biology Article Characterisation of Arctic Bacterial Communities in the Air above Svalbard LewisCuthbertson1,HerminiaAmores-Arrocha1,LucieA.Malard1,NoraEls2,BirgitSattler2 andDavidA.Pearce1,* 1 DepartmentofAppliedSciences,FacultyofHealthandLifeSciences, UniversityofNorthumbriaatNewcastle,EllisonBuilding,Newcastle-upon-TyneNE18ST,UK; [email protected](L.C.);[email protected](H.A.-A.); [email protected](L.A.M.) 2 InstituteofEcology,AustrianPolarResearchInstitute,UniversityofInnsbruck,Technikerstrasse25, 6020Innsbruck,Austria;[email protected](N.E.);[email protected](B.S.) * Correspondence:[email protected];Tel.:+44-191-227-4516 AcademicEditor:ChrisO’Callaghan Received:27December2016;Accepted:21April2017;Published:6May2017 Abstract: Atmosphericdispersalofbacteriaisincreasinglyacknowledgedasanimportantfactor influencing bacterial community biodiversity, biogeography and bacteria–human interactions, includingthoselinkedtohumanhealth.However,knowledgeaboutpatternsinmicrobialaerobiology is still relatively scarce, and this can be attributed, in part, to a lack of consensus on appropriate samplingandanalyticalmethodology. Inthisstudy,threedifferentmethodswereusedtoinvestigate aerial biodiversity over Svalbard: impaction, membrane filtration and drop plates. Sites around Svalbardwereselectedduetotheirrelativelyremotelocation,lowhumanpopulation,geographical locationwithrespecttoairmovementandthetraditionandhistoryofscientificinvestigationonthe archipelago,ensuringthepresenceofexistingresearchinfrastructure.Theaerialbacterialbiodiversity foundwassimilartothatdescribedinotheraerobiologicalstudiesfrombothpolarandnon-polar environments,withProteobacteria,Actinobacteria,andFirmicutesbeingthepredominantgroups. TwelvedifferentphylaweredetectedintheaircollectedaboveSvalbard,althoughthediversitywas considerablylowerthaninurbanenvironmentselsewhere. However,only58of196bacterialgenera detected were consistently present, suggesting potentially higher levels of heterogeneity. Viable bacteriawerepresentatallsamplinglocations,showingthatlivingbacteriaareubiquitousinthe airaroundSvalbard. Samplinglocationinfluencedtheresultsobtained,asdidsamplingmethod. Specifically,impactionwithaSartoriusMD8producedasignificantlyhighernumberofviablecolony formingunits(CFUs)thandropplatesalone. Keywords: aerobiology; bioaerosol; Arctic; polar; ecology; bacteria; marine; terrestrial; culture dependent;cultureindependent 1. Introduction Microbialdispersalintheatmosphererepresentsakeybiologicalinput,directlyinfluencingthe genepool[1]. Thedispersalrateofbacteriaintheatmospherehasbeenshowntobedirectlylinkedto weatherevents,suchasduststorms,thatliftlargeamountsofmicrobialmatterintotheatmosphere[2]. Therearetwomechanismsbywhichbacteriaaretransportedthroughtheatmosphere: freefloating andattachedtolargerairborneobjects. Freefloatingbacteriaintheatmosphereareunlikelytocome intocontactwithothermicroorganismsfrequently;however,bacteriaassociatedwithlargerairborne particlescouldbesubjecttoincreasedhorizontalgeneflow[3]. Infact,itisthishorizontalgeneflow Biology2017,6,29;doi:10.3390/biology6020029 www.mdpi.com/journal/biology Biology2017,6,29 2of22 andtheabundanceofbacteriawithintheatmospherewhichhasdrawnattentiontotheenvironment asapotentialsourcefornewantibiotics[4]. Whilstseveralstudieshavefocusedonthemovementofbacteriathroughtheatmosphere,the majorityofthesestudieshavefailedtoconsidertheviabilityofthesecolonistsuponarrivalintheir new environments [5]. Microbial matter can be transported through the atmosphere potentially over global scale, allowing long distance colonization. A large number of bacteria also remain viable in the atmosphere for extended periods of time, even under intense selection pressure [6]. These viable microorganisms carry out multiple functions whilst suspended in the atmosphere; these include cloud formation by ice nucleation [7,8], nitrogen processing [9], the degradation of organiccarbon-basedcompounds[10]andphotosynthesis[11]. Viablecolonistshavethepotentialto interactwithmicrobiomesatthesiteofdepositioninanantagonisticorsynergisticway. Forexample, suspended nitrifying bacteria that are deposited in nutrient poor locations could provide a novel sourceofnutrientsbenefittingtheecosystem;conversely,thesamemechanismcanprovedisruptivein othercircumstances,causingtoxicalgalblooms,whichcanbedevastating[12]. Migratingbacteriaalso poseapotentialpathogenicthreattohumanhealth,globalecosystemstability[13–15]andagriculture duetothehomogeneityofmoderndaycrops[16]. Atmosphericbacterialabundancegenerallyrangesfrom104to106cellsperm3[17],but,thisvaries throughouttheyear[18],andcanbeaffectedbyweather(winddirection,windspeed,temperature, etc.) [19]. Bacterial abundance can decrease by as much as half with increasing altitude, although viable bacteria have been found in the stratosphere at altitudes as high as 7.7 km [2,20]. Bacteria foundintheatmospherearediverse. Airbornebacterialassemblagesinbothterrestrialandmarine environmentscontainmorethan150generaofbacteria[21–23],alevelofdiversitycomparabletoother nutrientpoorenvironmentssuchasAntarcticsnow,whichhasbeenshowntocontainintheregionof 250generaofbacteria[24]. Barberánetal.[25]collatedover1000samplingeffortsandfoundmore than110,000differentspeciesofairbornebacteriaintheUSAalone. Mostbacterialcommunitiesinthe atmospherecomprisefourmainphyla: Actinobacteria,Bacteroidetes,Firmicutes,andProteobacteria, afactthatremainsconsistentintheatmospheresurroundingbothmarineandterrestrialhabitats[23,26]. However,aerialmicrobialdiversityatgenuslevelismorevariableanddependsonenvironmental conditions,suchasproximitytoagriculturalsites,meteorologicalconditionsandseason[18,22]. Patterns of diversity in airborne bacterial communities are central to the emerging field of atmosphericbiogeography. Indeed,untilrelativelyrecentlywhethermicrobialbiogeographyexistedin theatmosphereatallwascontentious[27]. However,anincreasingnumberofstudieshaveshownthe inter-continentaldispersalofbacteriaacrosscontinentsseparatedbybothpolitical(EuropeandAsia) and geographical (North America and Asia) borders [25,28]. Furthermore, distinct geographical featuresgiverisetodistinctairbornemicrobialcommunities,forexamplemarinecoastalcommunities aredifferenttocontinentalterrestrialones[25,29]. Despitethesefindings,atmosphericbiogeography has received little attention as the atmosphere is considered a transport route rather than a stable habitat [30]. The development of aerobiology as a field and improved techniques should help understand whether at the ecological level, microbes interact and evolve within the atmosphere, astheydoinotherhabitats. TheArcticcanbedefinedastheareaabovetheArcticCircle. TheNorwegianArcticarchipelagoof Svalbardisoneofthenorthernmostinhabitedlocationsintheworldat79◦N.Svalbardischaracterised byitsremarkablylowhumanpopulationwithonly2185registeredSvalbardinhabitantsin2015[31]. Thislowpopulationdensitytranslatesintoreducedanthropogenicenvironmentalalterationssuchas thoselinkedtoagriculture. Thus,theArcticrepresentsanoptimallocationtostudynaturalpatternsof airbornedispersalanditsinfluenceshapingnaturalcommunities. AerobiologicalstudiesintheArctic datebackasfarasthelate1940s[32]. Studiesofthisnaturearesparsebetweentheseearlyeffortsand thepresent,withveryfewstudiestakingadvantageofnovelmoleculartechniques. Tothebestofour knowledge,theonlyrecentterrestrialstudyofbioaerosols(airborneparticlesofbiologicalorigin)inthe ArcticwascarriedoutbyHardingetal[33],onWardHuntIslandlocatedintheCanadianhighArctic. Biology2017,6,29 3of22 Hardingetal. foundsimilaritiesbetweenairandsnowcommunitiesandthosebacterialcommunities found in the surrounding Arctic Ocean, drawing the conclusion that local sources are the largest contributorswhichinfluencebacterialcommunityassemblages. Theirstudyalsofoundorganisms notnormallyassociatedwiththehighCanadianArctic,microbesfromotherArcticlocations,aswell as some Antarctic microorganisms, supporting the theory of long distance atmospheric dispersal. Thesefindingsareconsistentwiththoseofpreviousstudiesthathavestatedthedominantgroupsof bacteriaincoldecosystemstobeProteobacteria(alpha,betaandgamma),Firmicutes,Bacteroidetes, andActinobacteria[34,35]. However,whileaerobiologicalstudiesintheArcticarescarce,thenumber ofstudiesintheAntarctichasincreased[1,36]. Tothisend,acomparativeanalysisofaerobiological dataovertheArcticandtheAntarcticwillallowthestudyofbipolardiversityandpotentially,the globalatmosphericdistributionofmicrobes. OrganismsintheArcticatmosphereareexposedtoextremelylowtemperaturesandhurricane strengthwinds, seasonalfreeze–thawcycles, extremeexposuretoUVandextremelylowlevelsof nutrients. Thus,organismsinhabitingthisregionarereferredtoasextremophilesandtendtoexploit featuressuchastheabilitytoformspores,whichallowthemtosurvivetheharshconditions. Similar tothosemicrobesinhabitingtheArctic,organismssurvivingintheatmospherealsoendureextreme temperatures,UVexposureandpoornutrientlevels. Sampling techniques for terrestrial and aquatic microbial ecology studies are highly variable but based on common principles, established and used consistently. In contrast, a wide range of techniquesareavailabletoaerobiology, despitethelownumberofstudiesinthefield. Ingeneral, samplingmethodsinvolveimpaction,impingement,membranefiltrationorthedropplatemechanism, theresultsofwhicharenotdirectlycomparableduetostrongmethodologicalbiases. Furthermore, thestrengthofthebiasisstillunknown,duetothelackofstudiescomparingdifferentmethodologies, althoughrecenteffortshavebeenmadetowardsestablishingastandardmethodology[37]. Analyticaltechniquescanalsovaryconsiderablyamongstudies,compromisingcomparability even further. To date, most aerobiological studies use colony-forming units (CFU) count per unit volumeofairsampledtomeasurethedensityofcultivablemicroorganismsintheatmosphere. These studies report density changes over space, time and varying environmental conditions; however, culturebasedstudiesonlyprovideapartialpictureoftheoverallmicrobialdiversity[30]. Culture dependentstudiesarealsobiasedtowardsGram-positivebacteria, whilemolecularbasedstudies show the opposite trend, with a large proportion of Gram-negative bacteria populating the aerial environment[38]. Forthisreason,fluorescencemicroscopyisincreasinglyusedforcellcountsand taxonomicidentification,combinedwithmoleculartechniquessuchashighthroughputsequencing. Temporal, spatial and meteorological variations also lead to differences in the aerial communities identified[39,40],reducingfurthertheabilitytodescribebiogeographicalpatterns. Setagainstthisbackground,inthisstudy,theinfluenceofdifferentsamplingtechniques,sampling locationandtotalsamplevolumeontheidentificationofaerialbacterialcommunitiesintheArctic wasexplored,basedonculturedependentandindependentanalyticalmethods,thuspresentinga preliminarypictureofthemicrobialcommunityintheairoverSvalbard. 2. MaterialsandMethods 2.1. SiteDescription AirbornemicrobialsampleswerecollectedinJuly2015aboveSvalbard(Figure1). Svalbardis hometoarelativelysmallhumanpopulationandplayshosttoveryfewmammals. Themajorityofthe humanpopulationofSvalbardresidesinLongyearbyen;implyingthat,weresamplessubjecttohuman influence,itwouldmostlikelyoccurhere. ThewestcoastofSvalbardisinfluencedbytheAtlantic OceanandisaffectedbywarmercurrentsthantheEastCoast,orientedtowardstheBarentsSea. Biology2017,6,29 4of22 Biology 2017, 6, 29 4 of 21 Figure 1. Svalbard location and sampling sites (map adapted with courtesy of the © Norwegian Polar Figure1.Svalbardlocationandsamplingsites(mapadaptedwithcourtesyofthe©NorwegianPolar Institute (http://www.npolar.no/no/). Institute(http://www.npolar.no/no/). Samples were collected between 6 and 23 July 2015 above both marine and terrestrial locations Sampleswerecollectedbetween6and23July2015abovebothmarineandterrestriallocations using a range of techniques (Table 1). Marine samples were collected aboard the research ship (Viking usingarangeoftechniques(Table1). Marinesampleswerecollectedaboardtheresearchship(Viking Explorer) and aboard a zodiac. The terrestrial sites were on the roof of The University Center in Explorer) and aboard a zodiac. The terrestrial sites were on the roof of The University Center in Svalbard (UNIS (78°13′ N, 15°39′ E)) located in central Longyearbyen, Mine (Gruve) 7, Deltaneset, Svalbard(UNIS(78◦13(cid:48) N,15◦39(cid:48) E))locatedincentralLongyearbyen,Mine(Gruve)7,Deltaneset, Gipsdalen and Bjørndalen; these locations were chosen to represent a large terrestrial geographic GipsdalenandBjørndalen;theselocationswerechosentorepresentalargeterrestrialgeographicrange. range. The marine sites were located in the surrounding fjords at Billefjorden, Isfjorden, ThemarinesiteswerelocatedinthesurroundingfjordsatBillefjorden,Isfjorden,Sassenfjordenand Sassenfjorden and Adventfjorden bay (Figure 1). Adventfjordenbay(Figure1). Table 1. Summary of sample locations and regimes. Table1.Summaryofsamplelocationsandregimes. Sample Flow Rate Environment Sampling Mechanism Date Duration (min) Location (L m−1) Sample FlowRate Duration LocBajtøironndalen EnvTireorrnemstreianlt SampDlrionpg pMlateesc hanism 13 July 20D15a te - (Lm−1) 15 (min) Deltaneset Terrestrial Impaction onto media 13 July 2015 50 20 Bjørndale n Terrest rial DDrorpo pplpatleast es 13 Jul1y3 2J0u1l5y 2015 - - 15 15 DeltaGnipessdeatlen TeTrreersretrsitarilal IImmppaactcitoino nonoton tmoemdiead ia 13 Jul1y3 2J0u1l5y 2015 50 50 20 20 DDrorpo pplpatleast es 13 Jul1y3 2J0u1l5y 2015 - - 15 15 GipLsodngayleenarbyen TeTrreersretrsitarilal IImmppaactcitoino nonoton tmoemdiead ia 16 Jul1y3 2J0u1l5y 2015 30, 50 50 20, 40, 60, 8200 MembDrraonpe fpilltraatteiosn 06, 19, 2113–2J3u Jluyly2 015 ~20 - 30, 60, 120, 300, 31 5days Longyearbyen Terrestrial Impactionontomedia 201165 July2015 30,50 20,40,60,80 Mine (Gruve) 7 Terrestrial Impaction onto media 130 J6u,ly1 920,1251 –23July 50 3020, 60,120,300, MemDrborpa pnleatfieslt ration 13 July 2015 - ~20 15 2015 3days Adventfjorden Marine Impaction onto media 17 July 2015 50 20 Mine(Gruve)7 Terrestrial Impactionontomedia 13July2015 50 20 Billefjorden Marine Impaction onto media 17 July 2015 50 20 Dropplates 13July2015 - 15 Isfjorden Marine Membrane filtration 11 July 2015 ~20 480 Adventfjorden Marine Impactionontomedia 17July2015 50 20 Sassenfjorden Marine Impaction onto media 17 July 2015 50 20 Billefjorden Marine Impactionontomedia 17July2015 50 20 Isfjorden Marine Membranefiltration 11July2015 ~20 480 2.2S. aMsseetnefojorrodleongical DaMtaa rine Impactionontomedia 17July2015 50 20 Seven-day back trajectory models were calculated for sampling days where sequencing was 2.2. MeteorologicalData carried out at air mass arrival heights of 10 m, 500 m and 1500 m (Figure 2) using National Oceanic and SAetvmeno-sdpahyerbica cAkdtmraijencistotrraytimono d(NelOsAwAer)e Hcaylscpulliat tMedodfoerl s[a4m1] palnindg tdhaey Gslwobhaelr eDsaetqa uAenssciimngilawtiaosn cSayrrsiteedmo (uGtDatAaSir1)m aarscshaivrreidv adlahteai gfihlet.s Ionf g1e0nmer,a5l0, 0pmockanetds 1o5f 0a0irm at( Failgl ualrteit2u)duessi nagrrNivaetdio fnraolmO ac enaonritchaenrdly A(Atmrcotsicp OhecreiacnA) ddmireinctiisotrna,t hioonw(eNvOerA hAig)hH ayltsiptulidteM aoird pelo[c4k1e]tsa nadt 1t5h0e0G mlo wbaelrDe amtaorAe sesaimsteilralyti oinnflSuyesntecmed (tGhDanA Sth1e) alrocwhievre daldtiatutadfiesle. .OInn g6e nJeurlayl,, pthoec kleotwso falatiirtuadtea llaairl timtuadsessesa r(r1iv0 emd,f ro50m0 amn)o rwtheerrel ye(aAstrecrtliyc. OTceemapne)rdaitruercetsio anv,ehroagweedv 8e r°Chi gachroasltsi taulld seaamirpplioncgk deatsysa tw1i5th00 omnlyw oenree pmreocriepeitaasttieornly evineflnut teontcaelldintgh a0n.1 tmhemlo owcceurrarlitnitgu dones 1.7O Jnul6yJ. uWlyi,ntdh esploeweda vltaitruiedde baeirtwmeaesns e1s0( a1n0dm 2,25 0k0mmh-)1 wanedre heuamstiedrliyty. Taevmerpaegreadtu 6r7e%s a(vTearbalgee 2d).8 ◦Cacrossallsamplingdayswithonlyoneprecipitationeventtotalling0.1mmoccurring on17July. Windspeedvariedbetween10and22kmh−1andhumidityaveraged67%(Table2). Biology2017,6,29 5of22 Biology 2017, 6, 29 5 of 21 FFiigguurree 22.. BBaacckk ttrraajjeeccttoorryy mmooddeellss wweerree ccaallccuullaatteedd uussiinngg tthhee NNOOAAAA HHyysspplliitt MMooddeell [[4411]].. TThhrreeee aarrrriivvaall hheeiigghhttss wweerree uusseedd 1100 mm ((ttrraannsseecctt mmaarrkkeedd bbyy ttrriiaanngglleess)),, 550000 mm ((ttrraannsseecctt mmaarrkkeedd wwiitthh ssqquuaarreess)) aanndd 11550000 mm ((ttrraannsseeccttss mmaarrkkeedd wwiitthh cciirrcclleess)).. SSaammpplliinngg llooccaattiioonn iiss mmaarrkkeedd bbyy aa bbllaacckk ssttaarr.. Table 2. Meteorological conditions on sampling days at Svalbard airport (The Weather Company (Atlanta, GA, USA)). 21–23 July 06 July 11 July 13 July 16 July 17 July 19 July 21 July 22 July 23 July Average across All 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 Sampling Days (Average) Average temperature 8 10 8 6 8 8 10 8 6 8 8 (°C) Total precipitation 0 0 0 0 0.1 0 0 0 0 0 0 (mm) Average wind 13 20 10 20 14 22 18 12 12 14 16 speed (kmh-1) Biology2017,6,29 6of22 Table2.MeteorologicalconditionsonsamplingdaysatSvalbardairport(TheWeatherCompany(Atlanta,GA,USA)). 21–23July2015 AverageacrossAll 06July2015 11July2015 13July2015 16July2015 17July2015 19July2015 21July2015 22July2015 23July2015 (Average) SamplingDays Averagetemperature(◦C) 8 10 8 6 8 8 10 8 6 8 8 Totalprecipitation(mm) 0 0 0 0 0.1 0 0 0 0 0 0 Averagewindspeed(kmh−1) 13 20 10 20 14 22 18 12 12 14 16 Averagehumidity(%) 63 75 90 57 68 59 65 68 61 65 67 Pressure(hPa) 1025 1022 1019 1009 1013 1015 1015 1013 1006 1012 1016 Biology2017,6,29 7of22 2.3. CultureDependent DropplatescontainingR2Amedia(Sigma-Aldrich,St. Louis,MO,USA)wereplacedopenat Gipsdalen,Mine(Gruve)7,DeltanesetandBjørndalenfor15min;plateswereincubatedfor10daysat roomtemperature;followingincubationtheplateshadcolonycountsanddistinctcolonycountstaken. Additionally,aportableAirPortMD8(Sartorius,Göttingen,Germany),comprisingadisposable gelatine filter membrane, was used to compare sampling efficiency and cultivability at two flow ratesanddifferentsamplingvolumes. Samplingsiteswerechosentocomparewithterrestrialplate dropsitesbutalsotoassessforthedifferencesatmarinesites. Terrestrialsampleswerecollectedat Mine(Gruve)7,Deltaneset,GipsdalenandcentralLongyearbyen(UNISroof)andmarinesamplesat Billefjorden,SassenfjordenandAdventfjorden,respectively. Thesamplerwasusedatrespectiveflow ratesanddurationsranging30–50Lm−1and20–80Lm−1on13,15,16and17July2015. Thegelatine filterscollectedatallsiteswereplaceddirectlyontothesurfaceofR2Aagarplates(Sigma-Aldrich, St.Louis,MO,USA).Theseplateswerethenincubatedatroomtemperaturefor10days. TotalCFU anddistinctcolonynumberswerecounted. 2.4. CultureIndependent As gelatine filters are not amenable to culture independent techniques (due to the presence of gelatine), airborne bacteria from both terrestrial and marine sites were collected via membrane filtration. AWelchWOB-Lvacuumpump(Welch,Mt. Prospect,IL,USA)wassetupataflowrateof ~20Lm−1connectedtoSartoriusfiltrationunit(Göttingen,Germany)containinga47mm×0.2µm poresizecellulosenitratemembranefilter(GEHealthcareLifeSciences,Chicago,IL,USA). AmarinesamplewascollectedatIsfjordenonthe11July2015witharespectivesampleduration andvolumeof8hand~9600LandtheterrestrialsamplewastakenincentralLongeyearbyen(UNIS roof)atthefollowingdates,durationsandvolumes,respectively: 6July2015for30(600L),60(1200L), 120(2400L)and300(6000L)min;19July2015for30(600L),60(1200L),120(2400L)and300(6000L) min;and21–24July2015forthreedays(~86,000L)continuously(Table1). ThecellulosenitratemembranefiltersweresenttoMrDNA(MrDRNA,Shallowater,TX,USA)for extractionandsequencing. DNAwasextractedfromsamplesusingtheMoBioPowerSoilkit(MoBio, Vancouver, BC, Canada) following the manufacturer’s protocol with an additional 1 min of bead beatingtoaccountforthefilterpaper.Extractedsampleswerethenamplifiedusing16SrRNAuniversal primers27Fmod(AGRGTTTGATCMTGGCTCAG)and519Rmodbio(GWATTACCGCGGCKGCTG) andbarcodeswereattachedatthe5(cid:48) end. A28-cyclePCRusingtheHotStarTaqPlusMasterMixKit (Qiagen,Germantown,MD,USA)wascarriedoutunderthefollowingconditions: 94◦Cfor3min, followedby28cyclesof94◦Cfor30s,53◦Cfor40sand72◦Cfor1min,afterwhichafinalelongation stepat72◦Cfor5minwasperformed. Afteramplification,PCRproductswerecheckedin2%agarose geltodetermineamplificationsuccess. Sampleswerethenpooledbasedontheirmolecularweightand DNAconcentrations,purifiedandilluminaDNAlibrarieswereprepared. Pairedendsequencingof theV4regionwasthenperformedonaMiSeqfollowingthemanufacturer’sguidelines. Theresultant datawereanalysedusingQIIMEv1.9.1[42]. The776,315rawsequencereadswerequalitytrimmed andcheckedforchimerasusingUSEARCH6.1[43], clusteredatanidentitythresholdof97%and assignedtoOperationalTaxonomicUnits(OTUs)usingUCLUST[43]andtheGreengenesreference database[44]wasusedtoassigntaxonomy. SequenceswerethenalignedusingPyNAST[45]anda phylogenetictreewasbuiltusingFastTree[46]. 2.5. StatisticalAnalysis StatisticalanalyseswereperformedusingPAST[47]totestfordifferencesinmeans,medians, variancesanddistributionsandMSExcel(2013)tocalculatecorrelationcoefficients,thecoefficientof varianceandproducegraphsoftheanalyses;statisticaltestswerecarriedoutatanassumedsignificance of alpha: 0.05. When calculating diversity indices, to avoid statistical bias due to differences in Biology 2017, 6, 29 7 of 21 2.5. Statistical Analysis Statistical analyses were performed using PAST [47] to test for differences in means, medians, variances and distributions and MS Excel (2013) to calculate correlation coefficients, the coefficient of Biology2017,6,29 8of22 variance and produce graphs of the analyses; statistical tests were carried out at an assumed significance of alpha: 0.05. When calculating diversity indices, to avoid statistical bias due to dseiqffueerenncicnegs idne psethquaellnscaimngp dleespwthe raelln soarmmpalleisse wdetorea ndoerpmthaloisfe2d6 ,t1o9 0a rdeeapdtsh. Roaf r2e6f,a1c9t0io rneacudrsv. eRsa,rdeifvaecrtsioitny cinudrviceess, (dSihvaenrnsiotyn ainnddicSeims p(Sshoannsnroecni parnodca Sl)i,mBprasyo-nCsu rreticsipOrTocUala),n dBruanyw–Ceiugrhtitse dOUTnUi Farnacd puhnywloegiegnhetetidc UdinstiFanracce pmheytlroicgse,naentdic PdCisotAanscwe mereetprircosd, uancedd PuCsoinAgs QwIeIMre Epr[4o2d]u.ced using QIIME [42]. 33.. RReessuullttss 33..11.. CCuullttuurree DDeeppeennddeenntt VViiaabbllee bbaacctteerriiaaw weereref ofuonudndin inal laollf othf ethsaem sapmlesp.leCsl.e Carledairff edriefnfecreesnwceesr ewaeprpea arepnptairnentht einm tehaen mCFeUans CfrFomUst hfreotmw othceu lttwuroe cduelptuenred ednetpmenedtheondt smuestehdo(dFsi guusreed3 )(.FAiguKrreu s3k).a lA–W Karlulissktaels–tWfoarleliqsu taelsmt feodri aenqsuoafl mCFeUdisaannsd omf oCrFpUhosl oagnidca lmlyodrpishtionlcotgCicFaUllsy wdaisstuinncdt erCtaFkUesn wtoaass suenssdethrteadkreonp tpol aatessreespsl itchaete sd,rtohpe rpelsautlet rdeipdlnicoatteshs,o twhes irgensiufilcta dnitdd nifofetr eshnocews (sKigrunisfkicaal–nWt dalilfifseprelantceefsa l(lKCruFUsk:apl–=W0.a0l9li5s, ppllaattee ffaallllm CoFrUph: op lo= g0i.c0a9ll5y, pdliasttien fcatlCl mFUorsp:hpo=lo0g.1ic2a3l)l.y distinct CFUs: p = 0.123). Figure 3. Mean colony-forming units (CFU) and morphologically distinct CFU counts for drop plate Figure3.Meancolony-formingunits(CFU)andmorphologicallydistinctCFUcountsfordropplate and Sartorius MD8 data. andSartoriusMD8data. Comparing the differences in drop plate and MD8 results for the locations where data were Comparing the differences in drop plate and MD8 results for the locations where data were available for both methods, the MD8 showed much higher CFU yields, although this difference is not availableforbothmethods, theMD8showedmuchhigherCFUyields, althoughthisdifferenceis obvious when looking at the number of morphologically distinct CFUs i.e. CFUs of different not obvious when looking at the number of morphologically distinct CFUs i.e., CFUs of different appearance (Figure 3). Statistical analyses show a significant difference of mean CFUs sampled at the appearance(Figure3). StatisticalanalysesshowasignificantdifferenceofmeanCFUssampledatthe same location using different methods (p < 0.05); no differences in variances, medians or coefficient samelocationusingdifferentmethods(p<0.05);nodifferencesinvariances,mediansorcoefficient of variations, but a significant difference in equality of distributions (Kolmogov–Smirnov: p < 0.05). ofvariations,butasignificantdifferenceinequalityofdistributions(Kolmogov–Smirnov: p<0.05). For the morphologically distinct CFUs, however, there were no significant differences for any of the ForthemorphologicallydistinctCFUs,however,therewerenosignificantdifferencesforanyofthe mentioned parameters. When looking at the overall variance and efficiency of both culture dependent mentionedparameters. Whenlookingattheoverallvarianceandefficiencyofbothculturedependent methods,onlyconsideringtheMD8samplescollectedat50Lm−1 for20mini.e.,1000Lsampling volume (Figure 4), there were obvious differences in the mean CFUs, but not for morphologically distinctCFUs. Anindependentt-testcomparingthetwomethodsshowedasignificantdifferencein Biology 2017, 6, 29 8 of 21 methods, only considering the MD8 samples collected at 50 L m−1 for 20 min i.e., 1000 L sampling Biology2017,6,29 9of22 volume (Figure 4), there were obvious differences in the mean CFUs, but not for morphologically distinct CFUs. An independent t-test comparing the two methods showed a significant difference in tthhee mmeeaann CCFFUUss ffrroomm ddrroopp ppllaattee aanndd MMDD88 ssaammpplleess ((pp << 00..000011)),, nnoo ssiiggnniiffiiccaanntt ddiiffffeerreenncceess iinn vvaarriiaanncceess,, bbuutt wwiitthh ssiiggnniiffiiccaanntt ddiiffffeerreenncceess iinn ccooeeffffiicciieennttss ooff vvaarriiaattiioonn ((pp << 00.0.00055),) ,mmedediainans s(M(Manann–nW–Whihtnitenye yUU p p≤≤ 0.00.0010)1 )anandd ddisitsrtirbibuutitoionns s(p(p << 00.0.00011).) .LLooookkiningg aat ttthhee ssttaattiissttiiccaall aannaallyyssiiss ooff tthhee mmoorrpphhoollooggiiccaallllyy ddiissttiinncctt CCFFUUss,,t htheererew wasasn onosi gsinginfiicfaicnatndti fdfeifrfeenrceencine tihne tmhee amnesafnrosm frodmro pdprolapt epslaanteds tahnedM tDhe8 M(pD>80 .(0p5 )>, w0.i0t5h),n woistihg nniofi sciagnntidfiicfafenrte dnicfefesriennvceasr iiann vceasr,iamnecdesia, nmse,ddiiastnrsib, duitsiotrnibs,uotirocnose, fofirc iceonetfsfiocfievnatrsi aotfi ovna.riTahtieosne. rTehsuesltes rsehsouwltst hshaotwth etrheaits thaesrieg nisifi ac saingtndifiifcfearnetn dcieffbeertewnceee nbethtweetweno tmhee tthwood sm,tehtheoMdDs, 8thyei eMldDin8g yaielladrginegr nau lamrgbeerr nofuCmFbUers .of CFUs. 35 30 25 s U F C 20 f o r e b 15 m u N 10 5 0 Drop Plate (15 min exposure time) MD8 (50 L m-1, 20 min (i.e. 1000 L)) CFUs (mean) Morphologically distinct CFUs (mean) Figure 4. Mean CFUs and mean morphologically distinct CFUs for drop plates and 1000 L MD8 Figure 4. Mean CFUs and mean morphologically distinct CFUs for drop plates and 1000 L samples. MD8samples. Comparing MD8 results for terrestrial and marine samples, the mean CFUs were lower at marine ComparingMD8resultsforterrestrialandmarinesamples,themeanCFUswereloweratmarine sites than terrestrial sites (Figure 5). Statistical analysis showed no significant difference in CFUs for sitesthanterrestrialsites(Figure5). StatisticalanalysisshowednosignificantdifferenceinCFUsfor marine and terrestrial sites (p = 0.070). This also held for the morphologically distinct CFUs, there was marineandterrestrialsites(p=0.070). ThisalsoheldforthemorphologicallydistinctCFUs,therewas no significant difference for either of the mentioned parameters between terrestrial and marine sites. nosignificantdifferenceforeitherofthementionedparametersbetweenterrestrialandmarinesites. To account for the variable scales across the samples, the normalised coefficient of variation was Toaccountforthevariablescalesacrossthesamples,thenormalisedcoefficientofvariationwas used, and this showed the highest variation in the CFUs in the drop plate and MD8 samples collected used,andthisshowedthehighestvariationintheCFUsinthedropplateandMD8samplescollected at UNIS. In the MD8 marine sample the variability of morphologically distinct CFUs was the highest. atUNIS.IntheMD8marinesamplethevariabilityofmorphologicallydistinctCFUswasthehighest. The CFUs at the terrestrial sites varied the least (Figure 6). TheCFUsattheterrestrialsitesvariedtheleast(Figure6). At UNIS, where volume and flow rate were varied, a clear trend of increasing CFUs with AtUNIS,wherevolumeandflowratewerevaried,acleartrendofincreasingCFUswithincreasing increasing volume was evident (Figure 7). The 30 L m−1 flow rate sample, however, had slightly volumewasevident(Figure7). The30Lm−1flowratesample,however,hadslightlyhigherCFUs, higher CFUs, despite lower volume. There was a clear correlation between CFUs and the sampled despitelowervolume. TherewasaclearcorrelationbetweenCFUsandthesampledvolumeofair volume of air (R² = 0.933, Figure 8A), not including the 30 L m−1 sample, and still a very high positive (R2=0.933,Figure8A),notincludingthe30Lm−1sample,andstillaveryhighpositivecorrelationof correlation of (R² = 0.906) when this sample was included. For the morphologically distinct CFUs, (R2=0.906)whenthissamplewasincluded. ForthemorphologicallydistinctCFUs,therewasaslight there was a slight negative correlation (R² = −0.256) in number of CFUs with increasing volume negativecorrelation(R2=−0.256)innumberofCFUswithincreasingvolume(Figure8B),leavingout (Figure 8B), leaving out the exceptional value of 30 L m−1 showed a considerable negative correlation theexceptionalvalueof30Lm−1showedaconsiderablenegativecorrelation(R2=−0.640). (R² = −0.640). Biology2017,6,29 10of22 Biology 2017, 6, 29 9 of 21 Biology 2017, 6, 29 9 of 21 35 3350 sU3205 F C sU f2250 FCo r feb2105 om rebuN1150 m u N 105 50 0 tesenatleDtesenatleD neladspiGneladspiG 7 )evurG( en7 )evurG( eniM SINUSINU nedrojftnevdnedrojftnevdA nedrojfelliBnedrojfelliB nedrojfnessanedrojfnessaS TerrestrialiM A Marine S CFTUersrestriaMl orphologically distinct CFUs Marine CFUs Morphologically distinct CFUs FFiigguurree 55.. CCoouunnttss oofft tootatall( b(blalacckk))a annddm moroprhpohloolgoigciaclalyllyd idstiisnticntc(tg r(geyre)yC)F CUFsUins iena cehacsham sapmlepsleep saerpaaterda tbeyd by environment (terrestrial and marine). environment(terrestrialandmarine). Figure 5. Counts of total (black) and morphologically distinct (grey) CFUs in each sample separated by environment (terrestrial and marine). 0.35 n o it0.03.53 a noira itV 0.3 a 0.25 ir fo aV tn0.25 fe 0.2 o tnicif eicfeo 00.1.25 iffeoC de0.01.51 Cz dila em 0.1 z 0.05 ilamroN 0.05 r 0 o N Drop Plate MD8 MD8 MD8 Marine MD8 UNIS 0 Terrestrial Drop Plate MD8 MD8 MD8 Marine MD8 UNIS Method Terrestrial Method CFUs Morphologically distinct CFUs CFUs Morphologically distinct CFUs Figure 6. Normalised coefficient of variation (a ratio of mean and standard deviation without unit, to compare different scales, here normalised to account for small sample size). FFiigguurree 66.. NNoorrmmaalliisseedd ccooeeffffiicciieenntt ooff vvaarriaiatitoionn (a(a rartaitoi oofo mfmeaena nanadn dstastnadnadradr ddedveiavtiiaotnio wniwthiothuot uutnuitn, tito, tcoomcopmaprea rdeifdfeifrfeenret nstcaslceasl,e hs,ehree rneonromramliasleidse tdo taocacoccuonutn ftorfo srmsmalla sllasmamplpe lseizseiz).e ).
Description: