ebook img

Casimir Effect for Gauge Fields in Spaces with Negative Constant Curvature PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Casimir Effect for Gauge Fields in Spaces with Negative Constant Curvature

Casimir Effect for Gauge Fields in Spaces with Negative Constant Curvature A. A. Bytsenko Departamento de F´ısica, Universidade Estadual de Londrina, Caixa Postal 6001, Londrina-Paran´a, Brazil E-mail address: [email protected] M. E. X. Guimar˜aes Departamento de Matem´atica, Universidade de Bras´ılia, Bras´ılia, DF, Brazil E-mail address: [email protected] V. S. Mendes Departamento de F´ısica, Universidade Estadual de Londrina, Caixa Postal 6001, Londrina-Paran´a, Brazil 5 E-mail address: [email protected] 0 (Dated: September, 2004) 0 2 We consider gauge theories based on abelian p−forms on real compact hyperbolic spaces. Using thezeta-functionregularizationmethodandthetracetensorkernelformula,wedetermineexplicitly n an expression for the vacuum energy (Casimir energy) corresponding to skew-symmetric tensor a J fields. It is shown that the topological component of the Casimir energy for co-exact forms on even-dimensional spaces, associated with the trivial character, is always negative. We infer on the 3 possible cosmological consequencesof this result. 1 PACSnumbers: 04.70.Dy,11.25.Mj v 9 0 I. INTRODUCTION p forms: (δω ,ϕ )=(ω ,dϕ ). Inquantumfieldtheory 0 − p p p p 1 the Lagrangianassociatedwithωp takesthe form: dωp ∧ 0 The topological Casimir effect for scalar (or spinor) ∗dωp (gauge field), δωp ∧ ∗δωp (co−gauge field). 5 The Euler-Lagrangeequations, supplied with the gauge, 0 fieldsonspacesofformΓ X,whereΓ isadiscretegroup give: L ω = 0, δω = 0 (Lorentz gauge); L ω = \ p p p p p h/ acting on manifold X, hasebecome a very exciting and 0, dωp = 0 (co-Lorentz gauge). These Lagrangians t importantissueinareasofquantumfieldtheoryandcos- give possible representation of tensor fields or general- - e p mology[1-9]. InitialevaluationoftheCasimirenergyhas ized abelian gauge fields. e been given for X = RN, SN. In [7-15], the calculation h As an application, we evaluate the Casimir effect as- involves the case in which X is a Lobachevsky real hy- : e sociatedwithtopologicallyinequivalentconfigurationsof v perbolic space. i e Abelianco-exactformsonrealcompacthyperbolic man- X Maximally symmetric spaces, such as the hyperbolic ifolds. r spaces,playveryimportantinsupergravity[16],insuper- a stringtheory[17]anddefinitelyplaysacrucialroleincos- mology [18, 19, 20]. Besides, hyperbolic space forms are examples of a general noncompact irreducible rank one symmetric space the proper and outlook mathematical machinery could be available. In this paper we present II. THE TRACE FORMULA APPLIED TO THE a decomposition of the Hodge Laplacian and the ten- TENSOR KERNEL sor kernel trace formula for free generalized gauge fields (p forms) on real hyperbolic space forms. The main ing−redient required is a type of differential form struc- Let us consider an N dimensional compact real hy- − ture on the physical, auxiliary, or ghost variables. We perbolic space XΓ with universalcovering X and funda- evaluate spectral functions and the Casimir effect asso- mental group Γ. We can represent X as the symmetric e ciated with physical degrees of freedom of the Hodge– space G/K, where G = SO (N,1) and K = SO(N) 1 e de Rham operators on p forms. Let ω , ϕ be exterior is a maximal compact subgroup of G. Then we regard p p − differential p forms; then, the invariant inner product Γ as a discrete subgroup of G acting isometrically on − is defined by (ωp,ϕp) d=ef X˜ωp ∧ ∗ϕp. Under the ac- X, and we take XΓ to be the quotient space by that tfoiornfoorfmtshehoHldo:dgωe ∗=op(era1Rt)opr(n−thpe)ωfo,llaowndingddpr=opeδrδtie=s taehcetioinnt:egXraΓl o=f tΓh\eXco=nstΓan\tGf/uKnc.tioLnetIVoonl(ΓΓ\GG)wditehnortee- 0, δ = ( 1)np+n+1p d .−The operatpors d and δ are ad- specttotheG invaeriantmeasureonΓ Gind\ucedbydx, joint to−eachother w∗ith∗respectto this inner product for Vol(Γ G)= − Idx. For 0 p N \1 the Friedtrace \ Γ\G ≤ ≤ − R 2 formulaappliedtotheheatkernel t =e−tLp holds[21]: III. THE SPECTRAL FUNCTIONS OF K EXTERIOR FORMS AND THE VACUUM Tr e−tLp = I(p)( )+I(p−1)( ) ENERGY Γ Kt Γ Kt (cid:0) (cid:1) + HΓ(p)(Kt)+HΓ(p−1)(Kt), (1) If Lp is a self-adjoint Laplacian on p−forms then the followingresultshold. Thereexistsε,δ >0suchthatfor whereI(p)( ),H(p)( )arethe identityandhyperbolic 0 < t < δ the heat kernel expansion for Laplace opera- orbital iΓnteKgrtals reΓspeKcttively: tors on a compact manifold XΓ is given by Tr e−tLp = a (L )t−ℓ+ (tε).Thezetafunctiono(cid:0)fL is(cid:1)the 0≤ℓ≤ℓ0 ℓ p O p IΓ(p)(Kt) d=ef χ(1)V4oπl(Γ\G) MPTheilslinfuntrcatniosnforemquaζl(ss|TLrp)L=−s(Γf(osr))s−>1R(R1+/2T)rdei−mtL(pΓts−G1)d.t. p \ × ZRµσp(r)e−t(r2+p+ρ20)dr, (2) repTrheseentrtaednsvbeyrstehpeacrto-oe(cid:0)xfatchte(cid:1)pskefwor-msymωm(CeEtr)ic=tenδsωor is, p p+1 − (CE) which trivially satisfies δω = 0, and we denote by p L(CE) the restriction of the Laplacian on the co–exact HΓ(p)(Kt) d=ef √41πtγ∈CXΓ−{1}χj((γγ))tγC(γ)χσp(mγ) opn−pftohremm. Tanhiefogldoawlnhoicwhidsetsocreixbtersactthethpehcyos–iceaxlacdtegpr−efeosrmof e−t(ρ20+p)−t42γt, (3) forfefeodrommso[2f6t,h2e7s,y2s8t]e.m, and presents by alternating sum × C Γ is a complete set of representations in Γ of its Γ ⊂ conjugacyclasses,andC(γ) is a welldefined function on A. The identity component of the isometry group Γ 1 ,ρ =(N 1)/2,andχ (m)=trace(σ(m))isthe 0 σ −{ } − character σ for m SO(N). The trace formula involves ∈ The zeta function related to the identity integral the Harish-Chandra-Plancherel measure µ (r) which is given by σp IΓ(p)(Kt) in (2) has the form χ(1)Vol(Γ G) ∞ N 1 CGπP (r)rtanh(πr), ζI(sLp) = \ ts−1dt µσp(r)=(cid:18) p− (cid:19)× C πP (r), ffoorr NN ==22nn+1 | 4πΓ(s) Z0  G (4) × ZRµσp(r)e−ty(r2;m2p)dr whereCG = 22N−4Γ(N/2)2 ,andP (r)isapolynomial, 1 which presen(cid:0)ts the following(cid:1)form = χ(1)Vol(Γ G) 4 \ jn=−02 r2+((2j+1)/2)2 = ℓn=−01a2ℓr2ℓ, × ZRµσp(r)[y(r2;m2p)]−sdr, (6) P (r)=Q (cid:2) (cid:3) fPorN =2n  jn=−01 r2+j2 = nℓ=0a2ℓr2ℓ, forN =2n+1 wherey(r2;m2p)≡r2+m2p, m2p ≡b(p)+(ρ0−p)2. Because Q (cid:2) (cid:3) P (5) ofEqs. (4)and(5)it isconvenientto considereven-and a2ℓ are the Miatello coefficients [22, 23]. For p 1 there odd-dimensional cases separately. ≥ isameasureµ (r)correspondingtoageneralirreducible σ representation σ. Let σ be the standard representation p of SO(N 1) on ΛpC(N−1). If N = 2n is even then 1. Even-dimensional manifold − σ (0 p n 1) is always irreducible; if N = 2n+1 p ≤ ≤ − theneveryσ isirreducibleexceptforp=(N 1)/2=n, p − Using Eqs. (4) and (5) in (6) for N =2n we get inwhich caseσ is the directsum oftwospin–(1/2)rep- n resentations σ± : σ = σ+ σ−. For p = n the repre- sτenn=tatτin+on⊕τnτn−ofiKs th=enSdOir(e2cnt)s⊕uomnΛonfCtw2noisspnino–t(i1r/re2d)urceipbrlee-: ζI(2n)(s|Lp) = 41χ(1)Vol(Γ\G)CGZR P(r[y)r(rt2a;nmh(2pπ)]rs)dr sentations. 1 = χ(1)Vol(Γ G)C In the case of the trivial representation(p=0, i.e. for 4 \ G smooth functions or smooth vector bundle sections) the n−1 r2j+1tanh(πr)dr measureµ(r) µ (r)correspondstothetrivialrepresen- a . (7) tation. There≡fore0, we take I(−1)( ) = H(−1)( ) = 0. × Xj=0 2jZR [y(r2;m2p)]s Γ Kt Γ Kt Since σ isthe trivialrepresentation,onehas χ (m )= 0 σ0 γ For a,δ > 0, z C, define the entire functions 1. In this case, formula (1) reduces exactly to the trace ∈ formula for p=0 [7, 8, 24, 25]. K (s;δ,a) d=ef r2m(δ + r2)−ssech2(ar)dr. Then for m R R 3 Res>j+1, j 0, one gets [25] Using the K Bessel function K (s), s C, defined by ν ≥ − ∈ K (2s)d=ef (1/2)sν ∞t−ν−1exp t s2/t dt,wehave ν × 0 {− − } r2j+1tanh(ar)dr R ZR (δ+r2)s = ζH(s|Lp) = √πΓ1(s) χ(γ)j−1(γ)C(γ) X aj! j K (s ℓ 1;δ,a) γ∈CΓ−{1} = 2 (j ℓ)!(sj−11)(s− 2−)...(s (ℓ+1)),(8) ts+21K−s+12(tγmp) Xℓ=0 − − − − × γ [2mp]s−12 ∞ χ(γ)t j−1(γ)C(γ) γ The following result follows: = Z Γ(s)Γ(1 s) 0 γ∈CXΓ−{1} − n−1 e−(t+mp)tγdt ζI(2n)(s|Lp)= π8χ(1)Vol(Γ\G)CΓ(cid:18)2np−1 (cid:19) a2jj! × (2tmp+t2)s. (13) Xj=0 j K s ℓ 1;b(p)+(ρ p)2,π j−1(cid:16) − − 0− (cid:17) . (9) 1. Logarithmic derivative of the Selberg zeta function × (j ℓ)!(s 1)(s 2)...(s (ℓ+1)) Xℓ=0 − − − − The function ψ (s;χ) defined in [29] Γ ψ (z;χ)d=ef χ(γ)t j−1(γ)C(γ)e−(z−ρ0)tγ, Γ γ X γ∈CΓ−{1} 2. Odd-dimensional manifold (14) for Res > 2ρ , is a holomorphic function in the half- 0 plane Res > 2ρ and admits a meromorphic continua- In odd-dimensional case, N =2n+1, we get 0 tion to the full complex plane. It has been shown that there is a meromorphicfunction Z (s;χ) onC such that Γ ζ(2n+1)(sL ) = 1χ(1)Vol(Γ G)C 2n (d/dz)logZΓ(z;χ) = ψΓ(z;χ). ZΓ(z;χ) suitable normal- I | p 4 \ Γ(cid:18) p (cid:19) izedistheSelbergzetafunctionattachedto(G,K,Γ,χ). Therefore, n × Xj=0a2jZRr2j[y(r2;m2p)]−sdr. (10) ζH(s|Lp)= Γ(s)Γ1(1 s)Z ∞ ψΓ((ρ20tm+t++tm2)ps;χ)dt. − 0 p (15) Using the formula r2j+1(δ2 + r2)−sdr = Canonical quantization of Abelian p forms yields a for- δ2j−2sΓ(j)Γ(s−j)/(Γ(s))R,Rwe find: mthaelCexapsirmesisrioenne(r1g/y2,)wζ(hser=e−λ1/∞2|Lpi)s−=th(e1/se2t)Pofjeλig1e/n2vfaolr- { }j≥0 ues (with multiplicity) of the Laplacian L on smooth ζI(2n+1)(s|Lp)= χ(1)4VΓo(ls()Γ\G)(cid:18)2pn(cid:19) sections of a vector bundle over XΓ =Γ\HNp induced by a finite-dimensional unitary representation χ of Γ. The n a Γ j+ 1 Γ s j 1 regularizedCasimirenergyrelatedtoco-exactforms(the 2j 2 − − 2 . (11) × Xj=0 (cid:0) m2ps(cid:1)−2j(cid:0)−1 (cid:1) caoltmerpnaacttinegvesnu-mdiomfeznesrioo-naanldhpy−pefrobrmoliccommapnoinfoelndtss)isongirveeanl as follows: 1 π E(m ) = ζ( 1/2L(CE))= χ(1)Vol(Γ G)C p N=2n 2 − | p 16 \ G B. The hyperbolic component of the isometry n−1 j a j! group 2j × Xj=0Xℓ=0 (j−ℓ)! ℓq=0(−12 −(q+1)) Q intTeghrealzeHta(p)f(unc)titoankeassstohceiafoterdmwith hyperbolic orbital × (cid:20)(cid:18)2np−1(cid:19)Kj−1(−ℓ− 23;m2p,π) Γ Kt 3 + K ( ℓ ;m2,π) 1 j−1 − − 2 0 (cid:21) ζH(s|Lp) ×= Z√4∞πtΓs(−s23)eγ−∈tCmXΓ2p−+{t142γt}dχt.(γ)j−1(γ)tγC(γ(1)2) −+ 2ψ1πΓ(Zρ00∞+ntψ+Γ(mρ00;+χ)t[2+tmm0p;+χt)2[2]t21mpdt+. t(21]621) 0 o 4 In the case of scalar field (p =0 for a trivial representa- In particular, the recent data obtained by the Wilkin- tion) the Casimir energy becomes son Microwave Anisotropy Probe (WMAP) [31] satellite confirmed,andsetnewstandardsofaccuracy,tothepre- π E(m ) = χ(1)Vol(Γ G)C viousCOBE’smeasurementofalowquadrupolemoment 0 N=2n G 16 \ in the angular power spectrum of the CMB, which is in n−1 j a j!K ( ℓ 3;m2,π) accordancewiththeassumptionthatthe topologyofthe 2j j−1 − − 2 0 ×Xj=0Xℓ=0 (j−ℓ)! ℓq=0(−12 −(q+1)) uonnitvheersceamseigohftabceomnponac-ttrhivyipale,rbwoiltihc upnairvteicrusela.rCeommpbhianseids −21π Z ∞ψΓ(ρ0+Qt+m0;χ)[2tm0+t2]12dt. (17) wthiatht thi6s0o%bsoefrvthateiocnri,ttichaelWenMerAgyPdseantseiltlyiteofaltshoeiunndiivcaerteses 0 ∼ is contributed by a smoothly distributed vacuum energy Formula(16)withpositiveparametermpgivesthereg- (Casimir energy) or dark energy, whose net effect is re- ularized vacuum energy E(mp) which is finite. From pulsive(leading,thus,toanacceleratedexpansionofthe (11) it follows that in the case of odd N the identity universe). component of E(mp) has poles at s = 1/2 and there- Inthispaper,wehaveshownthatthetopologicalcom- − fore E(mp) cannot be obtained by the method available ponentoftheCasimirenergyforco-exactformsoneven- for even-dimensionalmanifolds, whichagreeswith result dimensional manifolds, associated with the trivial char- obtained in [13]. For the trivial representation χ = 1 acter, is always negative. This result confirms the above of Γ, the topological component of the Casimir energy mentioned measurements and we can infer on the cos- E(mp)(thelasttermin(16))isalwaysnegative,inagree- mological consequences of it. We plan to address this mentwithresultspreviouslyobtainedin[14]. Inthecase question in details in a forthcoming paper [32]. of scalar fields (zero-forms) our result agrees with one founded in [13]. Acknowledgements IV. CONCLUDING REMARKS A. A. Bytsenko and M. E. X. Guimar˜aes would like to thank the Conselho Nacional de Desenvolvimento Cosmologicalpredictions,suchasthe microwaveback- Cient´ıfico e Tecnol´ogico (CNPq/Brazil) for partial sup- ground anisotropies(CMB) and the currentacceleration port. V. S. Mendes would like to thank CAPES for a expansion of the universe [30], depend pretty much on PhD grant. the details of the theoretical model under consideration. [1] B. DeWitt, Phys. Rep.19, 295 (1975). [14] G.Cognola, L.VanzoandS.Zerbini,J. Math. Phys.32, [2] N. Birrell and P. W. Davis, Quantum Fields on Curved 222 (1992). Soaces (Cambridge University Press, Cambridge, 1982). [15] G.Cognola, K.KirstenandS.Zerbini, Phys. Rev. D48, [3] J. Ambjorn and S. Wolfram, Ann. Phys. (N.Y.)147, 1 790 (1993). (1983). [16] M. J. Duff, B. E. Nilsson and C. N. Pope, Phys. Rep. [4] W. Greiner, B. Muller and G. Plunien, Phys. Rep. 134, 130, 1 (1986). 87 (1986). [17] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [5] A.Jackson and L. Vepstas, Phys. Rep. 187, 109 (1990). [18] E. Elizalde, e-Print arXiv: hep-th/0311195. [6] V.MostepanenkoandN.Trunov,CasimirEffectsandIts [19] R. Aurich, S. Lustig, F. Steiner and H. Then, e-Print Applications (Energoatomizdat, Moscow, 1990). arXiv: astro-ph/0403597. [7] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko [20] N. Kaloper, J. March-Russell, G. D. Starkman and M. and S. Zerbini, Zeta Regularization Techniques with Ap- Trodden, Phys. Rev. Lett. 85, 928 (2000). plications (World Scientific, Singapore, 1994). [21] D. Fried, Invent. Math. 84, 523 (1986). [8] A. A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini, [22] R. Miatello, Trans. Am. Math. Soc. 260, 1 (1980). Phys. Rep. 266, 1 (1996). [23] A. A. Bytsenko, E. Elizalde and M. E. X. Guimar˜aes, [9] A.A.Bytsenko,G.Cognola, E.Elizalde, V.Morettiand Int. J. Mod. Phys. A18, 2179 (2003). S. Zerbini, Analytic Aspects of Quantum Fields (World [24] N. Wallach, J. Diff. Geom. 11, 91 (1976). Scientific,Singapore, 2003). [25] A.A.BytsenkoandF.L.Williams, J. Math. Phys.266, [10] A. A. Bytsenko and Yu. P. Goncharov, Class. Quantum 1075 (1998). Grav. 8, 2269 (1991). [26] A. A. Bytsenko, L. Vanzo and S. Zerbini, Nucl. Phys. [11] A. A. Bytsenko and Yu. P. Goncharov, Class. Quantum B505, 641 (1997). Grav. 8, L211 (1991). [27] A. A. Bytsenko, Nucl. Phys. (Proc. Suppl.) B104, 127 [12] A.A.Bytsenkoand Yu.P.Goncharov, Mod. Phys. Lett. (2002). A6, 669 (1991). [28] A.A.Bytsenko,A.E.Gon¸calvesandF.L.Williams,Int. [13] A.A.BytsenkoandS.Zerbini,Class. Quantum Grav.9, J. Mod. Phys. A18, 2041 (2003). 1365 (1992). [29] R. Gangolli, Ill. J. Math. 21, 1 (1977). 5 [30] S.Perlmutter et al., Ap. J. 517, 565 (1999). in preparation. [31] H.V. Peiris et al., Ap. JS 148, 213 (2003). [32] A.A. Bytsenko,M. E. X.Guimar˜aes and V.S. Mendes,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.