ebook img

Characterization of a resistance locus to coffee leaf rust PDF

228 Pages·2011·5.58 MB·French
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterization of a resistance locus to coffee leaf rust

UNIVERSITE MONTPELLIER II SCIENCES ET TECHINIQUES DU LANGUEDOC THESE Présentée pour l‘obtention du titre de Docteur en Sciences de l’Université Montpellier II Formation Doctorale : Biologie Intégrative des Plantes Ecole Doctorale : SIBAGHE – Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydro sciences et Environnement par Alessandra Ferreira RIBAS Characterization of a resistance locus to coffee leaf rust (Hemileia vastratrix) in coffee trees: genomic organization, diversity and development of tools for functional gene validation Soutenue publiquement devant le jury composé de, Mme Françoise ADAN-BLONDON (INRA), Rapporteur Mme Valérie GEFFROY (INRA), Examinatrice M. Emmanuel DOUZERY (UM2), Examinateur M. Gilles PILATE (INRA), Rapporteur M. Hervé ETIENNE (CIRAD), Co-Directeur de thèse M. Philippe LASHERMES (IRD), Co-Directeur de thèse ABREVIATIONS BAC Bacterial Artificial Chromosome 6-BA: 6-benzylaminopurine CaMV: cauliflower mosaic virus CC Coiled-Coil CGA candidate gene approach CG candidate gene CLR Coffee Leaf Rust CP medium: callus proliferation medium DNA Deoxyribonucleic acid 2,4-D: 2,4-dichlorophenoxyacetic acid ECP medium: embryogenic callus production medium ETI Effector-Triggered Immunity ETS Effector-Triggered Susceptibility GFP Green Fluorescent Protein HR Hypersensitive Response HPTII hygromycin phosphotransferase II i.e. id est Ka non-synonymous substitutions Ks synonymous substitutions LRR Leucine-Rich Repeats LTR Long Terminal Repeat M medium: maturation medium MAMP Microbe-Associated Molecular Pattern MAS market assisted selection NBS Nucleotide-Binding site NPTII Neomycin Phosphotransferase III OD: optical density PAMP Pathogen-Associated Molecular Pattern PCR Polymerase Chain Reaction PEMs: proembryogenic masses PTI PAMP-Triggered Immunity QTL Quantitative-Trait Locus R: regeneration medium RLK Receptor-Like Kinase RLP Receptor-Like Protein SD: standard deviation SNP single nucleotide polymorphism TAIR: the Arabidopsis information resources TIR Toll and Interleukin-1 Receptor SUMMARY LIST OF FIGURES .................................................................................................................... 7 LIST OF TABLES .................................................................................................................... 11 General Introduction ................................................................................................................ 13 CHAPTER I ............................................................................................................................... 14 LITERATURE REVIEW ......................................................................................................... 14 PART I ....................................................................................................................................... 15 1. Generalities about Coffee ................................................................................................. 15 1.1 Coffee consumption, cultivation and economical trade .................................................... 15 1.2 Coffee taxonomy ............................................................................................................... 16 1.3 Characteristics of cultivated coffee species ....................................................................... 19 1.4 Cytological aspects of Coffea ............................................................................................ 22 1.5 Speciation and genome features of C. arabica .................................................................. 22 1.6 Coffee arabica genetic diversity and breeding .................................................................. 23 1.7 Interspecific hybridization and coffee introgression ......................................................... 26 2. Coffee leaf rust: the main coffee disease ............................................................................. 28 2.1 The genus Hemileia ........................................................................................................... 28 2.2 Coffee leaf rust (CLR) symptoms ..................................................................................... 29 2.3 CLR epidemic ................................................................................................................... 31 2.4 Disease Management......................................................................................................... 32 2.4.1 Chemical control ........................................................................................................ 33 2.4.2 Biological control ....................................................................................................... 33 2.5.1 CLR resistance genes ................................................................................................. 35 2.5.2 Physiological races of Hemileia vastatrix .................................................................. 36 3. Identification of molecular markers associated to CLR .................................................... 39 3.1 Partial resistance to CLR ................................................................................................... 41 PART II ...................................................................................................................................... 42 1. Mechanisms of disease resistance in plants ..................................................................... 42 1.1 Non host resistance............................................................................................................ 42 1.1.1 PAMP/MAMP-triggered immunity (PTI/MTI) ......................................................... 44 1.2 Host resistance (Effector-Triggered Immunity (ETI)) ...................................................... 45 2. Modes of plant-pathogen interaction ............................................................................... 49 2.1 Direct Interaction .............................................................................................................. 49 2.2 The Guard Model (indirect R-Avr) interactions ................................................................ 50 2.3 Decoy model ..................................................................................................................... 51 3. Avirulence genes (effectors) .............................................................................................. 53 4. Resistance Genes (R genes) ............................................................................................... 54 4.1 Classes of Resistance Gene ............................................................................................... 58 4.1.1 RLP and RLK class of R genes .................................................................................. 58 4.2.1 The function of main domains in NB-LRR proteins .................................................. 61 5. How NBS-LRR proteins recognize pathogens and activate defense responses? ......... 66 6. Expression of R proteins ................................................................................................... 67 7. Plant-pathogen co evolution ............................................................................................. 68 7.1 Evolution of R genes at plant population level ................................................................. 68 7.2 Evolutionary patterns R genes clusters ............................................................................. 71 8. Wide genome analysis of NBS-LRR encoding genes ...................................................... 72 8.1 Organization of NBS-LRR genes into plant genomes ...................................................... 75 9. Mechanisms of R-genes diversification ........................................................................... 77 9.1 Duplication ........................................................................................................................ 79 9.1.1 Duplication by polyploidization ................................................................................. 79 9.2 Sequence recombination ................................................................................................... 81 9.3 Selection ............................................................................................................................ 82 9.4 Other mechanisms that contributed to generate R gene diversification ............................ 84 10. Patterns of R gene function .......................................................................................... 86 11. Comparative analysis of R genes ................................................................................. 88 PART III .................................................................................................................................... 91 1. Identification of candidate genes...................................................................................... 91 1.1 Identification of CG genes based on genomic synteny ..................................................... 91 1.2 Identification of CG using positional cloning strategy ..................................................... 93 2. Functional validation of CG ............................................................................................. 95 2.1 RNA interference .............................................................................................................. 95 2.2 Chemical mutagenesis ....................................................................................................... 96 2.3 Transformation by Agrobacterium .................................................................................... 97 3. Genetic transformation of woody plants ......................................................................... 97 3.1 Genetic transformation of coffee plants .......................................................................... 100 Objectives ................................................................................................................................. 103 CHAPTER II ........................................................................................................................... 105 Genetic and physical mapping of the S 3 region that confers resistance to leaf rust in H coffee tree (Coffea arabica L.) ................................................................................................ 106 ABSTRACT .......................................................................................................................... 106 INTRODUCTION ................................................................................................................. 106 MATERIALS AND METHODS .......................................................................................... 108 RESULTS ............................................................................................................................. 110 DISCUSSION ....................................................................................................................... 117 CHAPTER III .......................................................................................................................... 120 Organization and molecular evolution of a disease-resistance gene cluster in coffee trees ................................................................................................................................................... 121 ABSTRACT .......................................................................................................................... 121 BACKGROUND ................................................................................................................... 122 RESULTS ............................................................................................................................. 124 DISCUSSION ....................................................................................................................... 135 CONCLUSIONS ................................................................................................................... 138 MATERIALS AND METHODS .......................................................................................... 138 CHAPTER IV .......................................................................................................................... 144 Agrobacterium-mediated transformation of Coffea arabica (L.) is highly enhanced by using long-term maintained embryogenic callus ............................................................................ 145 ABSTRACT .......................................................................................................................... 145 BACKGROUND ................................................................................................................... 146 RESULTS ............................................................................................................................. 148 DISCUSSION ....................................................................................................................... 160 CONCLUSIONS ................................................................................................................... 163 METHODS ........................................................................................................................... 163 CHAPTER V ........................................................................................................................... 168 Identification and functional validation of candidate genes to CLR .................................. 169 PART I. .................................................................................................................................... 170 Estimate of S 3-CNL gene members in the resistant cultivar ............................................ 170 H PART II .................................................................................................................................... 175 Cloning S 3-CNL candidate genes to CLR resistance ......................................................... 175 H PART III .................................................................................................................................. 178 Construction of expression vectors and functional gene validation ................................... 178 CHAPTER VI .......................................................................................................................... 187 General Discussion and Perspectives ..................................................................................... 188 References ................................................................................................................................ 198 LIST OF FIGURES CHAPTER I Figure I. 1 Major countries producers of coffee. Top ten coffee producers are shown in yellow ............. 16 Figure I. 2 Position of genus Coffea on the angiosperms phylogeny. Modified from: (http://www.mobot.org/mobot/research/APweb) ............................................................................... 17 Figure I. 3 Typical coffee bean morphology: A- Endocarp hard (horny/crustaceous), B- Seeds (and pyrenes) with a deep ventral groove. ................................................................................................. 18 Figure I. 4 Flower morphology in coffee genera. A. Coffea sessiflora in subgenus Coffea has flowers with long style, medium corolla tube, exserted anthers. B. Psilanthus mannii in subgenus Psilanthus has flowers with short style, long corolla tube, encased anthers........................................................ 18 Figure I. 5 Coffea arabica tree with cherry beans. From: Leo Junior, Incaper ES .................................... 20 Figure I. 6 Genetic origin of allotetraploid C. arabica. Natural hybridization between C. eugenioides as female parent and C. canephora as male parent originated the C. arabica species (Lashermes et al., 1999). ................................................................................................................................................. 24 Figure I. 7 Triploid and tetraploid strategies of gene introgression from diploid coffee species into C. arabica genome (Lashermes et al., 2000). ......................................................................................... 28 Figure I. 8 Urediniospores of Hemileia vastatrix. Photo from: Liberato JR & Silva MC (2006). Available online: http://www.padil.gov.au ........................................................................................................ 29 Figure I. 9 Life cycle of Hemileia vastatrix. Drawing from: (www.apsnet.org/online/feature/edcenter). 30 Figure I. 10 Symptoms of coffee leaf rust. A - coffee plants highly infected showing drop of leaves. B Detail of coffee leaf with yellow-orange powder urediniospores. Photo A from: (www.apsnet.org/online/feature/edcenter) and photo B (www2.iict.pt/index). ................................. 31 Figure I. 11 World distribution of coffee rust. (Schieber & Zentmyer, 1984)........................................... 32 Figure I. 12 Linkage map based on analysis of the chromosome segments in coupling surrounding the S 3 gene on the F2 population (Matari x S.288)(Mahé et al., 2008). ................................................ 40 H Figure I. 13 Different types of plant-pathogen intecation. From: Hammond-Kosack & Kanyuka (2007). ........................................................................................................................................................... 43 Figure I. 14 Quadratic diagram illustrating the gene-for-gene interaction between host resistance (R) genes and rust avirulence (Avr) genes using coffee-rust as model. ................................................... 45 Figure I. 15 The‗zigzag‘ model proposed to represent four phases of the plant immune system (Jones and Dangl 2006). ...................................................................................................................................... 47 Figure I. 16 Simplified schematic representation of the plant immune system. From: Pieterse et al., 2009. ........................................................................................................................................................... 48 Figure I. 17 The three Modes of Pathogen Recognition (Caplan et al., 2008) .......................................... 50 Figure I. 18 Opposing selection forces on guarded effector targets in a plant population polymorphic for R genes (van der Horn et al., 2008) ................................................................................................... 52 Figure I. 19 Comparisons of the Guard and Decoy Models (van der Horn et al., 2008) ........................... 53 Figure I. 20 Classes of R protein and their cellular location. Adptated from: Hammond-Kosack & Kostya Kanyuka, 2007. .................................................................................................................................. 57 Figure I. 21 Schematic representation of a typical NB–LRR protein. (Lukasik and Takken 2009). ......... 60 Figure I. 22 Leucine-rich repeat (LRR) structure of the PvPGIP2 (Bent and Mackey, 2007). ................. 64 Figure I. 23 Bait and switch model of NB-LRR protein function (Collier and Moffett 2009). ................. 67 Figure I. 24 A general model for plant–pathogen coevolution with a multilayered plant defense system. (Xiao et al., 2008). ............................................................................................................................. 69 Figure I. 25 Evolutionary pattern of R genes (Fredman and Baker, 2007). .............................................. 72 Figure I. 26 Neighbor-joining tree showing the family-specific amplification of NBS sequences. (a) TNLs. (b) CNLs. (McHale et al., 2006). ............................................................................................ 75 Figure I. 27 Physical locations of Arabidopsis sequences that encode NBS proteins similar to Plant R Genes. (Meyers et al., 2003). ............................................................................................................. 77 Figure I. 28 The mechanisms that contribute to diversity of R genes and their loci. Adapted from: Leister et al. 2004. ......................................................................................................................................... 78 Figure I. 29 Three potential fates of duplicate gene pairs with multiple regulatory regions (Force et al., 1999. .................................................................................................................................................. 80 Figure I. 30 Route towards the application of candidate genes (Salentijn et al 2007). .............................. 92 Figure I. 31 Steps of positional cloning (Bouchez et al., 2006) ................................................................ 94 CHAPTER II Figure II. 1 Southern hybridisation of HindIII-digested DNA from BAC clones of the S 3 region by a H BAC-end marker probe (143-8C-r). Based on the polymorphism revealed, the positive clones were classified in two groups that putatively correspond to the two Arabica subgenomes. ..................... 112 Figure II. 2 BAC clone contig around the S 3 gene locus, and the S 3 region on the physical map...... 114 H H CHAPTER III Figure III. 1 BAC clone contigs spanning the S 3 locus. BAC clones spanning the S 3 locus as H H previously contigued [46]. Sequenced BACs from the three genomes are indicated by gray boxes. ......................................................................................................................................................... 125 Figure III. 2 Organization of S 3-CNL members in three coffee genomes: ........................................... 126 H Figure III. 3 Southern blot hybridization of genomic DNA of C. arabica: ............................................ 127 Figure III. 4 Southern blot hybridization of genomic DNA from diploid coffee species: ...................... 127 Figure III. 5 Evolution of the S 3 locus in coffee species: ..................................................................... 129 H Figure III. 6 Alignment of the predicted amino acid sequences from S 3-CNL members. .................... 132 H Figure III. 7 Nucleotide diversity among S 3-CNL members from C. canephora ................................. 134 H Figure III. 8 Ka/Ks ratio in the solvent-exposed residue of S 3-CNL members:. .................................. 142 H Figure III. 9 Ka/Ks ratio in the solvent-exposed residue of S 3-CNL_A2. ............................................ 143 H CHAPTER IV Figure IV. 1 GFP fluorescence in embryogenic callus cultures transformed with A. tumefaciens and in derived somatic embryos. ................................................................................................................ 149 Figure IV. 2 Effect of 6-BA and 2,4-D concentrations in the proliferation medium on growth intensity and transformation efficiency of coffee embryogenic callus cultures. ............................................ 151 Figure IV. 3 Morphological and histological aspect of the different callus phenotypes observed in maintained embryogenic cultures assayed for coffee genetic transformation.................................. 153 Figure IV. 4 Transformation efficiency depending on the phenotype of maintained embryogenic callus cultures. Transformation efficiency was assessed by observing GFP epifluorescence 6 weeks after the end of co-cultivation. ................................................................................................................. 154 Figure IV. 5 Effect of the embryogenic callus culture age on A. tumefaciens-mediated transformation efficiency in C. arabica. Transformation efficiency was assayed 6 weeks after the end of co- cultivation by GFP epifluorescence. ................................................................................................ 155 Figure IV. 6. Histological aspect of coffee embryogenic callus cultures depending on the age of the culture.. ............................................................................................................................................ 156 Figure IV. 7 Regeneration of transformed coffee plants from maintained embryogenic cultures. .......... 158 Figure IV. 8 PCR detection of the hygromycin gene in transgenic coffee plants. The plants were produced from 7-month-old embryogenic callus cultures co-cultivated with A. tumefaciens strain LBA1119 carrying out the pMDC32 binary vector.. ....................................................................... 159 Figure IV. 9 Southern blot analyses of transgenic coffee plants. ............................................................ 159 CHAPTER V Figure V. 1 Southern blot patterns of C. arabica cultivars hybridized with S 3-CNL specific probe. ... 172 H Figure V. 2 Schematic representation of hybridization pattern obtained with EcoRI in non-introgressed and introgressed acession of C. arabica. ......................................................................................... 173 Figure V. 3 Construction of binary vectors used for plant transformation carrying out candidate R genes against CLR. .................................................................................................................................... 179 Figure V. 4 Expression cassettes used to clone candidates genes............................................................ 180 Figure V. 5 Schema representing the coffee transformation experiment for CG functional validation. .. 182 Figure V. 6 Overview of the transformation method used to produce transgenic coffee plants. ............. 184 Figure V. 7 Transgenic coffee plants carrying out the candidate genes A2 not conferred resistance to CLR.. ............................................................................................................................................... 185 Figure V. 8 Strategy used for constructing a pooled BAC library of S.795 resistant cultivar to coffee leaf rust (http://cnrgv.toulouse.inra.fr/fr/services/non_gridded_bac_library). ........................................ 186 CHAPTER VI Figure VI. 1 Identification of BAC clones containing the S 3 locus in the S.795 resistant cultivar of C. H arabica. A. BAC clones containing the S 3 locus; B. Pulse field of BACs digested with Not I H enzyme; C. BACs fingerprint digested by Eco RI enzymes. ........................................................... 190 Figure VI. 2 Compared time durations for producing transgenic coffee plants using leaf explants versus cryopreserved calluses......................................................................................................................197

Description:
Mme Françoise ADAN-BLONDON (INRA), Rapporteur. Mme Valérie GEFFROY (INRA), Examinatrice. M. Emmanuel DOUZERY (UM2), Examinateur. M. Gilles PILATE (INRA), Rapporteur. M. Hervé ETIENNE (CIRAD), Co-Directeur de thèse. M. Philippe LASHERMES (IRD), Co-Directeur de thèse
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.