ebook img

Chapter 3 Marine Propeller Design and Simulation in SolidWorks PDF

137 Pages·2014·6.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chapter 3 Marine Propeller Design and Simulation in SolidWorks

A Rapid Development Process for Marine Propellers Through Design, Simulation and Prototyping by © Xueyin Wu A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland October 2010 Submitted St. John's Newfoundland Abstract Flexibility and speed to market are the keys to successful product development. For marine propellers, these goals are achieved though iteration of design software and prototyping. In this thesis, an expanded propeller design code, "OpenPVL_SW", which was developed based on the Open propeller vortex lattice lifting line code (OpenPVL), was improved to include propeller geometry generation into SolidWork , thrust simulation with CosmosFioWorks and strength assessment with CosmosWorks. The new code OpenPVL_SW is described in this thesis. In the OpenPVL_SW, a parametric design technique and a single propeller geometry generator are completed in MAT LAB, and a propeller blade geometry file for SolidWorks is created after running the design program. The purpose of this study is to extend the use of the original OpenPVL code not only for the propeller design, but also to achieve the thrust simulation and strength check using SolidWorks tool package, CosmosFloWorks and CosmosWorks. A propeller geometry, which is provided by Oceanic Consulting Corporation, is simulated to predict propeller thrust using CosmosFloWorks. A case study designed an AUV propeller and simulated the thrust with CosmosFloWorks to prove that the OpenPVL_ SW code provides perfect propeller geometry and a reasonable simulation result of thrust. 11 Acknowledgements First and foremost, appreciation and thanks are bestowed upon Prof. Andy Fisher for his guidance, support and advice. From the beginning stages to the submission of this thesis, he supported and kept me on the path towards completion, and I did learn a lot from him. I am greatly indebted. I expresses thanks to Matthew Garvin, manager of design and fab1ication in Oceanic Consulting Corporation, for providing propeller geometry, experimental results and guidance. I would like to extend thanks to Prof. Mahmoud Haddara. I learned a lot from him about propeller design and testing. I would like to acknowledge the support of the people in the rapid proto typing lab for their support during the propeller fabrication using Stratasys Fusion Deposition Modeling (FDM). lll Table of Contents Abstract ...................................................................................................................................... ii Acknowledgements ................................................................................................................... iii Table of Contents ...................................................................................................................... iv List of Tables ............................................................................................................................ vi List of Figures .......................................................................................................................... vii Introduction .......................................................................................................................... 1 2 Literature and Software Review ............................................................................. oo ..... oooo···· 5 • 2.1 Review of Propeller Design Methods .......... 5 00 .............. 00 00 .. 00 00 ...... 00 .. 00 .................. 00 00 • 2.2 Review of Recent Propeller Design Software .......... 10 00 ...... 00 00 00 ...... 00 ............... 00 00 .. 00. • 2.3 Review of OpenPYL 13 00 ....................................................... 00 .................................. • 2.3 .1 Parametric Analysis .................................. 13 00 .................................................... • 2.3 .2 Blade Design .................................................................................................. 19 • 2.3.3 Propeller Geometry Development Through CAD ........................................... 26 • 2.4 Review of Computer-Aided Design (CAD) ........................................................... 28 •2.5 Review of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) ................................................................................................... 30 • 2.6 Review of Propeller Fabrication ............................................................................ 32 • 2.6.1 Traditional Fabrication Processes ................................................................... 32 • 2.6.2 Rapid Fabrication Processes ............ oo .. 34 0000 ....................................... 0000 .... 00 .... 00 • 2.7 Review of Propeller Testing 38 .00 ............................................................................... 3 Marine Propeller Design and Simulation in SolidWorks ........................... 43 00 ...................... • 3.1 Open_PYL and OpenPYL_SW Codes ................................................................... 44 IV • 3.2 Using Solidworks for Propeller Blade Geometry ................................................... 47 • 3.2.1 Propeller Foil Sections .............................................................................. 48 • 3.2.2 Propeller Blade Surface Development. ...................................................... 56 • 3.3 Simulations using CosmosFloWorks ..................................................................... 60 • 3.4 Simulations using CosmosWorks .......................................................................... 66 4 Case Study: Simulation of an AUV Propeller. ..................................................................... 76 5 Case Study: Simulation of a Marine Propeller Provided by Oceanic Consulting Corporation .................................................................................................... 88 6 Propeller Fabrication by Rapid Proto typing ........................................................................ 98 7 Conclusions and Future Work ........................................................................................... 105 • 7.1 Conclusions ....................... :. ................................................................................ I 05 • 7.2 Future Work ....................................................................................................... 106 References .............................................................................................................................. 10 7 Appendix A: The Part ofOpenPVL_SW MATLAB Source Code for Generating Propeller Geometry in SolidWo rks ..................................................................... 111 Appendix B: SolidWorks Macro for the AUV Propeller Geometry: ........................................ 119 v List of Tables Table 1: Required Input Data for Lifting Line Method and Panel Method ................................... 9 Table 2: Advantages and Disadvantages of Each NACA Series ................................................ 22 Table 3: Prototyping Technology Materials .............................................................................. 35 Table 4: Processes of Propeller Design by Open_PVL and OpenPVL_SW ............................... 46 Table 5: The information ofNACA 63A006 and mean line a=0.8 (modified) ........................... 55 Table 6: Simulation Results of the Three Propellers .................................................................. 83 Table 7: StrataSys FDM 2000 Specifications ............................................................................ 99 VI List of Figures Figure 1: Flow Chart of Propeller Design by Computer Programs ............................................... 3 Figure 2: Parametric Analysis Matlab Interface ........................................................................ 14 Figure 3: Efficiency Plot. .......................................................................................................... 19 Figure 4: Propeller Design Matlab Interface ............................................................................. 20 Figure 5: Foil Section Geometry ............................................................................................... 23 Figure 6: Graphical Report························································································:·············· 24 Figure 7: 2D Propeller Blade Profile ......................................................................................... 25 Figure 8: 3D Propeller Image .................................................................................................... 25 Figure 9: Propeller in Rhino ..................................................................................................... 27 Figure 10: Propeller Geometry Validation ................................................................................ 28 Figure 11: Flow Chart of Casting Processes .............................................................................. 33 Figure 12: Wind Tunnel Model Constructed by FDM ............................................................... 36 Figure 13: Sketch of a Propeller Testing Set-up ........................................................................ 38 Figure 14: Thruster Mount. ....................................................................................................... 39 Figure 15: Tow-tank Carriage ................................................................................................... 40 Figure 16: Flow Chart of Generating a Propeller Blade ............................................................. 48 Figure 17: Foil Section Points ................................................................................................... 49 Figure 18: A Propeller Foil Section .......................................................................................... 50 Figure 19: Overview of Propeller Foil Sections ........................................................................ 51 Figure 20: Sideview of Propeller Foil Sections ......................................................................... 52 Figure 21: Foil Section using NACA 65A01 0 a=0.8 at the r/R=0.35 ......................................... 54 Figure 22: Foil Section Using NACA 63A006 a=0.8(modified) at the r/R=0.35 ........................ 56 Figure 23: Propeller Foil Sections and the Leading Edge Line .................................................. 57 Vll

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.