ebook img

Cartesian Product of Interval Neutrosophic Automata PDF

2021Β·0.25 MBΒ·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cartesian Product of Interval Neutrosophic Automata

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Cartesian Product Of Interval Neutrosophic Automata V. Karthikeyan 𝟏 R. Karuppaiya 𝟐 1Department of Mathematics, Government College of Engineering,Dharmapuri, Tamil Nadu, India. 2Department of Mathematics, Annamalai University,Chidambaram, Tamil Nadu, India. Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021 Abstract We introduce Cartesian product of interval neutrosophic automata and prove that Cartesian product of cyclic interval neutrosophic automata is cyclic Key words: Cyclic, Cartesian product. AMS Mathematics subject classification: 03D05,20M35,18 B20,68Q45, 68Q70,94 A45 1 Introduction The neutrosophic set was introduced by Florentin Smarandache in 1999 [6]. The neutrosophic set is the generalization of classical sets, fuzzy set [11] and so on. The fuzzy set was introduced by Zadeh in 1965[11]. Bipolar fuzzy set, YinYang bipolar fuzzy set, NPN fuzzy set were introduced by W. R. Zhang in [8, 9, 10]. A neutrosophic set N is classified by a Truth membership T , Indeterminacy membership I , and Falsity N N membership F , where T , I , and F are real standard and non-standard subsets of] 0βˆ’, 1+[. Interval-valued N N N N neutrosophic sets was introduced by Wang etal.,[7]. The concept of interval neutrosophic finite state machine was introduced by Tahir Mahmood [5]. Generalized products of directable fuzzy automata are discussed in [1]. Retrievability, subsystems, and strong subsystems of INA were introduced in the papers [2, 3, 4]. In this paper, we introduce Cartesian product of interval neutrosophic automata and prove that Cartesian product of cyclic interval neutrosophic automata is cyclic. 2 Preliminaries 2.1 Neutrosophic Set [6] Let π‘ˆ be the universal set.. A neutrosophic set (NS) 𝑁 in π‘ˆ is classified by a truth membership T , an N indeterminacy membership I and a falsity membership F , where T , I , and F are real standard or non- N N N N N standard subsets of] 0βˆ’,1+[. That is 𝑁 ={〈 π‘₯,𝑇 (π‘₯),𝐼 (π‘₯),𝐹 (π‘₯) βŒͺ,π‘₯ βˆˆπ‘ˆ, 𝑇 , 𝐼 , 𝐹 ∈ ] 0βˆ’,1+[ } and 0βˆ’ ≀𝑠𝑒𝑝 𝑇 (π‘₯)+ 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝑠𝑒𝑝𝐼 (π‘₯)+𝑠𝑒𝑝𝐹 (π‘₯) ≀ 3+. We need to take the interval [0,1] for instead of ] 0βˆ’,1+[. 𝑁 𝑁 .𝟐.𝟐 Definition [πŸ•] An interval neutrosophic set (𝐼𝑁𝑆 for short) is 𝑁 = {βŒ©π›Ό (π‘₯),𝛽 (π‘₯),𝛾 (π‘₯)βŒͺ |π‘₯ ∈ π‘ˆ} 𝑁 𝑁 𝑁 = {〈π‘₯,[𝑖𝑛𝑓 𝛼 (π‘₯),𝑠𝑒𝑝 𝛼 (π‘₯)],[𝑖𝑛𝑓 𝛽 (π‘₯),𝑠𝑒𝑝 𝛽 (π‘₯)],[𝑖𝑛𝑓 𝛾 (π‘₯),𝑠𝑒𝑝 𝛾 (π‘₯)]βŒͺ},π‘₯ ∈ π‘ˆ, where 𝛼 (π‘₯), 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝛽 (π‘₯), and 𝛾 (π‘₯) representing the truth-membership, indeterminacy-membership and falsity membership for 𝑁 𝑁 each π‘₯ ∈ π‘ˆ. 𝛼 (π‘₯), 𝛽 (π‘₯), 𝛾 (π‘₯) βŠ† [0,1] and the condition that 0 ≀ 𝑠𝑒𝑝 𝛼 (π‘₯) + 𝑠𝑒𝑝 𝛽 (π‘₯) + 𝑁 𝑁 𝑁 𝑁 𝑁 𝑠𝑒𝑝 𝛾 (π‘₯) ≀ 3. 𝑁 𝟐.πŸ‘ Definition [πŸ•] An 𝐼𝑁𝑆 𝑁 is empty if 𝑖𝑛𝑓 𝛼 (π‘₯) = 𝑠𝑒𝑝 𝛼 (π‘₯) = 0,𝑖𝑛𝑓 𝛽 (π‘₯) = 𝑠𝑒𝑝 𝛽 (π‘₯) 1,𝑖𝑛𝑓 𝛾 (π‘₯) = 𝑠𝑒𝑝 𝛾 (π‘₯) = 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 1 for all π‘₯ ∈ π‘ˆ. 3 Interval Neutrosophic Automata 3.1 Definition [5] 𝑀 = (𝑄,𝛴,𝑁) is called interval neutrosophic automaton (𝐼𝑁𝐴 for short), where 𝑄 and 𝛴 are non-empty finite sets called the set of states and input symbols respectively, and 𝑁 = {βŒ©π›Ό (π‘₯),𝛽 (π‘₯),𝛾 (π‘₯)βŒͺ} is an 𝐼𝑁𝑆 in 𝑄× 𝑁 𝑁 𝑁 3708 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article 𝛴×𝑄. The set of all words of finite length of 𝛴 is denoted by Ξ£βˆ—. The empty word is denoted by πœ– and the length of each π‘₯ ∈ Ξ£βˆ— is denoted by |π‘₯|. 3.2 Definition [5] 𝑀 = (𝑄,𝛴,𝑁) be an 𝐼𝑁𝐴. Define an 𝐼𝑁𝑆 π‘βˆ— = {βŒ©π›Όπ‘βˆ—(π‘₯), π›½π‘βˆ—(π‘₯),π›Ύπ‘βˆ—(π‘₯)βŒͺ} in π‘„Γ—π›΄βˆ—Γ—π‘„ by [1,1] 𝑖𝑓 π‘ž = π‘ž 𝑖 𝑗 π›Όπ‘βˆ—(π‘žπ‘–,πœ–,π‘žπ‘—) = { [0,0] 𝑖𝑓 π‘ž β‰  π‘ž 𝑖 𝑗 [0,0] 𝑖𝑓 π‘ž = π‘ž 𝑖 𝑗 π›½π‘βˆ—(π‘žπ‘–,πœ–,π‘žπ‘—) = { [1,1] 𝑖𝑓 π‘ž β‰  π‘ž 𝑖 𝑗 [0,0] 𝑖𝑓 π‘ž = π‘ž 𝑖 𝑗 π›Ύπ‘βˆ—(π‘žπ‘–,πœ–,π‘žπ‘—) = { [1,1] 𝑖𝑓 π‘ž β‰  π‘ž 𝑖 𝑗 π›Όπ‘βˆ—(π‘žπ‘–,𝑀,π‘žπ‘—) = π›Όπ‘βˆ—(π‘žπ‘–, π‘₯𝑦, π‘žπ‘—) = βˆ¨π‘žπ‘Ÿ βˆˆπ‘„[ π›Όπ‘βˆ—(π‘žπ‘–, π‘₯, π‘žπ‘Ÿ)∧ π›Όπ‘βˆ—(π‘žπ‘Ÿ, 𝑦, π‘žπ‘—)] π›½π‘βˆ—(π‘žπ‘–,𝑀,π‘žπ‘—) = π›½π‘βˆ—(π‘žπ‘–, π‘₯𝑦, π‘žπ‘—) = βˆ§π‘žπ‘Ÿ βˆˆπ‘„[ π›½π‘βˆ—(π‘žπ‘–, π‘₯, π‘žπ‘Ÿ)∨ π›½π‘βˆ—(π‘žπ‘Ÿ, 𝑦, π‘žπ‘—)] π›Ύπ‘βˆ—(π‘žπ‘–,𝑀,π‘žπ‘—) = π›Ύπ‘βˆ—(π‘žπ‘–, π‘₯𝑦, π‘žπ‘—) = βˆ§π‘žπ‘Ÿ βˆˆπ‘„[ π›Ύπ‘βˆ—(π‘žπ‘–, π‘₯, π‘žπ‘Ÿ)∨ π›Ύπ‘βˆ—(π‘žπ‘Ÿ, 𝑦, π‘žπ‘—)] βˆ€ π‘žπ‘–, π‘žπ‘— βˆˆπ‘„,𝑀 =π‘₯𝑦 ,π‘₯ ∈ Ξ£βˆ— and 𝑦 ∈Σ. 4 Cartesian Composition of Interval Neutrosophic Automata 4.1 Definition Let 𝑀 =(𝑄, Ξ£ ,𝑁),𝑖 =1,2 be interval neutrosophic automata and let Ξ£ ∩ Ξ£ =βˆ…. Let 𝑀 Γ— 𝑀 = 𝑖 𝑖 𝑖 𝑖 1 2 1 2 (𝑄 Γ— 𝑄 , Ξ£ βˆͺ Ξ£ , 𝑁 Γ— 𝑁 ), where 1 2 1 2 1 2 𝛼 (π‘ž,π‘Ž,π‘ž )>[0,0] 𝑖𝑓 π‘Ž ∈ Ξ£ π‘Žπ‘›π‘‘ π‘ž = π‘ž 1 𝑖 π‘˜ 1 𝑗 𝑙 (Ξ±1Γ—Ξ±2)((π‘žπ‘–,π‘žπ‘—),π‘Ž,(π‘žπ‘˜,π‘žπ‘™))= {𝛼2(π‘žπ‘–,π‘Ž,π‘žπ‘˜)>[0,0] 𝑖𝑓 π‘Ž ∈ Ξ£2 π‘Žπ‘›π‘‘ π‘žπ‘– = π‘žπ‘˜ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ 𝛽 (π‘ž,π‘Ž,π‘ž )<[1,1] 𝑖𝑓 π‘Ž ∈ Ξ£ π‘Žπ‘›π‘‘ π‘ž = π‘ž 1 𝑖 π‘˜ 1 𝑗 𝑙 (𝛽1×𝛽2)((π‘žπ‘–,π‘žπ‘—),π‘Ž,(π‘žπ‘˜,π‘žπ‘™))= {𝛽2(π‘žπ‘–,π‘Ž,π‘žπ‘˜)<[1,1] 𝑖𝑓 π‘Ž ∈ Ξ£2 π‘Žπ‘›π‘‘ π‘žπ‘– = π‘žπ‘˜ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ 𝛾 (π‘ž ,π‘Ž,π‘ž )<[1,1] 𝑖𝑓 π‘Ž ∈ Ξ£ π‘Žπ‘›π‘‘ π‘ž = π‘ž 1 𝑖 π‘˜ 1 𝑗 𝑙 ( 𝛾1Γ— 𝛾2)((π‘žπ‘–,π‘žπ‘—),π‘Ž,(π‘žπ‘˜,π‘žπ‘™))= { 𝛾2(π‘žπ‘–,π‘Ž,π‘žπ‘˜)<[1,1] 𝑖𝑓 π‘Ž ∈ Ξ£2 π‘Žπ‘›π‘‘ π‘žπ‘– = π‘žπ‘˜ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ βˆ€(π‘ž,π‘ž ), (π‘ž ,π‘ž) ∈ 𝑄 ×𝑄 , π‘Ž ∈ Ξ£ βˆͺ Ξ£ . Then 𝑀 Γ— 𝑀 is called the Cartesian product of interval 𝑖 𝑗 π‘˜ 𝑙 1 2 1 2 1 2 neutrosophic automata. 4.2 Definition Let 𝑀 = (𝑄,𝛴,𝑁) be an INA. 𝑀 is cyclic if βˆƒ π‘ž ∈ Q such that Q = S(π‘ž). 𝑖 𝑖 4.3 Definition [2] Let 𝑀 = (𝑄,𝛴,𝑁) be INA. M is connected if βˆ€ π‘ž ,π‘ž and βˆƒ a ∈ Ξ£ such that either Ξ± (π‘ž,π‘Ž,π‘ž )>[0,0], 𝑗 𝑖 N 𝑖 𝑗 Ξ² (π‘ž,π‘Ž,π‘ž )<[1,1], 𝛾 (π‘ž,π‘Ž,π‘ž )<[1,1] or N 𝑖 𝑗 𝑁 𝑖 𝑗 Ξ± (π‘ž ,π‘Ž,π‘ž)>[0,0], Ξ² (π‘ž ,π‘Ž,π‘ž )<[1,1], 𝛾 (π‘ž ,π‘Ž,π‘ž)<[1,1]. N 𝑗 𝑖 N 𝑗 𝑖 𝑁 𝑗 𝑖 4.4 Definition [2] 3709 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Let 𝑀 = (𝑄,𝛴,𝑁) be INA. M is strongly connected if for every π‘ž,π‘ž ∈ 𝑄, there exists u ∈ Ξ£βˆ— such that 𝑖 𝑗 Ξ±π‘βˆ—(π‘žπ‘–,𝑒,π‘žπ‘—)>[0,0],Ξ²π‘βˆ—(π‘žπ‘–,𝑒,π‘žπ‘—)<[1,1],Ξ³π‘βˆ—(π‘žπ‘–,𝑒,π‘žπ‘—)<[1,1]. Theorem 4.1 Let 𝑀 =(𝑄,Ξ£ ,𝑁),𝑖 =1,2 be interval neutrosophic automata and let Ξ£ ∩ Ξ£ = βˆ…. Let 𝑖 𝑖 𝑖 𝑖 1 2 𝑀 Γ— 𝑀 = (𝑄 ×𝑄 ,Ξ£ βˆͺ Ξ£ ,𝑁 ×𝑁 ) be the Cartesian product of 𝑀 and 𝑀 . Then βˆ€ π‘₯ ∈Σ βˆ— βˆͺ Ξ£ βˆ—,π‘₯ β‰  1 2 1 2 1 2 1 2 1 2 1 2 πœ– 𝛼 (π‘ž ,π‘₯,π‘ž )>[0,0] 𝑖𝑓 π‘₯ ∈Σ βˆ— π‘Žπ‘›π‘‘ π‘ž = π‘ž 1 𝑖 π‘˜ 1 𝑗 𝑙 (Ξ±1Γ—Ξ±2)βˆ—((π‘žπ‘–,π‘žπ‘—),π‘₯,(π‘žπ‘˜,π‘žπ‘™))= {𝛼2(π‘žπ‘–,π‘₯,π‘žπ‘˜)>[0,0] 𝑖𝑓 π‘₯ ∈Σ2βˆ—π‘Žπ‘›π‘‘ π‘žπ‘– = π‘žπ‘˜ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ 𝛽 (π‘ž,π‘₯,π‘ž )<[1,1] 𝑖𝑓 π‘₯ ∈ Ξ£ βˆ— π‘Žπ‘›π‘‘ π‘ž = π‘ž 1 𝑖 π‘˜ 1 𝑗 𝑙 (𝛽1×𝛽2)βˆ—((π‘žπ‘–,π‘žπ‘—),π‘₯,(π‘žπ‘˜,π‘žπ‘™))= {𝛽2(π‘žπ‘–,π‘₯,π‘žπ‘˜)<[1,1] 𝑖𝑓 π‘₯ ∈ Ξ£2βˆ— π‘Žπ‘›π‘‘ π‘žπ‘– = π‘žπ‘˜ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ 𝛾 (π‘ž ,π‘₯,π‘ž )<[1,1] 𝑖𝑓 π‘₯ ∈ Ξ£ βˆ—π‘Žπ‘›π‘‘ π‘ž = π‘ž 1 𝑖 π‘˜ 1 𝑗 𝑙 (𝛾1Γ— 𝛾2)βˆ—((π‘žπ‘–,π‘žπ‘—),π‘₯,(π‘žπ‘˜,π‘žπ‘™))= { 𝛾2(π‘žπ‘–,π‘₯,π‘žπ‘˜)<[1,1] 𝑖𝑓 π‘₯ ∈ Ξ£1βˆ—π‘Žπ‘›π‘‘ π‘žπ‘– = π‘žπ‘˜ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ βˆ€(π‘ž,π‘ž ), (π‘ž ,π‘ž) ∈ 𝑄 ×𝑄 . 𝑖 𝑗 π‘˜ 𝑙 1 2 Proof . Let π‘₯ ∈Σ βˆ— βˆͺ Ξ£ βˆ—,π‘₯ β‰  πœ– and let |π‘₯|=π‘š. Let π‘₯ ∈Σ βˆ—. The result is trivial if π‘š=1. Let the 1 2 1 result is true βˆ€ 𝑦 ∈ Ξ£ βˆ—, |𝑦|=π‘šβˆ’1,π‘š >1. Let π‘₯ =π‘Žπ‘¦ where π‘Ž ∈ Ξ£ ,𝑦 ∈ Ξ£ βˆ—. Now, 1 1 1 (Ξ± Γ—Ξ± )βˆ—((π‘ž,π‘ž ),π‘₯,(π‘ž ,π‘ž))=(Ξ± Γ—Ξ± )βˆ—((π‘ž,π‘ž ),π‘Žπ‘¦,(π‘ž ,π‘ž)) 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 = ∨ {(Ξ± Γ—Ξ± )((π‘ž,π‘ž ),π‘Ž,(π‘ž ,π‘ž ))∧(Ξ± Γ—Ξ± )βˆ—((π‘ž ,π‘ž ),𝑦,(π‘ž ,π‘ž))} (π‘žπ‘Ÿ, π‘žπ‘ ) ∈ 𝑄1Γ— 𝑄2 𝑁1 𝑁2 𝑖 𝑗 π‘Ÿ 𝑠 1 2 π‘Ÿ 𝑠 π‘˜ 𝑙 = ∨ {Ξ± (π‘ž, π‘Ž, π‘ž ) ∧ (Ξ± Γ—Ξ± )βˆ—((π‘ž ,π‘ž ),𝑦,(π‘ž ,π‘ž))} π‘žπ‘Ÿ ∈ 𝑄1 𝑁1 𝑖 π‘Ÿ 𝑁1 𝑁2 π‘Ÿ 𝑠 π‘˜ 𝑙 ∨ {Ξ± (π‘ž, π‘Ž, π‘ž ) ∧ Ξ± βˆ—(π‘ž ,𝑦,π‘ž )}>[0,0] 𝑖𝑓 π‘ž = π‘ž = { π‘žπ‘Ÿ ∈ 𝑄1 𝑁1 𝑖 π‘Ÿ 𝑁1 π‘Ÿ π‘˜ 𝑗 𝑙 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Ξ± βˆ—(π‘ž ,π‘Žπ‘¦,π‘ž )>[0,0] 𝑖𝑓 π‘ž = π‘ž = { 𝑁1 𝑖 π‘˜ 𝑗 𝑙 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ (Ξ² Γ—Ξ² )βˆ—((π‘ž,π‘ž ),π‘₯,(π‘ž ,π‘ž))=(Ξ² Γ—Ξ² )βˆ—((π‘ž,π‘ž ),π‘Žπ‘¦,(π‘ž ,π‘ž)) 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 = ∧ {(Ξ² Γ—Ξ² )((π‘ž,π‘ž ),π‘Ž,(π‘ž ,π‘ž ))∨(Ξ² Γ—Ξ² )βˆ—((π‘ž ,π‘ž ),𝑦,(π‘ž ,π‘ž ))} (π‘žπ‘Ÿ, π‘žπ‘ ) ∈ 𝑄1Γ— 𝑄2 𝑁1 𝑁2 𝑖 𝑗 π‘Ÿ 𝑠 𝑁1 𝑁2 π‘Ÿ 𝑠 π‘˜ 𝑙 = ∧ {Ξ² (π‘ž, π‘Ž, π‘ž ) ∨ (Ξ² Γ—Ξ² )βˆ—((π‘ž ,π‘ž ),𝑦,(π‘ž ,π‘ž))} π‘žπ‘Ÿ ∈ 𝑄1 𝑁1 𝑖 π‘Ÿ 𝑁1 𝑁2 π‘Ÿ 𝑠 π‘˜ 𝑙 ∧ {Ξ² (π‘ž , π‘Ž, π‘ž ) ∨ Ξ² βˆ—(π‘ž ,𝑦,π‘ž )}<[1,1] 𝑖𝑓 π‘ž = π‘ž = { π‘žπ‘Ÿ ∈ 𝑄1 𝑁1 𝑖 π‘Ÿ 𝑁1 π‘Ÿ π‘˜ 𝑗 𝑙 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Ξ² βˆ—(π‘ž,π‘Žπ‘¦,π‘ž )<[1,1] 𝑖𝑓 π‘ž = π‘ž = { 𝑁1 𝑖 π‘˜ 𝑗 𝑙 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ (Ξ³ Γ—Ξ³ )βˆ—((π‘ž,π‘ž ),π‘₯,(π‘ž ,π‘ž))=(Ξ³ Γ—Ξ³ )βˆ—((π‘ž ,π‘ž ),π‘Žπ‘¦,(π‘ž ,π‘ž)) 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 = ∧ {(Ξ³ Γ—Ξ³ )((π‘ž,π‘ž ),π‘Ž,(π‘ž ,π‘ž ))∨(Ξ³ Γ—Ξ³ )βˆ—((π‘ž ,π‘ž ),𝑦,(π‘ž ,π‘ž ))} (π‘žπ‘Ÿ, π‘žπ‘ ) ∈ 𝑄1Γ— 𝑄2 𝑁1 𝑁2 𝑖 𝑗 π‘Ÿ 𝑠 𝑁1 𝑁2 π‘Ÿ 𝑠 π‘˜ 𝑙 = ∧ {Ξ³ (π‘ž, π‘Ž, π‘ž ) ∨ (Ξ³ Γ—Ξ³ )βˆ—((π‘ž ,π‘ž ),𝑦,(π‘ž ,π‘ž))} π‘žπ‘Ÿ ∈ 𝑄1 𝑁1 𝑖 π‘Ÿ 𝑁1 𝑁2 π‘Ÿ 𝑠 π‘˜ 𝑙 ∧ {Ξ³ (π‘ž, π‘Ž, π‘ž ) ∨ Ξ³ βˆ—(π‘ž ,𝑦,π‘ž )}<[1,1] 𝑖𝑓 π‘ž = π‘ž = { π‘žπ‘Ÿ ∈ 𝑄1 𝑁1 𝑖 π‘Ÿ 𝑁1 π‘Ÿ π‘˜ 𝑗 𝑙 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Ξ³ βˆ—(π‘ž,π‘Žπ‘¦,π‘ž )<[1,1] 𝑖𝑓 π‘ž = π‘ž = { 𝑁1 𝑖 π‘˜ 𝑗 𝑙 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ The result is follows by induction. The Proof is similar if 𝑦 ∈ Ξ£ βˆ—. 2 Theorem 4.2 Let 𝑀 =(𝑄,Ξ£ ,𝑁),𝑖 =1,2 be INA and let Ξ£ ∩ Ξ£ = βˆ…. Then βˆ€ π‘₯ ∈ Ξ£ βˆ—,𝑦 ∈ Ξ£ βˆ—, 𝑖 𝑖 𝑖 𝑖 1 2 1 2 (Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž ,π‘ž ))= Ξ± βˆ—(𝑝,π‘₯,π‘ž) ∧ Ξ± βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 = (Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),𝑦π‘₯,(π‘ž,π‘ž )) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))= Ξ² βˆ—(𝑝,π‘₯,π‘ž) ∨ Ξ² βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 = (Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),𝑦π‘₯,(π‘ž,π‘ž )) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (Ξ³ ×𝛾 )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))= Ξ³ βˆ—(𝑝,π‘₯,π‘ž) ∨ Ξ³ βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 = (Ξ³ Γ—Ξ³ )βˆ—((𝑝,𝑝 ),𝑦π‘₯,(π‘ž,π‘ž )), 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (𝑝,𝑝 ),(π‘ž,π‘ž )βˆˆπ‘„ ×𝑄 . 𝑖 𝑗 𝑖 𝑗 1 2 Proof . 3710 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Let ∈ Ξ£ βˆ—,𝑦 ∈ Ξ£ βˆ—, (𝑝, 𝑝 ),(π‘ž , π‘ž )βˆˆπ‘„ ×𝑄 . If π‘₯ = πœ– =𝑦, then π‘₯𝑦=πœ–. Suppose (𝑝, 𝑝 )= 1 2 𝑖 𝑗 𝑖 𝑗 1 2 𝑖 𝑗 (π‘ž , π‘ž ). Then 𝑝 = π‘ž and 𝑝 =π‘ž . Hence 𝑖 𝑗 𝑖 𝑖 𝑗 𝑗 (Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))=[1,1]=[1,1] ∧[1,1]= Ξ± βˆ—(𝑝,π‘₯,π‘ž) ∧ Ξ± βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 (Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))=[0,0]=[0,0]∨[0,0]= Ξ² βˆ—(𝑝,π‘₯,π‘ž)∨β βˆ—(𝑝,π‘₯,π‘ž) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁1 𝑖 𝑖 (Ξ³ ×𝛾 )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))=[0,0]=[0,0]∨[0,0]= Ξ³ βˆ—(𝑝,π‘₯,π‘ž)∨ Ξ³ βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 If (𝑝,𝑝 ) β‰  (π‘ž,π‘ž ), then either 𝑝 β‰  π‘ž or 𝑝 β‰ π‘ž . 𝑖 𝑗 𝑖 𝑗 𝑖 𝑖 𝑗 𝑗 Thus, Ξ± βˆ—(𝑝,π‘₯,π‘ž) ∧ Ξ± βˆ—(𝑝 ,𝑦,π‘ž )=[0,0], Ξ² βˆ—(𝑝,π‘₯,π‘ž)∨β βˆ—(𝑝,π‘₯,π‘ž)=[1,1], 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 𝑁1 𝑖 𝑖 𝑁1 𝑖 𝑖 Ξ³ βˆ—(𝑝,π‘₯,π‘ž)∨ Ξ³ βˆ—(𝑝 ,𝑦,π‘ž )=[1,1]. 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 Hence (Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))=[0,0] = Ξ± βˆ—(𝑝,π‘₯,π‘ž) ∧ Ξ± βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 (Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))=[1,1]= Ξ² βˆ—(𝑝,π‘₯,π‘ž)∨β βˆ—(𝑝,π‘₯,π‘ž) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁1 𝑖 𝑖 (Ξ³ ×𝛾 )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))=[1,1]= Ξ³ βˆ—(𝑝,π‘₯,π‘ž)∨ Ξ³ βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 If x = πœ– and y β‰  πœ– or x β‰  πœ– and y = πœ–, then the result follows by Theorem 4.1. Suppose x β‰  πœ– and y β‰  πœ–. Now, (Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž ,π‘ž ))= ∨ {(Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),π‘₯,(π‘Ÿ,π‘Ÿ))∧ 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (π‘Ÿπ‘–, π‘Ÿπ‘—) ∈ 𝑄1Γ— 𝑄2 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (Ξ± Γ—Ξ± )βˆ—((π‘Ÿ,π‘Ÿ),𝑦,(π‘ž,π‘ž ))} 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 = ∨ {(Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),π‘₯,(π‘Ÿ,𝑝 ))∧ (Ξ± Γ—Ξ± )βˆ—((π‘Ÿ,𝑝 ),𝑦,(π‘ž ,π‘ž ))} π‘Ÿπ‘– ∈ 𝑄1 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 = Ξ± βˆ—(𝑝,π‘₯,π‘ž ) ∧ Ξ± βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 (Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))= ∧ {(Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),π‘₯,(π‘Ÿ,π‘Ÿ))∨ 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (π‘Ÿπ‘–, π‘Ÿπ‘—) ∈ 𝑄1Γ— 𝑄2 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (Ξ² Γ—Ξ² )βˆ—((π‘Ÿ,π‘Ÿ),𝑦,(π‘ž,π‘ž ))} 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 = ∧ {(Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),π‘₯,(π‘Ÿ,𝑝 ))∨ (Ξ² ×𝛽 )βˆ—((π‘Ÿ,𝑝 ),𝑦,(π‘ž,π‘ž ))} π‘Ÿπ‘– ∈ 𝑄1 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 = 𝛽 βˆ—(𝑝,π‘₯,π‘ž) ∨ 𝛽 βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 (Ξ³ ×𝛾 )βˆ—((𝑝,𝑝 ),π‘₯𝑦,(π‘ž,π‘ž ))= ∧ {(Ξ³ Γ—Ξ³ )βˆ—((𝑝,𝑝 ),π‘₯,(π‘Ÿ,π‘Ÿ))∨ 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (π‘Ÿπ‘–, π‘Ÿπ‘—) ∈ 𝑄1Γ— 𝑄2 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 (Ξ³ Γ—Ξ³ )βˆ—((π‘Ÿ,π‘Ÿ),𝑦,(π‘ž ,π‘ž ))} 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 = ∧ {(Ξ³ Γ—Ξ³ )βˆ—((𝑝,𝑝 ),π‘₯,(π‘Ÿ,𝑝 ))∨ (Ξ³ Γ—Ξ³ )βˆ—((π‘Ÿ,𝑝 ),𝑦,(π‘ž,π‘ž ))} π‘Ÿπ‘– ∈ 𝑄1 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 = Ξ³ βˆ—(𝑝,π‘₯,π‘ž) ∨ Ξ³ βˆ—(𝑝 ,𝑦,π‘ž ) 𝑁1 𝑖 𝑖 𝑁2 𝑗 𝑗 Similarly (Ξ± Γ—Ξ± )βˆ—((𝑝,𝑝 ),𝑦π‘₯,(π‘ž ,π‘ž ))= Ξ± βˆ—(𝑝 ,𝑦,π‘ž ) ∧ Ξ± βˆ—(𝑝,π‘₯,π‘ž ) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁2 𝑗 𝑗 𝑁1 𝑖 𝑖 (Ξ² Γ—Ξ² )βˆ—((𝑝,𝑝 ),𝑦π‘₯,(π‘ž,π‘ž ))= 𝛽 βˆ—(𝑝 ,𝑦,π‘ž ) ∨ 𝛽 βˆ—(𝑝,π‘₯,π‘ž) 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁2 𝑗 𝑗 𝑁1 𝑖 𝑖 (Ξ³ ×𝛾 )βˆ—((𝑝,𝑝 ),𝑦π‘₯,(π‘ž,π‘ž ))= Ξ³ βˆ—(𝑝 ,𝑦,π‘ž ) ∨ Ξ³ βˆ—(𝑝,π‘₯,π‘ž). 𝑁1 𝑁2 𝑖 𝑗 𝑖 𝑗 𝑁2 𝑗 𝑗 𝑁1 𝑖 𝑖 Theorem 4.3 Let 𝑀 =(𝑄,Ξ£ ,𝑁),𝑖 =1,2 be INA and let Ξ£ ∩ Ξ£ = βˆ…. Cartesian product of 𝑀 ×𝑀 is 𝑖 𝑖 𝑖 𝑖 1 2 1 2 cyclic iff 𝑀 and 𝑀 are cyclic. 1 2 Proof. Let 𝑀 and 𝑀 are cyclic. Then 𝑄 =𝑆(π‘ž) and 𝑄 =𝑆(𝑝 ) for some π‘ž βˆˆπ‘„ ,𝑝 ∈ 𝑄 . Let 1 2 1 𝑖 2 𝑗 𝑖 1 𝑗 2 (π‘ž ,𝑝) ∈ 𝑄 Γ— 𝑄 . Then βˆƒ π‘₯ ∈ Ξ£ βˆ— and 𝑦 ∈ Ξ£ βˆ— such that π‘˜ 𝑙 1 2 1 2 Ξ± βˆ—(π‘ž,π‘₯,π‘ž )>[0,0],Ξ² βˆ—(π‘ž ,π‘₯,π‘ž )<[1,1],Ξ³ βˆ—(π‘ž,π‘₯,π‘ž ) < [1, 1] and 𝑁1 𝑖 π‘˜ 𝑁1 𝑖 π‘˜ 𝑁1 𝑖 π‘˜ Ξ± βˆ—(𝑝 ,𝑦,𝑝)>[0,0],Ξ² βˆ—(𝑝 ,𝑦,𝑝)<[1,1],Ξ³ βˆ—(𝑝 ,𝑦,𝑝) < [1, 1]. Thus 𝑁2 𝑗 𝑙 𝑁2 𝑗 𝑙 𝑁2 𝑗 𝑙 (Ξ± Γ—Ξ± )βˆ—((π‘ž,𝑝 ),π‘₯𝑦,(π‘ž ,𝑝))= Ξ± βˆ—(π‘ž,π‘₯,π‘ž ) ∧ Ξ± βˆ—(𝑝 ,𝑦,𝑝)>[0,0] 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 𝑁1 𝑖 π‘˜ 𝑁2 𝑗 𝑙 (Ξ² Γ—Ξ² )βˆ—((π‘ž,𝑝 ),π‘₯𝑦,(π‘ž ,𝑝))= Ξ² βˆ—(π‘ž,π‘₯,π‘ž ) ∨ Ξ² βˆ—(𝑝 ,𝑦,𝑝)<[1,1] 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 𝑁1 𝑖 π‘˜ 𝑁2 𝑗 𝑙 (Ξ³ ×𝛾 )βˆ— ((π‘ž,𝑝 ),π‘₯𝑦,(π‘ž ,𝑝))= Ξ³ βˆ—(π‘ž,π‘₯,π‘ž ) ∨ Ξ³ βˆ—(𝑝 ,𝑦,𝑝)<[1,1]. 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 𝑁1 𝑖 π‘˜ 𝑁2 𝑗 𝑙 Hence (π‘ž ,𝑝) βˆˆπ‘†((π‘ž,𝑝 )). 𝑄 Γ— 𝑄 = 𝑆((π‘ž,𝑝 )). Hence 𝑀 ×𝑀 is cyclic. π‘˜ 𝑙 𝑖 𝑗 1 2 𝑖 𝑗 1 2 Conversely, let 𝑀 ×𝑀 is cyclic. Then 𝑄 Γ— 𝑄 = 𝑆((π‘ž ,𝑝 )) for some (π‘ž,𝑝 )∈ 𝑄 Γ— 𝑄 . 1 2 1 2 𝑖 𝑗 𝑖 𝑗 1 2 Let π‘ž ∈ 𝑄 and 𝑝 ∈ 𝑄 . Then βˆƒ 𝑀 ∈ (Ξ£ βˆͺ Ξ£ )βˆ— such that π‘˜ 1 𝑙 2 1 2 (Ξ± Γ—Ξ± )βˆ—((π‘ž ,𝑝 ),𝑀,(π‘ž ,𝑝))>[0,0], (Ξ² Γ—Ξ² )βˆ—((π‘ž,𝑝 ),𝑀,(π‘ž ,𝑝))<[1,1] and 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 (Ξ³ ×𝛾 )βˆ— ((π‘ž,𝑝 ),𝑀,(π‘ž ,𝑝)) < [1, 1]. Then by the theorem 4.2 βˆƒ 𝑒 ∈Σ βˆ— and 𝑣 ∈ Ξ£ βˆ— such that 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 1 2 3711 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Ξ± βˆ—(π‘ž,𝑒,π‘ž ) ∧ Ξ± βˆ—(𝑝 ,𝑣,𝑝)= (Ξ± Γ—Ξ± )βˆ—((π‘ž,𝑝 ),𝑀,(π‘ž ,𝑝)) >[0,0] 𝑁1 𝑖 π‘˜ 𝑁2 𝑗 𝑙 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 Ξ² βˆ—(π‘ž,𝑒,π‘ž ) ∨ Ξ² βˆ—(𝑝 ,𝑣,𝑝)= (Ξ² Γ—Ξ² )βˆ—((π‘ž,𝑝 ),𝑀,(π‘ž ,𝑝))<[1,1] 𝑁1 𝑖 π‘˜ 𝑁2 𝑗 𝑙 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 Ξ³ βˆ—(π‘ž,𝑒,π‘ž ) ∨ Ξ³ βˆ—(𝑝 ,𝑣,𝑝)= (Ξ³ ×𝛾 )βˆ— ((π‘ž ,𝑝 ),𝑀,(π‘ž ,𝑝)) < [1, 1]. 𝑁1 𝑖 π‘˜ 𝑁2 𝑗 𝑙 𝑁1 𝑁2 𝑖 𝑗 π‘˜ 𝑙 Hence βˆƒ 𝑒 ∈Σ βˆ— and 𝑣 ∈ Ξ£ βˆ— such that Ξ± βˆ—(π‘ž,𝑒,π‘ž ) >[0,0], Ξ² βˆ—(π‘ž,𝑒,π‘ž )<[1,1], Ξ³ βˆ—(π‘ž,𝑒,π‘ž ) <[1,1] 1 2 𝑁1 𝑖 π‘˜ 𝑁1 𝑖 π‘˜ 𝑁1 𝑖 π‘˜ and Ξ± βˆ—(𝑝 ,𝑣,𝑝)>[0,0], Ξ² βˆ—(𝑝 ,𝑣,𝑝)<[1,1],Ξ³ βˆ—(𝑝 ,𝑣,𝑝)<[1,1]. Thus π‘ž βˆˆπ‘†(π‘ž ) and 𝑝 βˆˆπ‘†(𝑝 ). 𝑁2 𝑗 𝑙 𝑁2 𝑗 𝑙 𝑁2 𝑗 𝑙 π‘˜ 𝑖 𝑙 𝑗 Hence 𝑄 βˆˆπ‘†(π‘ž) and 𝑄 βˆˆπ‘†(𝑝 ). Therefore 𝑀 ×𝑀 is cyclic. 1 𝑖 2 𝑗 1 2 5 Conclusion The purpose of this paper is to study the Cartesian product of INA. We prove that Cartesian product of cyclic of interval neutrosophic automata is cyclic. References [1] V. Karthikeyan, N. Mohanarao, and S. Sivamani, Generalized products of directable fuzzy Automata, Material Today: Proceedings, 37(2), 2021, 35313533. [2] V. Karthikeyan, and R. Karuppaiya, Retrievebility in Interval Neutrosophic Automata, Advance in Mathematics: Scientific Journal, 9(4), 2020, 1637-1644. [3] V. Karthikeyan, and R. Karuppaiya, Subsystems of Interval Neutrosophic Automata, Advance in Mathematics: Scientific Journal, 9(4), 2020, 1653-1659. [4] V. Karthikeyan, and R. Karuppaiya, Strong subsystems of Interval Neutrosophic Automata, Advance in Mathematics: Scientific Journal, 9(4), 2020, 1645-1651. [5] T. Mahmood, and Q. Khan, Interval neutrosophic finite switchboard state machine, Afr. Mat. 20(2), 2016, 191-210. [6] F. Smarandache, A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, set and Logic, Rehoboth: American Research Press, 1999. [7] H. Wang, F. Smarandache, Y.Q. Zhang, and R. Sunderraman, Interval Neutrosophic Sets and Logic, Theory and Applications in Computing, 5, 2005, Hexis, Phoenix, AZ. [8] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, Proc. 1st Int. Joint Conf. North American Fuzzy Information Processing Society Biannual Conf., San Antonio, TX, USA, 1994, 305–309. [9] W. R. Zhang, YinYang bipolar fuzzy sets, Proc. IEEE World Congr. Computational Intelligence, Anchorage, Alaska, 1998, 835–840. [10] W. R. Zhang, NPN Fuzzy Sets and NPN Qualitative-Algebra: A Computational Framework for Bipolar Cognitive Modeling and Multiagent Decision Analysis, IEEE Trans. on Sys., Man, and Cybern. 26(8), 1996, 561-575. [11] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3), 1965, 338-353. 3712

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.