CARBON NANOTUBE ALIGNMENT, PH SENSOR APPLICATION AND NANOCOMPOSITE MICROMACHINING BY PENGFEI LI A thesis submitted in partial fulfillment of the requirements for the degree of (cid:3) MASTER OF SCIENCE IN MECHANICAL ENGINEERING WASHINGTON STATE UNIVERSITY School of Engineering and Computer Science MAY 2011 To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of PENGFEI LI find it satisfactory and recommend that it be accepted. ___________________________________ Wei Xue, Ph.D., Chair ___________________________________ Stephen A. Solovitz, Ph.D. ___________________________________ Linda (Xiaolin) Chen, Ph.D. ii ACKNOWLEDGMENT I would like to express my appreciation to my advisor, Dr. Wei Xue, for allowing me the opportunity to work in his research group. This work would not have been completed without his insightful guidance and patience for which I am deeply indebted. I would like to thank Dr. Stephen A. Solovitz and Dr. Linda (Xiaolin) Chen for serving on my thesis committee. I would also like to acknowledge Dr. Dave (Dae-Wook) Kim and Dr. Jie Xu for their unselfish and unfailing support for this work. I would like to thank Mr. Chad Swanson and Mr. Troy Dunmire for their precious insight and valuable assistant. Without their help, I would not continue my research smoothly. In addition, I would like to express my gratitude to all of my fellow students for their support and friendship. In particular, the encouragement and insight I received from David W. Binion, Wei Cui, Kan Kan Yeung, Berk Gonenc, Jason L. Juhala, and Caleb M. Martin, is greatly appreciated. I feel honored to have shared this experience with each of them. Lastly, my warmest thanks belong to my friends, family and the one beyond everyone of us, our omnipresent Lord, without you, I wouldn’t know where I am or where I should go. Thank you so much Lord, for leading me through the misery and offering me the strength. May your name be honored, and glorified. iii CARBON NANOTUBE ALIGNMENT, PH SENSOR APPLICATION AND NANOCOMPOSITE MICROMACHINING ABSTRACT by Pengfei Li, M.S. Washington State University May 2011 Chair: Wei Xue Dielectrophoresis has been used in the controlled deposition of carbon nanotubes with the focus on the alignment of nanotube films and their applications in the last decade. In this work we extend the research from the selective deposition of carbon nanotube films to the alignment of nanotube bundles and individual nanotubes. Electrodes with ―teeth‖-like patterns are fabricated to study the influence of the electrode width on the deposition and alignment of carbon nanotubes. Due to the fact that only photolithography-based techniques are used in the process, the fabrication cost is low and the devices are inexpensive. The alignment of carbon nanotube films, bundles, and individual nanotubes is achieved under the optimized experimental conditions. The microscopy inspection of the samples demonstrates that the alignment of nanotube bundles and individual nanotubes can be achieved using narrow electrodes and low-concentration nanotube solutions. With the assistance of dielectrophoresis, we fabricate and characterize pH sensors using aligned single-walled carbon nanotubes (SWNTs). Electrodes with ―teeth‖-like patterns are used to generate concentrated electric fields and strong dielectrophoretic forces for iv the SWNTs to deposit and align in desired locations. The devices are used as pH sensors with the electrodes as the conducting pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH value in the range of 5-9. The characterization of multiple sensors proves their pH sensitivity is highly repeatable. We investigate the machinability of polymethylmethacrylate (PMMA)/multi-walled carbon nanotube (MWNT) nanocomposites in focused ion beam (FIB) micromachining. PMMA/MWNT nanocomposites are fabricated with a solution casting method. Microscale pockets are created on the PMMA/MWNT nanocomposites to study the material removal mechanism using FIB. It is observed that the material removal rate increases with increasing input current and decreasing overlap%. Soft lithography is used to translate the ion-milled pockets from nanocomposites into microscale posts on polydimethylsiloxane (PDMS). A scanning electron microscope (SEM) is used to investigate samples. Our results demonstrate an effective method for producing microscale patterns on nanotube-based nanocomposites. v TABLE OF CONTENTS ACKNOWLEDGMENT.............................................................................................. iii ABSTRACT ................................................................................................................. iv LIST OF TABLES ........................................................................................................ x LIST OF FIGURES ..................................................................................................... xi CHAPTER 1 INTRODUCTION ............................................................................... 1 1.1 Motivation ..................................................................................................... 1 1.2 Carbon nanotubes.......................................................................................... 2 1.2.1 Overview ............................................................................................... 2 1.2.2 Carbon nanotube pH sensors ................................................................. 7 1.3 Carbon nanotube alignment .......................................................................... 9 1.3.1 Alignment methods................................................................................ 9 1.3.2 Dielectrophoretic method .................................................................... 10 1.4 Objectives ................................................................................................... 12 CHAPTER 2 PATTERN DESIGN AND ELECTRODE FABRICATION ............ 16 2.1 Introduction ................................................................................................. 16 2.2 Dielectrophoresis ........................................................................................ 17 2.3 Photomask design ....................................................................................... 20 2.4 Photolithography ......................................................................................... 23 2.5 Wet etching ................................................................................................. 26 vi 2.6 Conclusion .................................................................................................. 27 CHAPTER 3 SELECTIVE DEPOSITION AND ALIGNMENT OF SINGLE- WALLED CARBON NANOTUBES ............................................................................... 29 3.1 Introduction ................................................................................................. 29 3.2 Material preparation .................................................................................... 31 3.3 Electrodes fabrication ................................................................................. 32 3.4 Results and discussion ................................................................................ 36 3.4.1 Deposition and alignment of the SWNTs ............................................ 36 3.4.2 Electrical characteristics of the aligned SWNTs ................................. 40 3.5 Conclusion .................................................................................................. 44 CHAPTER 4 SELECTIVE DEPOSITION AND ALIGNMENT OF MULTI- WALLED CARBON NANOTUBES ............................................................................... 45 4.1 Introduction ................................................................................................. 45 4.2 Experiments ................................................................................................ 45 4.3 Results and discussion ................................................................................ 46 4.3.1 Deposition and alignment of the MWNTs .......................................... 46 4.3.2 Electrical characteristics of the aligned MWNTs ................................ 48 4.3.3 CNT deposition without an electric field ............................................ 52 4.4 Conclusion .................................................................................................. 53 vii CHAPTER 5 DIELECTROPHORESIS ALIGNED SINGLE-WALLED CARBON NANOTUBES AS PH SENSORS.................................................................................... 54 5.1 Introduction ................................................................................................. 54 5.2 Materials and experiments .......................................................................... 56 5.3 Results and discussion ................................................................................ 58 5.3.1 Dielectrophoresis ................................................................................. 58 5.3.2 pH sensitivity ....................................................................................... 60 5.3.3 Sensing repeatability............................................................................ 64 5.3.4 Response time ...................................................................................... 66 5.3.5 Long-term stability .............................................................................. 68 5.4 Conclusion .................................................................................................. 69 CHAPTER 6 MULTI-WALLED CARBON NANOTUBE NANOCOMPOSITES MICROMACHINING ...................................................................................................... 71 6.1 Introduction ................................................................................................. 71 6.2 Experimental methods ................................................................................ 73 6.2.1 Workpiece material .............................................................................. 73 6.2.2 FIB experimental design and procedures ............................................ 74 6.2.3 Soft lithography materials and procedures .......................................... 78 6.3 Results and discussion ................................................................................ 80 6.3.1 Machined features ................................................................................ 80 viii 6.3.2 The machined feature geometries ........................................................ 84 6.3.3 Material removal rate (MRR) .............................................................. 87 6.4 Conclusion .................................................................................................. 89 CHAPTER 7 CONCLUSION AND FUTURE WORK .......................................... 91 7.1 Conclusion .................................................................................................. 91 7.2 Future work ................................................................................................. 93 7.2.1 A lab-on-a-chip device using a carbon nanotube sensor array ............ 93 7.2.2 Large-scale deposition of graphene with dielectrophoresis ................ 94 7.2.3 Dielectrophoretic deposition and ion sensitivity of graphene ............. 95 BIBLIOGRAPHY ....................................................................................................... 97 ix LIST OF TABLES Table 1-1: Mechanical properties of CNTs and other common materials. ......................... 4 Table 4-1: The calculated resistances of the deposited SWNTs and MWNTs from the electrical characterization ..................................................................................... 51 Table 5-1: Sensor response time under different pH values. ............................................ 68 Table 6-1: Experimental design summary. ....................................................................... 78 Table 6-2: Average machining time, machined depth, and measured aspect ratio. .......... 83 x
Description: