzyautomataistripleF =(S,A,α) valuedfuzzyset[4],vagueset[3]andsoon. whereS,Aarefinitenonemptysetscalledsetofstatesand AneutrosophicsetN isclassifiedbyaTruthmem- set of input alphabets and α is fuzzy transition function in bershipfunctionT ,IndeterminacymembershipfunctionI , S×A×S→[0,1]. N N and Falsitymembership functionF ,where T ,I , andF N N N N Definition 2.2. [6] LetU be the universe of discourse. A arerealstandardandnon-standardsubsetsof]0−,1+[. neutrosophicset(NS)N inU ischaracterizedbyatruthmem- bershipfunctionT ,anindeterminacymembershipfunction N I andafalsitymembershipfunctionF ,whereT ,I ,and N N N N F arerealstandardornon-standardsubsetsof]0−,1+[.That N is N={(cid:104)x,(T (x),I (x),F (x))(cid:105),x∈U,T ,I ,F ∈]0−,1+[} N N N N N N andwiththecondition 0−≤supT (x)+supI (x)+supF (x)≤3+. N N N weneedtotaketheinterval[0,1]fortechnicalapplications insteadof]0−,1+[. Characterizationsofsinglevaluedneutrosophicautomatausingrelations—284/285 Definition2.3. [6]LetU betheuniverseofdiscourse. Asin- Definition3.4. LetF=(S,A,N)beanSVNA.Anequivalence glevaluedneutrosophicset(NS)N inU ischaracterizedbya relation R on a set S is said to be congruence relation if truthmembershipfunctionT ,anindeterminacymembership ∀q,q ∈Qandx∈A, q Rq impliesthatthenthereexists N i j i j functionI andafalsitymembershipfunctionF . q,q ∈Ssuchthat N N l k N={(cid:104)x,(TN(x),IN(x),FN(x))(cid:105),x∈U, TN,IN,FN ∈ [0,1].} ηN∗(qi,x,ql)>0,ηN∗(qj,x,qk)>0 ζN∗(qi,x,ql)<1,ζN∗(qj,x,qk)<1and Definition2.4. [5]F =(S,A,N)iscalledsinglevaluedneu- ρN∗(qi,x,ql)>0,ρN∗(qj,x,qk)<1. trosophic automaton (SVNA forshort), where S and A are non-emptyfinitesetscalledthesetofstatesandinputsymbols Definition 3.5. Let F = (S,A,N) be an SVNA. If qi and respectively,andN={(cid:104)ηN(x),ζN(x),ρN(x)(cid:105)}isanSVNSin qj, qi,qj ∈S are said to be reducible relation and it is de- S×A×S.ThesetofallwordsoffinitelengthofAisdenoted notedbyqiϒqj ifthereexistawordw∈A∗,qk∈Ssuchthat byA∗.Theemptywordisdenotedbyε,andthelengthofeach ηN∗(qi,w,qk)>0⇔ηN∗(qj,w,qk)>0 x∈A∗isdenotedby|x|. (ζN∗(qi,w,qk)>0⇔ζN∗(qj,w,qk)<1 ρN∗(qi,w,qk)>0⇔ρN∗(qj,w,qk)<1 Definition 2.5. [5] F =(S, A, N) be an SVNA. Define an SVNSN∗={(cid:104)ηN∗(x),ζN∗(x),ρN∗(x)(cid:105)}inS×A∗×Sby Example3.6. LetF =(S,A,N)beansinglevaluedneutro- (cid:40) sophicautomaton,where 1 ifq =q i j ηN∗(qi, ε, qj)= S={q1,q2,q3,q4}, A={x,y},andN aredefinedasbelow. 0 ifq (cid:54)=q i j (ηN∗,ζN∗,ρN∗)(q1,x,q4)=[0.6,0.4,0.5] (ηN∗,ζN∗,ρN∗)(q1,y,q2)=[0.3,0.5,0.4] (cid:40) (ηN∗,ζN∗,ρN∗)(q2,x,q3)=[0.5,0.1,0.3] ζN∗(qi, ε, qj)= 0 ifqi=qj (ηN∗,ζN∗,ρN∗)(q2,y,q4)=[0.7,0.4,0.3] 1 ifqi(cid:54)=qj (ηN∗,ζN∗,ρN∗)(q3,x,q2)=[0.1,0.7,0.5] (ηN∗,ζN∗,ρN∗)(q3,y,q4)=[0.2,0.4,0.6] (ηN∗,ζN∗,ρN∗)(q4,x,q1)=[0.6,0.2,0.4] (cid:40)0 ifq =q (ηN∗,ζN∗,ρN∗)(q4,y,q3)=[0.3,0.4,0.5] i j ρN∗(qi, ε, qj)= Thestatesq2andq3arereduciblesinceηN∗(q2,xy,q4)>0⇔ 1 ifq (cid:54)=q i j ηN∗(q3,xy,q4)>0ζN∗(q2,xy,q4)<1⇔ζN∗(q3,xy,q4)<1, andρN∗(q2,xy,q4)<1⇔ρN∗(q3,xy,q4)<1 ηN∗(qi,xy,qj)=∨qr∈Q[ηN∗(qi,x,qr)∧ηN∗(qr,y,qj)], ζN∗(qi,xy,qj)=∧qr∈Q[ζN∗(qi,x,qr)∨ζN∗(qr,y,qj)], Definition3.7. LetF =(S,A,N)beanSVNA.Iftwostates ρN∗(qi,xy,qj)=∧qr∈Q[ρN∗(qi,x,qr)∨ρN∗(qr,y,qj)], qi and qj are said to be stability related and it is denoted ∀qi,qj∈S, x∈A∗andy∈A. byqiΩqj ifforanywordw1∈A∗ thereexistsawordw2∈ A∗, q ∈Ssuchthat k ηN∗(qi,w1w2,qk)>0⇔ηN∗(qj,w1w2,qk)>0 3. Characterization of SVNA using ζN∗(qi,w1w2,qk)<1⇔ζN∗(qj,w1w2,qk)<1 relations ρN∗(qi,w1w2,qk)<1⇔ρN∗(qj,w1w2,qk)<1 Example3.8. LetF =(S,A,N)beansinglevaluedneutro- Definition3.1. LetF =(S,A,N)beanSVNA.IfF issaidto sophicautomaton,where bedeterministicSVNAthenforeachq ∈Qandx∈Athereex- i S={q ,q ,q ,q }, A={x,y},andN aredefinedasbelow. istsuniquestateqjsuchthatηN∗(qi,x,qj)>0.ζN∗(qi,x,qj)< 1 2 3 4 1,ρN∗(qi,x,qj)<1. (ηN∗,ζN∗,ρN∗)(q1,x,q4)=[0.3,0.4,0.5] (ηN∗,ζN∗,ρN∗)(q1,y,q2)=[0.5,0.2,0.4] Definition 3.2. Let Θ= p1,p2,...,pz be a partition of the (ηN∗,ζN∗,ρN∗)(q2,x,q3)=[0.7,0.1,0.4] statessetSsuchthatifηN∗(qi,x,qj)>0.ζN∗(qi,x,qj)<1, (ηN∗,ζN∗,ρN∗)(q2,y,q4)=[0.1,0.6,0.3] ρN∗(qi,x,qj)<1.forsomex∈Athenqi∈psandqj∈ps+1. (ηN∗,ζN∗,ρN∗)(q3,x,q2)=[0.2,0.5,0.4] Then Θ will be called periodic partition of order z ≥ 2. (ηN∗,ζN∗,ρN∗)(q3,y,q4)=[0.5,0.2,0.3] An SVNA F is periodic of period z≥2 if and only if z= (ηN∗,ζN∗,ρN∗)(q4,x,q1)=[0.6,0.3,0.3] Maxcard(Θ)wherethismaximumistakenoverallperiodic (ηN∗,ζN∗,ρN∗)(q4,y,q3)=[0.7,0.3,0.2] partitionsΘofF. IfF hasnoperiodicpartition, thenF is Foranywordw∈A∗,thereexistsawordxyy∈A∗ such calledaperiodic. Throughoutthispaperweconsideraperi- that odicSVNA. ηN∗(q1,wxyy,qk)>0⇔ηN∗(q4,wxyy,qk)>0 ζN∗(q1,wxyy,qk)<1⇔ζN∗(q4,wxyy,qk)<1 Definition3.3. LetF =(S,A,N)beanSVNA.ArelationR (ρN∗(q1,wxyy,qk)<1⇔ρN∗(q4,wxyy,qk)<1and onasetSissaidtobeanequivalencerelationifitisreflexive, ηN∗(q2,wxyy,ql)>0⇔ηN∗(q3,wxyy,ql)>0. symmetricandtransitive. ζN∗(q2,wxyy,ql)<1⇔ζN∗,(q3,wxyy,ql)<1. 284 Characterizationsofsinglevaluedneutrosophicautomatausingrelations—285/285 ρN∗(q2,wxyy,ql)>0⇔ρN∗(q3,wxyy,ql)<1. ρN∗(qi,u1u2u3,qn)<1⇔ρN∗(qk,u1u2u3,qn)<1. Thestatesq ,q andq ,q arestabilityrelated. Now,chooseu u =u. 1 4 2 3 2 3 Foranywordu ∈A∗thereexistswordu∈A∗andq ∈Ssuch Remark3.9. (i)Reducibilityrelationisnotanequivalence 1 n relationinSVNA.Sincetransitiverelationdoesnotexists. thatηN∗(qi,u1u,qn)>0⇔ηN∗(qk,u1u,qn)>0 ζN∗(qi,u1u,qn)<1⇔ζN∗(qk,u1u,qn)<1 Example3.10. LetF =(S,A,N)beasinglevaluedneutro- ρN∗(qi,u1u,qn)<1⇔ρN∗(qk,u1u,qn)<1. sophicautomaton,where Hence,q Ωq . i k S={q ,q ,q ,q }, A={x,y},andN aredefinedasbelow. 1 2 3 4 (ηN∗,ζN∗,ρN∗)(q1,x,q3)=[0.3,0.5,0.6] 4. Conclusion (ηN∗,ζN∗,ρN∗)(q1,y,q1)=[0.5,0.2,0.4] (ηN∗,ζN∗,ρN∗)(q2,x,q1)=[0.7,0.2,0.3] Inthispaperweintroducereducibilityandstabilityrelationin (ηN∗,ζN∗,ρN∗)(q2,y,q1)=[0.1,0.5,0.4] singlevaluedneutrosophicautomata. Wehaveshownbyex- (ηN∗,ζN∗,ρN∗)(q3,x,q4)=[0.3,0.4,0.5] amplethatreducibilityrelationisnotanequivalencerelation (ηN∗,ζN∗,ρN∗)(q3,y,q4)=[0.5,0.3,0.4] andprovethatstabilityrelationisanequivalencerelation. (ηN∗,ζN∗,ρN∗)(q4,x,q2)=[0.6,0.2,0.4] (ηN∗,ζN∗,ρN∗)(q4,y,q4)=[0.7,0.3,0.2] References In the above SVNA F ∃ a word yy ∈ A∗ such that [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and ηN∗(q1,yy,q1)>0⇔ηN∗(q2,yy,q1)>0 Systems,20(1986),87–96. ζN∗(q1,yy,q1)<1⇔ζN∗(q2,yy,q1)<1 [2] K. Atanassov, Interval valued intuitionistic fuzzy sets, (ρN∗(q1,yy,q1)<1⇔ρN∗(q2,yy,q1)<1 FuzzySetsandSystems,31(3)(1989),343–349. Thereforethestatesq andq arereducible. 1 2 Alsothereexistsawordxy∈A∗ suchthatηN∗(q2,xy,q1)> [3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. Syst.ManCybern.23(2)(1993),610–614. 0⇔ηN∗(q4,xy,q1)>0 [4] K.M.Lee,Bipolar-valuedfuzzysetsandtheiroperations, ζN∗(q2,xy,q1)<1⇔ζN∗(q4,xy,q1)<1 Proc.Int.Conf.onIntelligentTechnologies,(2000),307– (ρN∗(q2,xy,q1)<1⇔ρN∗(q4,xy,q1)<1 312. Thereforethestatesq andq arereduciblebutq andq are 2 4 1 4 notreducibleforanywordw∈A∗. [5] T.Mahmood,andQ.Khan,Intervalneutrosophicfinite switchboard state machine, Afr. Mat. 20(2)(2016),191- Hencereducibilityrelationisnottransitive. 210. Theorem3.11. LetF =(S,A,N)beanSVNA.Stabilityrela- [6] F.Smarandache,AUnifyingFieldinLogics,Neutroso- tiononSVNAF isanEquivalencerelation. phy: NeutrosophicProbability,setandLogic,Rehoboth: Proof. Let F =(S,A,N) be an SVNA. Clearly stability re- AmericanResearchPress,(1999). lationonSVNAF isreflexiveandsymmetric. Forproving [7] H.Wang,F.Smarandache,Y.Q.Zhang,andR.Sunder- stability relation is an equivalence relation it is enough to ramanSingleValuedNeutrosophicSets,Multispaceand provethatitistransitive. Multistructure,4(2010),410–413. LetqΩq andq Ωq . [8] W. G. Wee, On generalizations of adaptive algorithms i j j k ToproveqΩq ,weneedtoproveforanywordu ∈A∗,there andapplicationofthefuzzysetsconceptstopatternclas- i k 1 existsawordu∈A∗,q ∈Ssuchthat sificationPh.D.Thesis,PurdueUniversity,(1967). n ηN∗(qi,w1w2,qn)>0⇔ηN∗(qk,u1u,qn)>0 [9] L. A. Zadeh, Fuzzy sets, Information and Control, ζN∗(qi,w1w2,qn)<1⇔ζN∗(qk,u1u,qn)<1 8(3)(1965),338–353. ρN∗(qi,w1w2,qn)<1⇔ρN∗(qk,u1u,qn)<1. Sinceq Ωq foranywordu ∈A∗thereexistsawordu ∈A∗ i j 1 2 (cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63) andastateq ∈Ssuchthat m ISSN(P):2319−3786 ηN∗(qi,u1u2,qm)>0⇔ηN∗(qj,u1u2,qm)>0 MalayaJournalofMatematik ζN∗(qi,u1u2,qm)<1⇔ζN∗(qj,u1u2,qm)<1 ISSN(O):2321−5666 ρN∗(qi,u1u2,qm)<1⇔ρN∗(qj,u1u2,qm)<1. (cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63) Sinceq Ωq wehaveforanywordu u ∈A∗ thereexistsa j k 1 2 wordu ∈A∗,q ∈Ssuchthat 3 n ηN∗(qj,u1u2u3,qn)>0⇔ηN∗(qk,u1u2u3,qn)<1 ζN∗(qj,u1u2u3,qn)<1⇔ζN∗(qk,u1u2u3,qn)>0 ρN∗(qj,u1u2u3,qn)<1⇔ρN∗(qk,u1u2u3,qn)<1. ηN∗(qj,u1u2u3,qn)>0⇔ηN∗(qi,u1u2u3,qn)>0 ζN∗(qj,u1u2u3,qn)<1⇔ζN∗(qi,u1u2u3,qn)<1 ρN∗(qj,u1u2u3,qn)<1⇔ρN∗(qi,u1u2u3,qn)<1.[SinceqjΩqi]. ηN∗(qi,u1u2u3,qn)>0⇔ηN∗(qk,u1u2u3,qn)>0 ζN∗(qi,u1u2u3,qn)<1⇔ζN∗(qk,u1u2u3,qn)<1 285