ebook img

Characteristic matrices for linear periodic delay differential equations PDF

0.31 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characteristic matrices for linear periodic delay differential equations

CHARACTERISTICMATRICESFORLINEARPERIODICDELAYDIFFERENTIAL EQUATIONS JAN SIEBER∗ AND ROBERT SZALAI† Abstract.Szalaietal.(SIAMJ.onSci.Comp.28(4),2006)gaveageneralconstructionforcharacteristic matricesforsystemsoflineardelay-differentialequationswithperiodiccoefficients. First,weshowthat matricesconstructedinthiswaycanhaveadiscretesetofpolesinthecomplexplane,whichmaypossibly obstructtheirusewhendeterminingthestabilityofthelinearsystem.Thenwemodifyandgeneralizethe originalconstructionsuchthatthepolesgetpushedintoasmallneighborhoodoftheoriginofthecomplex 1 plane. 1 0 AMSsubjectclassifications.34K06,34K08,34K20 2 n Keywords.delaydifferentialequations,characteristicmatrix,stabilityofperiodicorbits a J 1. Introduction. Lineardelaydifferentialequations(DDEs)withcoefficientspe- 1 riodicintimecomeupnaturallywhenoneanalysesnonlinearDDEs: oneofthemost 2 common and simplest invariant sets encountered in nonlinear systems are periodic orbits[5]. Ifonewantstofindoutifaperiodicorbitisdynamicallystableorunstable, ] S or how its stability changes as one changes system parameters one has to linearize D the nonlinear DDE system in the periodic orbit, which results in a linear DDE with . time-periodiccoefficients[2,6]. ThislinearDDEistypicallywrittenintheform h t a x˙(t)=L(t)x (1.1) t m [ wherethecoefficients(hiddenintheoperator L(t))areperiodicin t. Withoutlossof generalitywecanassumethatthetimedependenceof L isofperiod1(thiscorresponds 3 to rescaling time and L). Then the exponential asymptotic stability of the periodic v orbitinthefullnonlinearsystemisdeterminedbytheeigenvaluesofthetime-1map 2 2 T generated by the linear DDE (1.1). See the textbooks [2, 6] for a summary of 5 the fundamental results on Floquet theory and [11] for robust numerical methods 4 to calculate these eigenvalues in practical problems. For analytical purposes (and, . 5 possibly,fornumericalpurposes)itisusefultoreducetheeigenvalueproblemforthe 0 infinite-dimensionaltime-1map T toanalgebraicproblemviaacharacteristicmatrix 0 ∆(λ)∈(cid:67)n×n. Onewouldexpectthatthismatrix∆shouldsatisfy,forexample,that 1 (i) ∆(λ) is regular if (and only if) λ ∈ (cid:67) is in the resolvent set of T (that is, : v λI−T isanisomorphism), Xi (ii) λ is a root of det∆(·) of order q if and only if λ is an eigenvalue of T of algebraicmultiplicityq(see[8]orLemma4.2in§4howonecanconstructtheJordan r a chainsof T from∆),and (iii) dimker∆(λ)isthegeometricmultiplicityofλasaneigenvalueof T. Animmediateconsequenceoftheexistenceofsuchamatrix∆wouldbetheupperlimit n(thedimensionof∆(λ))onthegeometricmultiplicityofeigenvaluesof T. Fortime-invariantlinearDDEs(where L doesnotdependon t in(1.1))theexis- tenceofacharacteristicmatrixhasbeenknownandusedforalongtime. Thegeneral theoreticalbackgroundandconstruction(extendedtomoregeneralevolutionarysys- tems such as, for example, neutral equations and some classes of hyperbolic partial differentialequations)isgivenbyKaashoekandVerduyn-Lunelin[8]. For time-periodic linear DDEs the textbook of Hale and Verduyn-Lunel [6] has developedcharacteristicmatricesonlyforthecasewherealltimedelaysaremultiples oftheperiod. Thishasbeengeneralizedtodelaysdependingrationallyontheperiodin ordertoderiveanalyticalstabilityresultsforperiodicorbitsoftheclassicalscalardelayed ∗Dept.ofMathematics,universityofPortsmouth(UK) †Dept.ofEngineeringMathematics,UniversityofBristol(UK) 1 2 J.SieberandR.Szalai positivefeedbackproblem[12]. Acharacteristicfunctionintheformofacontinued fraction expansion is given for a scalar DDE in [7]. In general, precise analytical statementsaboutthelocationofFloquetmultipliers(orthenumberofunstableFloquet multipliers)canbemadeonlyforDDEswithveryspecialstructure,typicallyscalarDDEs withsingledelaysandparticularrequirementsontheright-handside,see[1,3,14,15] forclassicalworks. AnextensionoftheseresultstocyclicDDEsusingadiscreteLyapunov functionisgivenin[10]. Szalai et al. give a general construction for a characteristic matrix ∆ for time- periodicDDEsin[13]thatlendsitselfeasilytorobustnumericalcomputation. Since oneexpectsthat∆(λ)musthaveanessentialsingularityatλ=0(theeigenvaluesof the compact time-1 map T accumulate at 0) the constructed matrix is rather of the form ∆(µ) where µ = λ−1. We show (in §3) that the characteristic matrix ∆(µ) as constructedbySzalaietal.typicallyhaspolesinthecomplexplane,makingitunusable whenever eigenvalues of T of interest coincide with these poles. However, the set of these poles is discrete and accumulates only at ∞. Moreover, in §4 we provide a modification∆ (µ)oftheoriginalmatrix∆(µ),whichallowsustopushthepolesof k ∆ totheoutsideofanygivenballofradiusR≥1inthecomplexplanebyincreasing k the dimension of ∆ . This modification reduces the eigenvalue problem for T to a k root-findingproblemfordet∆ (µ)foralleigenvaluesof T withmoduluslargerthan k 1/R,whichisusefulbecauseoneistypicallyinterestedinthelargesteigenvaluesof T. Tokeepthenotationaloverheadlimitedwedevelopourargumentsforthecaseofa DDE with a single delayed argument and a constant delay τ<1. In Appendix B we showthatthegeneralizationtoarbitrarydelays(distributedandreachingarbitrarilyfar intothepast)isstraightforward. One immediate application for the characteristic matrix came up in [16] where YanchukandPerlikowskiconsiderperiodicorbitsofnonlinearDDEswithasinglefixed delay τ but change the delay to τ+kP (where k is an integer and P is the period of the periodic orbit), and then study the stability of the periodic orbit (which does not change its shape) in the limit k → ∞. The limit is, of course, a singular limit if one considers the time-P map T but the characteristic matrix ∆ has a well-defined k regularlimit. Thispermittedtheauthorstodrawconclusionsaboutthelinearstability properties of periodic orbits for sufficiently large delays from the properties of the so-calledpseudo-continuousspectrum[16]. As[16]reliesontheoriginalconstruction from [13], which may have poles near the unit circle, our note closes a gap in the argumentof[16]. 2. Construction of characteristic matrix for a single fixed delay. Consider a periodiclineardifferentialequationofdimensionnwithasingledelayτandcontinuous periodiccoefficientmatricesA(t)andB(t)(bothofsizen×n): x˙(t)=A(t)x(t)+B(t)x(t−τ) (2.1) whereweassumethattheperiodofthetimedependenceofAandB equals1without lossofgenerality(thiscorrespondstorescalingtime,τ,AandB). Wealsoassumefor simplicityofnotationthatτ<1. Letusdenotethemonodromyoperator(alsocalled thetime-1map)for(2.1)by T :C([−1,0];(cid:67)n)(cid:55)→C([−1,0];(cid:67)n). C([−1,0];(cid:67)n)isthe spaceofcontinuousfunctionsontheinterval[−1,0]withvaluesin(cid:67)n. Thatis, T maps an initial condition x in C([−1,0];(cid:67)n) to the solution of (2.1) after time 1 starting from the initial value x(0) (the head point) and using the history segment x(·). For x ∈C([−1,0];(cid:67)n)wedefine Tx preciselyasthesolution y ∈C([−1,0];(cid:67)n)of (cid:168)y(t−τ) if t∈[τ−1,0] ˙y(t)=A(t)y(t)+B(t) x(1+t−τ) if t∈[−1,τ−1) (2.2) y(−1)=x(0). CharacteristicmatricesforperiodicDDEs 3 Thecomplexnumberλisaneigenvalueof T (aFloquetmultiplierfor(2.1))ifonecan findanon-zero x suchthat Tx =λx. Weknowthat T iscompact[6]forτ<1(and that,forarbitraryτ,wecanfindapower Tm thatiscompact). Hence,anynon-zeroλ iseitherintheresolventsetof T (thatis,λI−T isregular)oritisaneigenvalueof T withafinitealgebraicmultiplicity. Ifweintroduceµ=1/λwemaywritetheeigenvalueproblemfor T asfollows: (cid:168)x(t−τ) if t∈[τ−1,0], x˙(t)=A(t)x(t)+B(t) (2.3) µx(1+t−τ) if t∈[−1,τ−1), x(−1)=µx(0) (2.4) where x ∈ C([−1,0];(cid:67)n) is continuous. Reference [13] constructs a characteristic matrix∆(µ)for T basedonthefollowinghypothesis. Hypothesis2.1(Szalai’06) Theinitial-valueproblemontheinterval[−1,0] (cid:168)x(t−τ) if t∈[τ−1,0], x˙(t)=A(t)x(t)+B(t) (2.5) µx(1+t−τ) if t∈[−1,τ−1), x(−1)=v (2.6) hasauniquesolution x ∈C([−1,0];(cid:67)n)forallµ∈(cid:67)and v∈(cid:67)n. Notethattheproblem(2.5)–(2.6)differsfromtheboundary-valueproblem(2.3)–(2.4) becausewehavereplacedtheboundarycondition x(−1)=µx(0)byaninitialcondition x(−1)=v. Theformulationofthehypothesisin[13]is(onlyapparently)weaker: it claimstheexistenceonlyforµ∈(cid:67)forwhich1/µiseitherintheresolventsetof T or aneigenvalueof T ofalgebraicmultiplicityone. IfHypothesis2.1istruethenonecan definethecharacteristicmatrix∆(µ)via ∆(µ)v=v−µx(0) (2.7) where x(0) is the value of the unique solution of (2.5)–(2.6) at the end of the time interval[−1,0]. Integralequationfor(2.5)–(2.6). Forsystem(2.5)–(2.6)onehastoclarifywhatit meansfor x ∈C([−1,0];(cid:67)n)tobeasolution. Wecall x ∈C([−1,0];(cid:67)n)asolutionof (2.5)–(2.6)if x satisfiestheintegralequation x(t)=v+M (µ)[x](t) where (2.8) 1 (cid:90) t (cid:168)x(s−τ) ifs∈[τ−1,0], (cid:2)M (µ)x(cid:3)(t)= A(s)x(s)+B(s) ds (2.9) 1 µx(1+s−τ) ifs∈[−1,τ−1) −1 pointwise for all times t on the interval [−1,0]. The linear operator M (µ) maps 1 C([−1,0];(cid:67)n)backintoC([−1,0];(cid:67)n)andiscompact. (M willbegeneralizedlater 1 to M fork>1.) k Lemma2.2 Forµsufficientlycloseto0theinitial-valueproblem(2.5)–(2.6)hasaunique solutionforall v. Proof:. For(2.8)tohaveauniquesolutionitisenoughtoshowthat I−M (µ)is 1 invertible. Sincethetime-1map T iswelldefinedandlinearin x =0(thatis, Tx =0 for x =0)wehavethat(2.2)hasonlythetrivialsolutionfor x =0. Thisinturnimplies thatthecorrespondingintegralequation y =M (0)y (2.10) 1 4 J.SieberandR.Szalai hasonlythetrivialsolutioninC([−1,0];(cid:67)n). Thus,thekernelof I−M (0)istrivial, 1 and,since I−M (0)isacompactperturbationoftheidentity, I−M (0)isinvertible. 1 1 Moreover, the real-valued function µ(cid:55)→(cid:107)M (µ)−M (0)(cid:107) (using the operator norm 1 1 induced by the maximum norm of C([−1,0];(cid:67)n)) is continuous in µ because M 1 dependscontinuouslyonµ(seedefinitionof M in(2.9)). Thisimpliesthat I−M (µ) 1 1 isalsoinvertibleforsmallµ,whichinturnmeansthat(2.8)–(2.9)hasauniquesolution forsmallµ. (cid:131) The following lemma states that the function on the complex domain µ(cid:55)→[I− M (µ)]−1, which has operators in (cid:76)(C([−1,0];(cid:67)n);C([−1,0];(cid:67)n)) as its values, is 1 welldefinedandanalyticeverywhereinthecomplexplaneexcept,possibly,inadiscrete setofpoles. Lemma2.3 Theoperator-valuedcomplexfunctionµ(cid:55)→[I−M (µ)]−1 canhaveatmosta 1 finitenumberofpolesinanyboundedsubsetof(cid:67). Allpolesof[I−M (µ)]−1(if 1 thereareany)areoffinitemultiplicity. Ifµisnotapolethenµ(cid:55)→[I−M (µ)]−1 1 isanalyticinµ. Proof:. Wecansplittheoperator M (µ)intoasumoftwooperators: 1 M (µ)=M (0)+µL where (2.11) 1 1 (cid:90) t (cid:168)0 ifs∈[τ−1,0], [Lx](t)= B(s) ds. (2.12) x(1+s−τ) ifs∈[−1,τ−1) −1 Theoperator I−M (0)isinvertible(andacompactperturbationoftheidentity)and 1 L:C([−1,0];(cid:67)n)(cid:55)→C([−1,0];(cid:67)n)iscompact. Thus,wecanrewrite I−M (µ)as 1 I−M (µ) =(cid:0)I−M (0)(cid:1)(cid:148)I−µ(I−M (0))−1L(cid:151) and,thus, 1 1 1 [I−M (µ)]−1=λ·(cid:148)λI−(I−M (0))−1L(cid:151)−1(I−M (0))−1 1 1 1 (keeping in mind that µ=1/λ). The function λ(cid:55)→[λI−(I−M (0))−1L]−1 on the 1 right-handsideisthestandardresolventofthecompactoperator(I−M (0))−1L,which 1 hasonlyfinitelymanypolesoffinitemultiplicityoutsideofanyneighborhoodofthe complexoriginaccordingto[9],andisanalyticeverywhereelse. (cid:131) Lemma2.3carriesovertothecharacteristicmatrix∆(µ)definedin(2.7): since x =[I−M (µ)]−1v (ifweextend v∈(cid:67)n toaconstantfunction),∆(µ)v=v−µx(0)is 1 ananalyticfunctionwithatmostadiscretesetofpolesoffinitemultiplicity(possibly accumulatingat∞). The characteristic matrix ∆(µ) (where it is well defined) has the properties one expects: for a complex number µ in the domain of definition of ∆, 1/µ is a Floquet multiplieroftheDDE(2.1)ifandonlyif∆(µ)issingular(det∆(µ)=0). Anyvectorvin itskernelisthevalueofaneigenfunctionfor1/µattime t=−1. Thefulleigenfunction can be obtained as the solution of the initial-value problem (2.5)–(2.6). If ∆(µ) is regular then 1/µ is in the resolvent set of the eigenvalue problem (2.3)–(2.4). The Jordanchainsassociatedtoeigenvalues1/µcanbeobtainedbyfollowingthegeneral theorydescribedin[8]. Wegiveaprecisestatement(seeLemma4.2inSection4)about theJordanchainstructureafterdiscussingHypothesis2.1. Theconstructioncanbeextendedinastraightforwardmannertomultiplefixed discrete delays and distributed delays. The only modification is that higher powers ofµhavetobeincludedfordelayslargerthan1. Forexample,ifτ∈(1,2]thenthe initial-valueproblem(2.5)–(2.6)ismodifiedto (cid:168)µx(1+t−τ) if t∈[τ−2,0], x˙(t)=A(t)x(t)+B(t) µ2x(2+t−τ) if t∈[−1,τ−2), x(−1)=v. CharacteristicmatricesforperiodicDDEs 5 Thus, alsoforarbitrarydelays∆(µ)alwayshasatworstfinitelymanypolesoffinite multiplicity in any bounded subset of (cid:67). Appendix B discusses the case where the functionalaccessingthehistoryof x isaLebesgue-Stieltjesintegral. 3. Thepolesofthecharacteristicmatrix. Hypothesis2.1isnottrueinitsstated form(andneitherintheformstatedin[13]). Letusanalysethesimplescalarexample (cid:18) 1(cid:19) x˙(t)=x t− (3.1) 2 ontheinterval[−1,0]. Problem(2.5)–(2.6)restatedforthisexampleisequivalentto x˙ (t)=µx (t), x (0)=v 1 2 1 (3.2) x˙ (t)=x (t), x (0)=x (1/2) 2 1 2 1 where x and x areinC([0,1/2];(cid:67)),and x (t)=x(t−1)and x (t)=x(t−1/2)for 1 2 1 2 t intheinterval[0,1/2]. Thetime-1/2mapfortheIVPoftheODE(3.2)withinitial conditions x (0)=v, x (0)=w is 1 2 (cid:112) (cid:112) (cid:112) (cid:20)x (1/2)(cid:21)  cosh(cid:128)1 µ(cid:138) µsinh(cid:128)1 µ(cid:138)(cid:150)v(cid:153) x12(1/2) =sinh(cid:128)1(cid:112)2µ(cid:138)/(cid:112)µ cosh(cid:128)1(cid:112)2µ(cid:138)  w 2 2 (cid:112) where µreferstotheprincipalbranchofthecomplexsquareroot(thesetofsolutions is the same for both branches as all entries in the matrix are even). The continuity condition x (0)=x (1/2)in(3.2)issatisfiedifandonlyif 2 1 (cid:20) (cid:112) (cid:18)1(cid:112) (cid:19)(cid:21) (cid:18)1(cid:112) (cid:19) 1− µsinh µ w+cosh µ v=0, 2 2 whichhasauniquesolutionforarbitrary v ifandonlyif (cid:112) (cid:18)1(cid:112) (cid:19) 0(cid:54)=1− µsinh µ . 2 Thus, we see that for example (3.1) the initial-value problem (2.5)–(2.6) cannot be solvedfornon-zero v wheneverµisarootofthefunction (cid:112) (cid:18)1(cid:112) (cid:19) f(µ)=1− µsinh µ . 2 Thisfunction f isagloballydefinedrealanalyticfunctionofµ(theexpressiononthe (cid:112) right-handsideisevenin µ). Ithasaninfinitenumberofcomplexrootsaccumulating atinfinity. Oneoftherootsisreal: f(0)=1,and f(µ)→−∞forµ→+∞andµ∈(cid:82) (let’scallitµ : µ ≈1.8535). Consequently,example(3.1)providesacounterexample 0 0 toHypothesis2.1. Ifoneextendsexample(3.1)byadecoupledequationthathasits Floquetmultiplierat1/µ (forexample, ˙y =−[logµ ]y)thenitalsocontradictsthe 0 0 hypothesisasstatedin[13]. AswehavediscussedinSection2,onefindsthatµ=1/λisapoleof∆(µ)ifλis anon-zeroeigenvalueoftheoperator[I−M (0)]−1L where M and L aredefinedin 1 1 (2.9) and (2.12). Thus, whenever [I−M (0)]−1L has a non-zero spectral radius we 1 mustexpectthat∆(µ)haspoles. 4. The extended characteristic matrix. The construction of ∆(µ) suffers from theproblemthatthepolesof∆(µ)maycoincidewiththeinverseofFloquetmultipliers of(2.1)ofinterest. Asimpleextensionoftheconstructionof∆(µ)permitsonetopush thepolestotheoutsideofacircleofanydesiredradiusR. Thenthecharacteristicmatrix canbeusedtofindallFloquetmultipliersoutsideoftheballofradius1/R. Weexplain 6 J.SieberandR.Szalai theextensionindetailforasingledelayτ<1(thestraightforwardgeneralizationto thegeneralcaseisrelegatedtoAppendixB). The idea is based on the observation that the linear part of the right-hand side in the integral equation formulation (2.8)–(2.9) of initial-value problem (2.5)–(2.6) hasanormlessthan1iftheintervalissufficientlyshort(thus,makingthefixedpoint problem(2.8)–(2.9)uniquelysolvable). Similartoamultipleshootingapproach, wepartitiontheinterval[−1,0]into k intervalsofsize1/k: (cid:20) i i+1(cid:19) Ji =(cid:2)ti,ti+1(cid:1)= −1+ k,−1+ k fori=0,...,k−1. (4.1) Thenwewriteasystemofkcoupledinitialvalueproblemsforavectorofkinitialvalues (v0,...,vk−1)T ∈(cid:67)nk: (cid:168)x(t−τ) if t∈[τ−1,0], x˙(t)=A(t)x(t)+B(t) (4.2) µx(1+t−τ) if t∈[−1,τ−1), x(t )=v fori=0,...,k−1 (4.3) i i where t∈[−1,0]. System(4.2)–(4.3)correspondstoacoupledsystemofkdifferential equationsforthekfunctions x| inthetimeintervalsJ. Moreprecisely, x isdefinedas J i i asolutionofthefixedpointproblem t (cid:90) (cid:168)x(s−τ) ifs∈[τ−1,0], x(t)=v(t)+ A(s)x(s)+B(s) dswhere (4.4) s µx(1+s−τ) ifs∈[−1,τ−1) a (t) k v(t)=v if t∈J, (4.5) s i i a (t)=t if t∈J. (4.6) k i i We point out that a solution x of (4.2)–(4.3) is not necessarily in C([−1,0];(cid:67)n) x(t ) 2 − v2=x(t2)+ v0=x((cid:0)1)+ v1=x(t1)+ x(0)(cid:0) x(t1)(cid:0) 1=t t t 0=t 0 1 2 3 − J J J 0 1 2 Fig.4.1: Illustrationofsolution x ∈C formultiple-shootingproblem(4.2)–(4.3)with k=3 k sub-intervals. Theright-sidedlimits x(ti)+areequaltothevariablesvi. Thegapsbetweenthe left-sided limits x(ti)− and x(ti)+ are zero if [v0,...,vk] is in the kernel of the characteristic matrix∆ (µ).Theequationsfor x| onthesub-intervalsarecoupledduetothetermst−τor 1+t−τkin(4.2). Ji becauseitwilltypicallyhavediscontinuitiesattherestartingtimes t fori=1...k−1 i CharacteristicmatricesforperiodicDDEs 7 as illustrated in Fig. 4.1 . Thus, we should define the space in which we look for solutionsasthespaceofpiecewisecontinuousfunctions: C ={x :[−1,0](cid:55)→(cid:67)n: x continuousoneach(half-open)subintervalJ (4.7) k i andlimt(cid:37)t x(t)existsforalli=1...k.} i C ={x ∈C :x(t )=0foralli=0...k−1}. (4.8) k,0 k i Wecall x ∈C asolutionof(4.4)–(4.6)ifitsatisfies(4.4)forevery t ∈[−1,0]. Both k spaces, C and C are equipped with the usual maximum norm. For example, the k k,0 piecewiseconstantfunctionv asdefinedin(4.5)isanelementofC . Severaloperations s k areusefulwhendealingwithfunctionsinC tokeepthenotationcompact. Anyelement k x ∈C haswell-definedone-sidedlimitsattheboundaries t ,whichwedenotebythe k i subscripts+and−: x(ti)−=tl(cid:37)imt x(t) fori=1...k, i x(ti)+=tl(cid:38)imt x(t)=x(ti) fori=0...k−1. i Wealsodefinethefourmaps S:(cid:67)nk(cid:55)→Ck S[v0...vk−1]T(t)=vi if t∈[ti,ti+1)fori=0...k−1, Γ+:Ck(cid:55)→(cid:67)nk Γ+[x(·)]=(cid:2)x(−1)+,x(t1)+,...,x(tk−1)+(cid:3)T, Γ−(µ):Ck(cid:55)→(cid:67)nk Γ−(µ)[x(·)]=(cid:2)µx(0)−,x(t1)−,...,x(tk−1)−(cid:3)T, M (µ):C (cid:55)→C where k k k,0 t (cid:90) (cid:168)x(s−τ) ifs∈[τ−1,0], (cid:2)M (µ)x(cid:3)(t)= A(s)x(s)+B(s) ds k µx(1+s−τ) ifs∈[−1,τ−1) a (t) k (4.9) (thepiecewiseconstantfunctionak wasdefinedin(4.6)asak(t)=ti if t∈[ti,ti+1)). The map S takes a tuple of vectors v0,...vk−1 and maps it to a piecewise constant function, assigning x(t )= v and then extending with a constant to the subinterval i i Ji. For example, the function vs in (4.4)–(4.5) is equal to Sv. The map Γ+ takes the right-sidelimitsofapiecewisecontinuousfunction(thus,Γ+S istheidentityin(cid:67)nk). ThemapΓ−(µ)takestheleft-sidelimitsattheinteriorboundaries ti (i≥1),andinits firstcomponentittakestheleft-sidelimitat t =0(theendoftheinterval)multiplied k byµ. Themap M (µ)isthegeneralizationof M definedin(2.9): inthedefinitionof k 1 M thelowerboundaryintheintegralisnot−1buta (t)suchthatwecanestimateits k k norm: (cid:107)Mk(µ)(cid:107)∞≤ 1k(cid:20)t∈m[−a1x,0](cid:107)A(t)(cid:107)∞+|µ|tm∈[a0,x1](cid:107)B(t)(cid:107)∞(cid:21)=: C∗(k|µ|). (4.10) AccordingtotheTheoremofArzelá-Ascoli(see[4],page266)theoperatorM (µ)isalso k compactbecauseitmapsanyboundedsetintoasetwithuniformlyboundedLipschitz constants. Usingtheabovenotationwecanwritethedifferentialequation(4.2)–(4.3) (or,rather,thecorrespondingintegralequation(4.4))asafixedpointproblemin C . k Foragiven v=[v0,...,vk−1]∈(cid:67)nk andµ∈(cid:67)wefindafunction x ∈Ck suchthat x =Sv+M (µ)x. (4.11) k Duetothenormestimate(4.10)on M (µ)wecanstatethefollowingfactaboutthe k existenceofafixedpoint x of(4.11)foragiven v andµ. 8 J.SieberandR.Szalai Lemma4.1 LetR≥1begiven. Ifwechoose k>C∗(R)thenthesystem(4.2)–(4.3)hasa unique solution x ∈ Ck for all initial values (v0...vk−1)T and all µ satisfying |µ|<R. Proof:. Thedifferentialequation(4.2)–(4.3)isequivalenttofixedpointproblem (4.11). The norm estimate (4.10) implies that I −M (µ) is invertible such that the k solution x of(4.11)isgivenby[I−M (µ)]−1Sv. (cid:131) k Lemma4.1impliesthatforµsatisfying C∗(|µ|)<k theoperator I−Mk(µ)isan isomorphismonC . k 4.1. Extended characteristic matrix. We can use Lemma 4.1 to define the ex- tended characteristic matrix ∆k(µ) for µ satisfying C∗(|µ|) < k. This is a matrix in (cid:67)(nk)×(nk) andisdefinedas  v   v0−µx(0)  ∆k(µ)v=∆(µ) ...0 = v1−x...(t1)−  (4.12) vk−1 vk−1−x(tk−1)− where x =(cid:2)I−M (µ)(cid:3)−1Sv∈C istheuniquesolutionofthecoupledsystemofinitial- k k valueproblems,(4.2)–(4.3),withinitialcondition v=(v0,...,vk−1)T ∈(cid:67)nk. Thefirst rowintherightsideofdefinition(4.12)correspondstotheboundarycondition(2.4). Theotherk−1rows, vi−x(ti)−,guaranteefor v∈ker∆(µ)thattherightandtheleft limitof x attherestartingtimes t agree,makingthegapsshowninFig.4.1zero. Thus, i x =[I−M (µ)]Sv isnotonlyinC butinC([−1,0];(cid:67)n)if∆ (µ)v=0. Whatismore, k k k if∆ (µ)v=0thentheright-handsideof(4.2)forthesolution x =[I−M (µ)]−1Sv k k is continuous such that x is continuously differentiable and satisfies for every t the differentialequation(2.3)–(2.4),whichdefinestheeigenvalueproblemfor T. LetuslistseveralusefulfactsaboutC ,C ,∆ (µ), T andthequantitiesdefinedin k k,0 k (4.9). 1. Wecanexpress∆ (µ)usingthemapsdefinedin(4.9): k ∆k(µ)=I−Γ−(µ)(cid:2)I−Mk(µ)(cid:3)−1S. (4.13) 2. C isisomorphicto(cid:67)nk×C : k k,0 (v,ϕ)∈(cid:67)nk×C (cid:55)→Sv+ϕ∈C k,0 k (4.14) ψ∈Ck (cid:55)→(Γ+ψ,ψ−SΓ+ψ)∈(cid:67)nk×Ck,0. 3. Thedifferentialequation (cid:168)x(t−τ) if t∈[τ−1,0], x˙(t)=A(t)x+B(t) 0 if t∈[−1,τ−1), (4.15) x(−1)+=0 x(ti)+=x(ti)− fori=1,...,k−1 has only the trivial solution (it is identical to (2.5)–(2.6) for µ = 0). Its integral formulationis x =SΓ−(0)x+Mk(0)x. Thus,theoperator I−SΓ−(0)−Mk(0):Ck(cid:55)→ C([−1,0];(cid:67)n)(whichisofFredholmindex0)isinvertible. 4. Thetime-1map T ofthelinearDDE x˙(t)=A(t)x(t)+B(t)x(t−τ),defined in (2.2) for initial history segments in x ∈ C([−1,0];(cid:67)n), can be easily extended to initialhistorysegmentsinC . Infact,theextensionof T toC canbedefinedby k k T =(cid:2)I−SΓ−(0)−Mk(0)(cid:3)−1(cid:2)S(Γ−(1)−Γ−(0))+Mk(1)−Mk(0)(cid:3), CharacteristicmatricesforperiodicDDEs 9 whichmapsC intoC([−1,0];(cid:67)n),suchthat k I−µT =(cid:2)I−SΓ−(0)−Mk(0)(cid:3)−1(cid:2)I−SΓ−(µ)−Mk(µ)(cid:3), (4.16) which maps C into C (see Appendix A for a detailed decomposition of expression k k (4.16)). Sincetheextensionof T mapsintoC([−1,0];(cid:67)n)(theoriginaldomainofthe non-extended T)itsspectrumisidenticaltothespectrumoftheoriginal T. Lemma4.1andtheabovefactspermitustoapplythegeneraltheorydevelopedin [8],relatingtheextendedcharacteristicmatrix∆ (µ)∈(cid:67)(nk)×(nk) tospectralproperties k ofthetime-1map T: eigenvalues,eigenvectors,andthelengthoftheirJordanchains. Lemma4.2(Jordanchains) Assumethat0<|µ∗|<Rand k>C∗(R)where C∗(R)isdefinedby(4.10). If ∆k(µ∗)isregularthen1/µ∗ isintheresolventsetofthemonodromyoperator T. If∆k(µ∗)isnotregularthenλ∗=1/µ∗ isaneigenvalueof T. TheJordan chainstructureforλ∗ asaneigenvalueof T isalsodeterminedby∆k: 1. thedimensionl0 ofker∆k(µ∗)isthegeometricmultiplicityofλ∗, 2. the order p of the pole µ∗ of ∆k(µ)−1 is the length of the longest Jordanchainassociatedtoλ∗, 3. theorderofµ∗ asarootofdet∆k(µ)isthealgebraicmultiplicityof λ∗, 4. the Jordan chains of length less than or equal to p can be found as solutions(y0,...,yp−1)(where yp−1 isnon-zero)ofthelinearsystem 0=∆(0)y k 0 0=∆(1)y +∆(0)y k 0 k 1 ∆(2) 0= k y +∆(1)y +∆(0)y 2 0 k 1 k 2 (4.17) . . . ∆(p−1) 0= (p−k 1)!y0+...+∆(k1)yp−2+∆(k0)yp−1 where∆(kj) isthe jthderivativeof∆k(µ)inµ∗ and∆(k0)=∆k(µ∗). System(4.17)isequivalenttotherequirement ∆k(µ)(cid:148)y0+(µ−µ∗)y1+...+(µ−µ∗)p−1yp−1(cid:151)=O(cid:0)(µ−µ∗)p(cid:1) forallµ≈µ∗ (thisis,infact,thegeneraldefinitionofaJordanchainforanonlinear eigenvalueproblem). Thevectors y intheJordanchainsfoundassolutionsof(4.17) j are still vectors in (cid:67)nk. We give the precise relation between the vectors y and the j generalizedeigenvectorsof I−µT inEquation(4.21)intheproofbelow. Proof:. Theproofextendsandmodifiestheconstructionusedby[13],andmakes thegeneraltheoryof[8]applicabletotime-periodicdelayequations. First, we give a brief summary of the relevant statement of [8]. Let G : Ω (cid:55)→ (cid:76)(X ;Y )andH:Ω(cid:55)→(cid:76)(X ;Y )betwofunctionswhichareholomorphicontheopen 1 1 2 2 subsetΩofthecomplexplane(cid:67),andmapintothespaceofboundedlinearoperators fromoneBanachspaceX intoanotherBanachspaceY . ThefunctionsG andH are 1,2 1,2 calledequivalentifthereexisttwofunctions E:Ω(cid:55)→(cid:76)(X ;X )and F :Ω(cid:55)→(cid:76)(Y ;Y ) 2 1 1 2 (alsoholomorphiconΩ)whosevaluesareisomorphismssuchthat H(µ)=F(µ)G(µ)E(µ)forallµ∈Ω. 10 J.SieberandR.Szalai If two operators G and H are equivalent then every Jordan chain (u0,...,up−1) of the eigenvalue problem H(µ)u = 0 for µ∗ corresponds to exactly one Jordan chain (v0,...,vp−1)oftheeigenvalueproblemG(µ)v=0atµ∗ viatheisomorphism v =E u 0 0 0 v =E u +E u 1 0 1 1 0 . (4.18) . . vp−1=E0up−1+...+Ep−1u0, wheretheoperators Ej aretheexpansioncoefficientsoftheisomorphism E inµ=µ∗: E(µ)=E0+(µ−µ∗)E1+...+(µ−µ∗)p−1Ep−1+O((µ−µ∗)p). (4.19) We construct the equivalence initially only for the case of a single delay τ<1. The necessarymodificationsforarbitrarydelayscanbefoundinAppendixB(theunderlying ideaisidenticalbutthereismorenotationaloverhead). Also,werestrictourselveshere tomerelystatingwhattheoperatorsH, F,G and E are,relegatingthedetailedchecks andcalculationstoAppendixA. The subset of permissible µ, Ω⊂(cid:67), is the ball of radius R around 0, where the initial-valueproblem(4.2)–(4.3)hasauniquesolution. Inourequivalencetheoperator functionsG andH are G(µ)=I−µT : X =C (cid:55)→ Y =X , 1 k 1 1 (cid:18)∆ (µ) 0(cid:19) H(µ)= k : X =(cid:67)nk×C (cid:55)→ Y =X . 0 I 2 k,0 2 2 Note that the spaces X and X are isomorphic via relation (4.14). The eigenvalue 1 2 problemG(µ)v=0istheeigenvalueproblemfor T (reformulatedforµ=λ−1). The eigenvalueproblemH(µ)[v,ϕ]=0isequivalentto∆ (µ)v=0,ϕ=0. Thus,establish- k ingequivalencebetweenG andH provesLemma4.2. Wedefinetheisomorphisms E and F as E(µ)[v,ϕ]=(cid:2)I−M (µ)(cid:3)−1(cid:2)Sv+ϕ(cid:3) k (cid:20)F (µ)ψ(cid:21) F(µ)ψ= 1 F (µ)ψ 2 =(cid:150)(cid:2)Γ+−Γ−(0)(cid:3)ψ+Γ−(µ)(cid:2)I−Mk(µ)(cid:3)−1(cid:2)I−SΓ+−Mk(0)(cid:3)ψ(cid:153) (cid:2)I−SΓ+−Mk(0)(cid:3)ψ (4.20) See(4.13)and(4.16)forexpressionsgiving∆ (µ)and I−µT,defining G and H in k termsofS,Γ± and Mk. Theinverseof I−Mk(µ)isguaranteedtoexistbyLemma4.1. Theonlychoicewemakeisthedefinitionof E,whichisclearlyanisomorphismfromX 2 toX (because(v,ϕ)(cid:55)→Sv+ϕisanisomorphismfromX toX ). Thedefinitionof F is 1 2 1 thenuniquelydeterminedifwewanttoachievetheequivalence F(µ)G(µ)E(µ)=H(µ), andfollowsfromastraightforwardbuttechnicalcalculation,giveninAppendixA.The concreteformofEandF allowsustospecifythepreciserelationbetweenJordanchains of∆k(µ)y =0and(I−µT)x =0: (x0,...,xp−1)∈C([−1,0];(cid:67)n)p isaJordanchain of(I−µT)x =0inµ=µ∗ ifandonlyif x0=E0[y0,0], y0=Γ+x0 x1=E0[y1,0]+E1[y0,0], y1=Γ+x1−Γ+E1[y0,0] . . .. .. (4.21) xp−1=E0[yp−1,0]+...+Ep−1[y0,0], yp−1=Γ+xp−1−Γ+E1[yp−2,0]−... −Γ+Ep−1[y0,0],

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.