AFFINEANDPROJECTIVEGEOMETRY, E.Rosado&S.L.Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 2. AFFINE TRANSFORMATIONS 2.1 Definition and first properties Definition Let (A,V,φ) and (A(cid:48),V (cid:48),φ(cid:48)) be two real affine spaces. We will say that a map f : A −→ A(cid:48) is an affine transformation if there exists a linear transformation f¯: V −→ V (cid:48) such that: ¯ A f(PQ) = f (P)f (Q), ∀P,Q ∈ . A This is equivalent to say that for every P ∈ and every vector u¯ ∈ V we have ¯ f(P + u) = f(P) + f(u). ¯ We call f the linear transformation associated to f. AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda Proposition Let (A,V,φ) and (A(cid:48),V (cid:48),φ(cid:48)) be two affine subspaces and let f : A −→ A(cid:48) be an affine transformation with associated linear transformation f¯: V −→ V (cid:48). The following statements hold: ¯ 1. f is injective if and only if f is injective. ¯ 2. f is surjective if and only if f is surjective. ¯ 3. f is bijective if and only if f is bijective. Proposition Let g: A −→ A(cid:48) and f : A(cid:48) −→ A(cid:48)(cid:48) be two affine transformations. The composition f ◦ g: A −→ A(cid:48)(cid:48) is also an affine transformation and its associated linear transformation is ¯ f ◦ g = f ◦ g¯. Proposition Let f,g: A −→ A(cid:48) be two affine transformations which coincide over a point P, f(P) = ¯ g(P), and which have the same associated linear transformation f = g¯. Then f = g. Proof Every X ∈ A verifies: ¯ f(X) = f(P + PX) = f(P) + f(PX) = g(P) + g¯(PX) = g(X). AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 2.2 Matrix associated to an affine transformation Let (A,V,φ) and (A(cid:48),V (cid:48),φ(cid:48)) be two affine subspaces and let f : A −→ A(cid:48) be an affine transformation with associated linear transformation f¯: V −→ V (cid:48). We consider affine coordinate systems R = {O;B}, B = {e ,...,e } and 1 n R(cid:48) = {O(cid:48);B(cid:48)}, B(cid:48) = {e(cid:48) ,...,e(cid:48) } of the spaces A, A(cid:48) respectively. Let us 1 m assume that: O(cid:48)f(O) = b e(cid:48) + ··· + b e(cid:48) , 1 1 m m f¯(e ) = a e(cid:48) + ··· + a e(cid:48) 1 11 1 m1 m . . . f¯(e ) = a e(cid:48) + ··· + a e(cid:48) n 1n 1 mn m Let P be the point with coordinates (x ,...,x ) with respect to R and let 1 n (y ,...,y ) be the coordinates of f(P) ∈ A(cid:48). 1 m AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda Then: 1 1 0 ··· 0 1 y b a ··· a x 1 = 1 11 1n 1 ... ... ... ... ... ... y b a ··· a x m m m1 mn n We will write 1 0 ··· 0 (cid:18) 1 0t (cid:19) b a ··· a M (R,R(cid:48)) = = 1 11 1n f b M (B,B(cid:48)) ... ... ... ... f¯ b a ··· a m m1 mn where b are the coordinates of f(O) in the coordinate system R(cid:48) and M (B,B(cid:48)) ¯ f ¯ is the matrix associated to the linear transformation f taking in V the basis B and in V (cid:48) the basis B(cid:48). AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda Example 1 A Let ( ,V,φ) be an affine space with affine coordinate system R = {O;B = {e ,e ,e }}, and let (A(cid:48),V (cid:48),φ(cid:48)) be an affine space with affine coordinate sys- 1 2 3 tem R(cid:48) = {O(cid:48);B(cid:48) = {e(cid:48) ,e(cid:48) }}. Is the transformation f : A −→ A(cid:48), f(x,y,z) = 1 2 (x − 2y + 5,x − z + 1) an affine transformation? Give its associated linear transformation and obtain the matrix associated to f in the coordinate sys- tems R,R(cid:48). Solution. To see if f is an affine transformation we have to check if there exists a linear transformation f¯: V −→ V (cid:48) such that f(P)f(Q) = f¯(cid:0)PQ(cid:1) for every A pair of points P,Q ∈ . We take P(x ,y ,z ) and Q(x ,y ,z ) then 1 1 1 2 2 2 PQ = Q − P = (x − x ,y − y ,z − z ) 2 1 2 1 2 1 and AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda f(P)f(Q) = f(Q) − f(P) = f(x ,y ,z ) − f(x ,y ,z ) 2 2 2 1 1 1 = (x − 2y + 5,x − z + 1) − (x − 2y + 5,x − z + 1) 2 2 2 2 1 1 1 1 = ((x − x ) − 2(y − y ),(x − x ) − (z − z )) 2 1 2 1 2 1 2 1 ¯ = f (x − x ,y − y ,z − z ). 2 1 2 1 2 1 Therefore, f is an affine transformation and its associated linear transfor- ¯ mation is f (x,y,z) = (x − 2y,x − z). The coordinates of the origin O in the coordinate system R are the cooor- dinates of the vector OO = (0,0,0) in the basis B where e = (1,0,0) , 1 B e = (0,1,0) and e = (0,0,1) . 2 B 3 B AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda Then: f(O) = f(0,0,0) = (5,1), ¯ ¯ f(e ) = f(1,0,0) = (1,1), 1 ¯ ¯ f(e ) = f(0,1,0) = (−2,0), 2 ¯ ¯ f(e ) = f(0,0,1) = (0,−1). 3 So, 1 0 0 0 M (R,R(cid:48)) = 5 1 −2 0 . f 1 1 0 −1 AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda Example 2 A Let ( ,V,φ) be an affine space with affine coordinate system R = {O;B = {e ,e }}, and let (A(cid:48),V (cid:48),φ(cid:48)) be an affine space with affine coordinate system 1 2 R(cid:48) = {O(cid:48);B(cid:48) = {e(cid:48) ,e(cid:48) ,e(cid:48) }}. Determine the affine transformation f : A −→ 1 2 3 A(cid:48), such that f(1,2) = (1,2,3), f¯(e ) = e(cid:48) + 4e(cid:48) , 1 1 2 f¯(e ) = e(cid:48) − e(cid:48) + e(cid:48) . 2 1 2 3 Find the matrix associated to f in the coordinate systems R,R(cid:48). Solution. We know the value of f at the point P(1,2) and the linear transformation associated to f, therefore we can determine f. ¯ f(1,0) = (1,4,0) , B(cid:48) ¯ f(0,1) = (1,−1,1) , B(cid:48) AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda To calculate the matrix associated to f we need to compute f(O). We have: ¯ ¯ f(P) = f(O) + f(OP) = f(O) + f(1e + 2e ) 1 2 f is affine ¯ ¯ = f(O) + f(e ) + 2f(e ) 1 2 ¯ f is linear = f(O) + (1,4,0) + 2(1,−1,1) so f(O) = f(1,2) − (1,4,0) − 2(1,−1,1) = (1,2,3) − (1,4,0) − 2(1,−1,1) = (−2,0,1). therefore 1 0 0 −2 1 1 M (R,R(cid:48)) = . f 0 4 −1 1 0 1
Description: