ebook img

Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer. PDF

2.1 MB·English
by  LiangYeru
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer.

Carbon Microfibers with Hierarchical Porous Structure from Electrospun SUBJECTAREAS: Fiber-Like Natural Biopolymer SYNTHESISAND PROCESSING POROUSMATERIALS YeruLiang,DingcaiWu&RuowenFu SUSTAINABILITY BIOINSPIREDMATERIALS MaterialsScienceInstitute,PCFMLabandDSAPMLab,SchoolofChemistryandChemicalEngineering,SunYat-senUniversity, Guangzhou510275,P.R.China. Received 30October2012 Electrospinningoffersapowerfulrouteforbuildingone-dimensional(1D)micro/nanostructures,buta commonrequirementfortoxicorcorrosiveorganicsolventsduringthepreparationofprecursorsolution Accepted haslimitedtheirlargescalesynthesisandbroadapplications.Herewereportafacileandlow-costwayto 19December2012 prepare1Dporouscarbonmicrofibersbyusinganelectrospunfiber-likenaturalproduct,i.e.,silkcocoon,as precursor.Wesurprisinglyfoundthatbyutilizingasimplecarbonizationtreatment,thecocoonmicrofiber Published canbedirectlytransformedinto1Dcarbonmicrofiberofca.6 mmdiameterwithauniquethree-dimensional 24January2013 porousnetworkstructurecomposedofinterconnectedcarbonnanoparticlesof10,40nmdiameter.We furthershowedthattheas-preparedcarbonproductpresentssuperiorelectrochemicalperformanceas binder-freeelectrodesofsupercapacitorsandgoodadsorptionpropertytowardorganicvapor. Correspondenceand requestsformaterials Micro/nanomaterialshaveattractedgreatinterestduetopotentialapplicationsinadsorption,separation, shouldbeaddressedto catalysis, energy, sensors, nanoelectronic devices, biotechnology and other areas1–8. Therefore, it is D.W.(wudc@mail. importanttodevelopreliablemethodsforfabricationofmicro/nanomaterials,withdesignedarchitec- sysu.edu.cn) tureaswellascustomizedframeworkstructure.Developmentofone-dimensional(1D)micro/nanomaterialshas beenoneofthemostactiveareasinthemicro/nanomaterialsscienceowingtotheiruniquestructurecharacter- isticsincludinghighlength/diameterratio,largeporevolumeandhighsurfacearea9–17.Amongsuch1Dmicro/ nanomaterials,porouscarbonwith1Dmicro/nanostructurehasattractedsignificantattention,notonlyforits fundamentalscientificinterest,butalsoformanymodern-daytechnologicalapplications9,18–23.Thiswasmoti- vatedbyitsuniquephysicochemicalproperties,i.e.,goodelectricalconductivity,highsurfacearea,andexcellent chemicalstability.Alargenumberofadvancedtechniqueshavebeendevelopedtofabricate1Dporouscarbona- ceousnanostructurewithwell-controlledmorphologyandchemicalcomposition.Generally,1Dmicro/nano- materialscanbepreparedbymanymethodsincludingnanocasting,self-assembly,solvothermalsynthesisand chemical vapor deposition12,15,19,24–26. However, each of these methods has limitations, such as rigid reaction conditions,highcost,andcomplicatedmultiplesyntheticsteps. Recently,electrospinning hasbeendemonstrated to beapowerfultechnique tofabricate 1Dmicro/nanos- tructure.Thismethodfacilitatescontrolovercomposition andtopologyofproducts,enablingenhancedper- formanceinnumerousapplications18,27–29.Despiterapidadvancesofelectrospinningmethodologiesandtheir synthesisadvantages(easiness,versatility,rapidity,etc.),currentelectrospinningproceduresofteninvolvetoxic orcorrosiveorganicsolventsduringthepreparationofsolutionofstartingmaterials,whichisnotinaccordance withtheurgentrequirementsofenergy-savingandenvironmentalprotection.Hence,establishinganefficient andfacilesynthesisprotocolusingtheprecursorsobtaineddirectlyfromnatureforpreparationof1Dnanopor- ouscarbonswithwell-tailoredarchitectureswouldbeofgreatbenefittotheirlargescaleproductionandbroad applications. Inthepresentwork,wereportafacileandcost-effectivewaytoprepare1Dporouscarbonmicrofibersbyusing an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. This biopolymer is obtained by a silkwormthroughaninartificialelectrospinning-like process,inwhichthesilkwormspinssilkmicrofibersto form a cocoon around itself. We surprisingly found that by utilizing a simple carbonization treatment, the electrospunfiber-likenaturalcocoonmicrofiberscanbedirectlytransformedinto1Dcarbonmicrofiberswith anaveragediameterof6 mm(Figure1).The1Dcarbonmicrofibersconsistofnumerouscarbonnanoparticle unitsof10,40 nminsize,whichareinterconnectedwitheachothertoformauniquethree-dimensional(3D) porous network structure. These carbon nanoparticle units are microporous, and their compact and loose SCIENTIFICREPORTS |3:1119|DOI:10.1038/srep01119 1 www.nature.com/scientificreports Figure1|Schematicillustrationoftheapproachtofabricatehierarchicalporouscarbonmicrofibersfromsilkcocoon. aggregationleadstomesoporesandmacropores,respectively.Inthe Furthermore, interlacement of these 1D carbon microfibers them- past,fabricationofporousnetworkstructuresusuallyneededfussy selves in the carbonized cocoon forms a great number of micron- andmultiplesyntheticstepsincludingreaction-inducedphasesepa- scaledlargemacropores(Figure2A). rationandsupercriticaldrying14.Therefore,directcarbonizationof N adsorptionmethodisusedtofurtherquantitativelyelucidate 2 such a natural biopolymer material without any additional harsh the hierarchical porous structure of the as-obtained HPCMF. As proceduresmakesthepresentapproachmoreattractiveinconstruc- shown in N adsorption-desorption isotherm of Figure 3, the 2 tion of micro/nanostructures. Furthermore, interlacement of these HPCMF has a high adsorption uptake at low relative pressure (P/ 1Dcarbonmicrofibersthemselvesinthecarbonizedcocoonleadsto P ),indicativeoftheexistenceofplentifulmicropores.Inaddition, 0 formationoflargemacropores. theadsorptionamountincreasesgraduallyandstilldoesnotreacha Duetogoodporeinterconnectivity,highsurfacearea,largepore plateau neartheP/P of1.0, demonstrating thepresence ofmeso- 0 volumeaswellas highnitrogen content, theas-prepared 1Dhier- poresandmacropores,whichisingoodagreementwiththeobser- archical porous carbon microfibers (HPCMF) show superior vationfromSEMandTEMimages.Theporesizedistribution(PSD) electrochemicalperformanceasbinder-freeelectrodesofsupercapa- curveobtainedusingdensityfunctionaltheory(DFT)isdisplayedin citorsandgoodadsorptionpropertytowardorganicvapor.Wehope Figure3.Threeregionscanbeconfirmed:(1)micropores(,2 nm) thatourpresentmethodwillopenupnewavenuestoadvancedand with a PSD peak at 1.3 nm; (2) mesopores (2,50 nm) with a sustainablematerials,consideringthattheemploymentoflow-cost andenvironmentfriendlysilkcocoonascarbonsourceavoidsmany chemicalreactionsandphysicalprocessesinnormalproceduresfor fabricationof1Dporouscarbonfibers. Results SEMimageinFigureS1Ademonstratesthatthesilkcocooniscom- posed of interlaced 1D silk microfibers with about 15 mm in dia- meter. The silk microfibers are essentially nonporous, judging fromtheirsmoothframeworksurface(FiguresS1BandS1C)aswell asverylowBrunauer–Emmett–Teller(BET)surfaceareaof7 m2/g (TableS1).Afteracarbonizationtreatmentat900uC,theas-prepared carbon microfibers in the carbonized cocoon preserve the well- definedfibrousmorphology(Figure2A).Thediameterofthesecar- bonmicrofibersismeasuredtobeabout6 mm,whichissmallerthan that of silk microfibers, indicating that the fibrous frameworks undergo an obvious shrinkage during carbonization because of burn-off of non-carbon elements and carbon-containing com- pounds. Surprisingly, it is obviously found from magnified SEM imageofFigure2Bthatthefibrousframeworksareuniformlyfrac- tured on the nanometer scale to form numerous interconnected carbonnanoparticlesof10,40 nmdiameterduringthehightem- peraturepyrolysistreatment,althoughretainingthefibrousmorpho- logy (Figures 2A and 2C). As a result, the carbon microfibers obtainedherehaveauniquehierarchicalporousnetworkstructure: carbonnanoparticleunitscontainnumerousmicropores(seeTEM imageinFigure2D),andtheircompactandlooseaggregationleads Figure2|(A,B)SEMand(C,D)TEMimagesofHPCMF. (B)and(D) to mesopores and macropores, respectively (Figure 2B). correspondtotheareaindicatedbyarectanglein(A)and(C),respectively. SCIENTIFICREPORTS |3:1119|DOI:10.1038/srep01119 2 www.nature.com/scientificreports Figure3|N adsorption-desorptionisothermofHPCMF. TheinsetshowsitsDFTporesizedistribution. 2 maximum PSD peak at 9 nm; and (3) macropores (50,400 nm) deconvoluted into four functional components30, i.e., pyridinic N withamaximumPSDpeakat68 nm.Itshouldbenotedthatlarge (N-6),quaternaryN(N-Q),pyrrolicN(N-5),andpyridine-N-oxide macropores,i.e.,thespacesbetweeninterlaced1Dcarbonfibersand (N-X), whose percentage is 23.9 at.%, 24.6 at.%, 47.7 at.% and between very loosely aggregated carbon nanoparticles may be too 3.8 at.%,respectively(TableS2). largeandtooopentoleadtocapillarycondensationandthustobe Besidestheaboveuniquehierarchicalstructure,anotherimport- reflected in pore size distribution. As shown in Table S1, a BET antcharacteristicofHPCMFisitsstable,regulableandversatilebulk calculation gives the BET surface area for the HPCMF equal to form.Figures5Aand5Bdisplay thephotographsofasilkcocoon 796 m2/g; and the t-plot method gives the surface areas of micro- before and after carbonization. It can be found that the elliptical pores and external large-sized pores equal to 569 and 227 m2/g, shape of cocoon is well retained after pyrolysis, although its color respectively. Moreover, the total pore volume is calculated to be turnsfromwhitetoblackbecauseofcarbonization.Thecarbonized 0.43 cm3/gaccordingtotheamountadsorbedatarelativepressure cocoon is easily tailored into various forms, e.g., rectangle felt P/P of0.99. (FigureS4). 0 TheHPCMFfromsilkcocoonisfoundtohavenitrogen-contain- Inthisstudy,totestitsfeasibilityforpracticalapplication,thesilk ing functional groups by means of thecombustion analysis, X-ray cocoon-basedHPCMFintheformofrectanglefeltisdirectlyusedas photoelectronspectroscopy(XPS)andelectronenergylossspectro- a binder-free electrode for supercapacitor without any fussy elec- scopy(EELS).Thenitrogencontent,asmeasuredbythecombustion trodepreparationprocesseswhicharenecessaryfornormalproduc- analysis,isabout6.5 wt.%(TableS1),and4.5 at.%,accordingtoXPS tionofcarbonelectrodes.Thesupercapacitordeviceisassembledby (Table S2). The nitrogen element is distributed homogeneously attachingtwopiecesofHPCMFfeltsthatareimmersedinasmallseal withinthecarbonframeworkofHPCMF,accordingtoEELSmap- bag containing 6 mol/L KOH aqueous electrolytes, as shown in ping images of carbon and nitrogen elements (Figure 4). The Figure5C.ItisshownthattheHPCMFhasgoodcapacitiveperform- nitrogen-containingfunctionalgroupsaredeterminedbythedecon- ance(Figures5DandS5).Forexample,atthesweeprateof2 mV/s, volution of high resolution N 1s XPS spectrum (Figure S2). As HPCMF possesses a mass specific capacitance as high as 215 F/g, schematically illustrated in Figure S3, the N 1s spectrum can be whichtranslatesintoacapacitancepersurfaceareaupto27 mF/cm2, Figure4|EELSmappingimagesofHPCMF:(A)bright-fieldimage,(B)carbonand(C)nitrogen. SCIENTIFICREPORTS |3:1119|DOI:10.1038/srep01119 3 www.nature.com/scientificreports Figure5|Photographsofasilkcocoonbefore(A)andafter(B)carbonization,(C)theas-fabricatedbinder-freeHPCMFbasedsupercapacitor, and(D)specificcapacitancesatvarioussweepratesforbinder-freeHPCMFbasedelectrodes. a value higher than those of most porous carbons31. With further diameterandahighsurfaceareaofca.800 m2/g.Itisworthmen- increasing the sweep rate to 50 mV/s, a high mass specific capa- tioningthattheemploymentofnaturalsilkcocoonascarbonsource citance (154 F/g)isstillobserved, indicativeofexcellentratecap- helps to avoid many chemical reactions and physical processes in abilityinHPCMFelectrodes.Thegoodcapacitiveperformanceof normal synthetic procedures of 1D porous carbon fibers, such as HPCMFmayarisefromitsuniquehierarchicalporestructurethat preparationofcarbonsourcesandtemplates,utilizationofabundant is beneficial to ionic transportation and storage. The interpene- hazardousorganicsolutionduringelectrospinning process,and/or tratedfibernetworktexturecombinedwiththehierarchicalnano- subsequenttemplateremoval.Furthermore,thecombinationof1D porous structure in the carbon fiber framework ensures quick fibrousmorphology,hierarchicalporousnetworkstructureandgood penetration of electrolytes, thus reducing the resistance for the poreinterconnectivityfacilitateseasyaccessofreactionspeciestothe ions32–34. Moreover, it is believed that the plentiful nitrogen func- innersurfaceofcarbonfiber,andthesesmall-sizednanoporeseffec- tional groups in the carbon framework can not only improve the tively increase the surface area available for active site dispersion, wettability of the as-prepared material in the electrolyte but also whichisveryhelpfulinmanyapplications. provide great pseudocapacitance35,36. Ontheotherhand,thisnaturalbiopolymersilkcocooniscom- AnotherpotentialuseoftheHPCMFisexploredforadsorption posedoffibroin(72,81%),sericin(19,28%)andverylittleother towardorganicvapor.Asshowninadsorptionisothermofmethanol materialssuchasfats,wax,sandpigmentsplusminerals.Asshownin vaporforHPCMFinFigureS6,HPCMFexhibitsanuptakeinthe Table S1, silk cocoon contains considerable nitrogen atoms rangeoflowrelativepressures,becauseofthepresenceofnumerous (16.2 wt.%), becauseitschemicalstructureismainlycharacterized micropores. With increasing the relative pressure, the adsorption bythepresenceof18typesofaminoacidssuchasglycine,alanine capacity continuously increases because of condensation of meth- andserine.Therefore,itisnotsurprisingthattheHPCMFmaterials anol in mesopores and macropores. Therefore, HPCMF gives the containacertainamountofnitrogen-containingfunctionalgroups. adsorptioncapacityofmethanolashighas243 mg/g. It is expected that the introduction of these nitrogen-containing functional groups can not only boost the material performance, Discussion e.g., in the case of energy storage or catalysis, but also completely Wehavesuccessfullyfabricatedaclassofnovel1DHPCMFusinga changetheelectronicpropertiesthatareattractiveforawidevariety simpleone-stepcarbonizationofelectrospunfiber-likenaturalbio- ofapplications37. polymer, i.e., silk cocoon. As one of the most abundant types of Inaddition,thetailorablebulkformofHPCMFisalsoavaluable naturalbiomass,silkcocooncanbeproducedviaaninartificialelec- characteristic,whichisderivedfromgoodshapestabilityofsilkcocoon trospinning-like process. After carbonization, the silk microfibers duringcarbonization.Thisfeatureprovidesanopportunitytocontrol can be directly transformed into 1D carbon microfibers of ca. thebulkformtocatertotheneedofanytargetedapplication. 6 mm diameter with a unique hierarchical porous structure com- Duetotheseexcellentphysicalandchemicaladvantagesdiscussed posed of interconnected carbon nanoparticles of 10,40 nm above, the HPCMF materials have been proven to present great SCIENTIFICREPORTS |3:1119|DOI:10.1038/srep01119 4 www.nature.com/scientificreports potentialforuseasbinder-freeelectrodesforsupercapacitordevices 19.Li,W.etal.ASelf-TemplateStrategyfortheSynthesisofMesoporousCarbon (e.g.,acapacitanceashighas215 F/g)andasanadsorbenttoward NanofibersasAdvancedSupercapacitorElectrodes.Adv.EnergyMater.1, 382–386(2011). organic vapors like methanol (e.g., an adsorption capacity up to 20.Hunt,M.A.,Saito,T.,Brown,R.H.,Kumbhar,A.S.&Naskar,A.K.Patterned 243 mg/g).Wehopethatourfindingwillprovideanewbenchmark functionalcarbonfibersfrompolyethylene.Adv.Mater.24,2386–2389(2012). for fabricating sustainable materials with advanced micro/nanos- 21.Su,D.S.etal.Hierarchicallystructuredcarbon:Synthesisofcarbonnanofibers tructure, given that the huge amount of silk cocoon is produced nestedinsideorimmobilizedontomodifiedactivatedcarbon.Angew.Chem.Int. Ed.44,5488–5492(2005). anditsrelatedcarbonmaterialcanbepreparedfacilelyatlowcost. 22.Yang,Q.H.,Xu,W.H.,Tomita,A.&Kyotani,T.Thetemplatesynthesisofdouble coaxialcarbonnanotubeswithnitrogen-dopedandboron-dopedmultiwalls. J.Am.Chem.Soc.127,8956–8957(2005). Methods 23.Lv,R.T.etal.Open-Ended,N-DopedCarbonNanotube-GrapheneHybrid Bombyxmorisilkcocoonwasdirectlyusedasthestartingmaterialwithoutanypre- NanostructuresasHigh-PerformanceCatalystSupport.Adv.Funct.Mater.21, treatment.Thesilkcocoonwassubjectedtocarbonizationbyheatingat900uCfor3h 999–1006(2011). underN2flow.Theheatingratewas2uC/min. 24.Su,D.S.etal.Mount-Etna-Lava-SupportedNanocarbonsforOxidative ThemicrostructureofthesampleswasinvestigatedbyaJSM-6330Fscanning DehydrogenationReactions.Adv.Mater.20,3597–3600(2008). electronmicroscope(SEM)andJEM-2010HRtransmissionelectronmicroscope 25.Chen,J.T.,Chen,W.L.&Fan,P.W.HierarchicalStructuresbyWettingPorous (TEM).EELSmappingimageswereobtainedbyaFEIF30TEM.Elementalanalysis TemplateswithElectrospunPolymerFibers.ACSMacroLett.1,41–46(2011). wasperformedonanElementarAnalysensystemeGmbHVarioELanalyzer.XPS 26.Wang,X.&Li,Y.Selected-ControlHydrothermalSynthesisofa-andb-MnO2 measurementwasaccomplishedusinganESCALAB250instrument.N2adsorption SingleCrystalNanowires.J.Am.Chem.Soc.124,2880–2881(2002). measurementwascarriedoutusingaMicromeriticsASAP2010analyzerat77K.The 27.Cavaliere,S.,Subianto,S.,Savych,I.,Jones,D.J.&Roziere,J.Electrospinning: BETsurfacearea(SBET)wasanalyzedbyBrunauer–Emmett–Teller(BET)theory. designedarchitecturesforenergyconversionandstoragedevices.EnergyEnviron. Thetotalporevolume(Vt)wasestimatedfromtheamountadsorbedatarelative Sci.4,4761–4785(2011). pressureP/P0of0.99.Theexternalsurfacearea(Sext)andmicroporesurfacearea 28.Chen,Y.M.,Lu,Z.G.,Zhou,L.M.,Mai,Y.W.&Huang,H.T.Triple-coaxial (Smic)wasdeterminedbyt-plottheory.Theporesizedistributionwasanalyzedby electrospunamorphouscarbonnanotubeswithhollowgraphiticcarbon originaldensityfunctionaltheory(DFT)combinedwithnon-negativeregularization nanospheresforhigh-performanceLiionbatteries.EnergyEnviron.Sci.5, andmediumsmoothing. 7898–7902(2012). Thebinder-freeelectrodesweredirectlyobtainedfromthecarbonizedsilkcocoon 29.Tsaroom,A.,Matyjaszewski,K.&Silverstein,M.S.Spontaneouscore-sheath whichwascutintotheformofrectanglefeltbeforecarbonization.Thesimple formationinelectrospunnanofibers.Polymer52,2869–2876(2011). supercapacitordevicewasfabricatedbyattachingtwopiecesofHPCMFfeltelec- 30.Hulicova-Jurcakova,D.,Seredych,M.,Lu,G.Q.&Bandosz,T.J.CombinedEffect trodeswiththesamemassthatwereimmersedinasmallsealbagcontaining6mol/L ofNitrogen-andOxygen-ContainingFunctionalGroupsofMicroporous KOHaqueoussolution.Apieceofpolypropylene-basednon-wovenfabricasa ActivatedCarbononitsElectrochemicalPerformanceinSupercapacitors.Adv. separatorwasplacedbetweentheHPCMFfeltelectrodesandtwonickelfoamswere Funct.Mater.19,438–447(2009). insertedontotheedgeoftheelectrodesinordertoconnecttheelectrochemicaltest 31.Huang,C.H.etal.Three-dimensionalhierarchicallyorderedporouscarbonswith instruments.TheelectrochemicalmeasurementswerecarriedoutusinganIM6e partiallygraphiticnanostructuresforelectrochemicalcapacitiveenergystorage. electrochemicalworkstation.Thespecificcapacitance(Cm)wascalculatedaccording Chemsuschem5,563–571(2012). totheequationCm~v2:mI ,whereI,vandmrepresentthecurrentatthemiddle 32.Epel-rKfoardmy,anMc.eFa.n,dStfrloexnigb,leVg.,raDpuhbeinne,-Sb.a&sedKealneecrt,roRc.hBe.mLiacsaelrcascpraicbiitnogrso.fSchiiegnhc-e335, voltageofthepotentialwindow,thesweeprateandthemassofsingleHPCMFfelt 1326–1330(2012). electrode,respectively.Theadsorptionmeasurementtowardmethanolvaporwas 33.Liang,Y.,Wu,D.&Fu,R.Preparationandelectrochemicalperformanceofnovel carriedoutat25uCbyusinganIG-3intelligentgravimetricanalyzer(Hiden orderedmesoporouscarbonwithaninterconnectedchannelstructure.Langmuir Isochema,Ltd.,Warrington,UK). 25,7783–7785(2009). 34.Wang,D.W.,Li,F.,Liu,M.,Lu,G.Q.&Cheng,H.M.3Daperiodichierarchical porousgraphiticcarbonmaterialforhigh-rateelectrochemicalcapacitiveenergy 1. Seo,M.&Hillmyer,M.A.ReticulatedNanoporousPolymersbyControlled storage.Angew.Chem.Int.Ed.47,373–376(2008). Polymerization-InducedMicrophaseSeparation.Science336,1422–1425(2012). 35.Yang,X.,Wu,D.,Chen,X.&Fu,R.Nitrogen-EnrichedNanocarbonswitha3-D 2. Joo,S.H.etal.Orderednanoporousarraysofcarbonsupportinghighdispersions ContinuousMesoporeStructurefromPolyacrylonitrileforSupercapacitor ofplatinumnanoparticles.Nature412,169–172(2001). Application.J.Phys.Chem.C114,8581–8586(2010). 3. Liu,C.,Li,F.,Ma,L.P.&Cheng,H.M.AdvancedMaterialsforEnergyStorage. 36.Simon,P.&Gogotsi,Y.Materialsforelectrochemicalcapacitors.Nat.Mater.7, Adv.Mater.22,E28–E62(2010). 845–854(2008). 4. Brezesinski,T.,Wang,J.,Tolbert,S.H.&Dunn,B.Orderedmesoporousalpha- 37.Mane,G.P.etal.PreparationofHighlyOrderedNitrogen-Containing MoO3withiso-orientednanocrystallinewallsforthin-filmpseudocapacitors. MesoporousCarbonfromaGelatinBiomoleculeanditsExcellentSensingof Nat.Mater.9,146–151(2010). AceticAcid.Adv.Funct.Mater.22,3596–3604(2012). 5. Tang,C.etal.Nanoporouscarbonfilmsfrom"hairy"polyacrylonitrile-grafted colloidalsilicananoparticles.Adv.Mater.20,1516–1522(2008). 6. Choi,M.&Ryoo,R.Orderednanoporouspolymer-carboncomposites.Nat. Mater.2,473–476(2003). Acknowledgements 7. Zhu,Y.etal.Carbon-basedsupercapacitorsproducedbyactivationofgraphene. ThisresearchwassupportedbytheprojectofNNSFC(51173213,51172290,51232005, Science332,1537–1541(2011). 50802116),ProgramforNewCenturyExcellentTalentsinUniversity,ProgramforPearl 8. Nagai,A.etal.Poresurfaceengineeringincovalentorganicframeworks.Nat. RiverNewStarofScienceandTechnologyinGuangzhou,theFundamentalResearchFunds Commun.2,536–544(2011). fortheCentralUniversities(09lgpy18),andtheProjectofDemonstrationBaseof 9. Zhang,J.etal.Surface-modifiedcarbonnanotubescatalyzeoxidative DepartmentofEducationofGuangdongProvince(cgzhzd0901).Mr.ChaolunLiang dehydrogenationofn-butane.Science322,73–77(2008). (InstrumentalAnalysis&ResearchCenter,SunYat-senUniversity)isacknowledgedfor 10.Lu,X.F.,Wang,C.&Wei,Y.One-DimensionalCompositeNanomaterials: helpwithEELSmeasurements. SynthesisbyElectrospinningandTheirApplications.Small5,2349–2370(2009). 11.Bourret,G.R.&Lennox,R.B.1DCu(OH)(2)NanomaterialSynthesisTemplated Authorcontributions inWaterMicrodroplets.J.Am.Chem.Soc.132,6657–6659(2010). D.W.conceivedtheproject.Y.L.conductedtheexperiments.Alltheauthorsdiscussedthe 12.Hartgerink,J.D.,Beniash,E.&Stupp,S.I.Self-assemblyandmineralizationof results.Y.L.andD.W.wrotethemanuscript. peptide-amphiphilenanofibers.Science294,1684–1688(2001). 13.Su,D.S.&Schlogl,R.NanostructuredCarbonandCarbonNanocompositesfor ElectrochemicalEnergyStorageApplications.Chemsuschem3,136–168(2010). Additionalinformation 14.Wu,D.etal.DesignandPreparationofPorousPolymers.Chem.Rev.112, Supplementaryinformationaccompaniesthispaperathttp://www.nature.com/ 3959–4015(2012). scientificreports 15.Dong,Z.X.,Kennedy,S.J.&Wu,Y.Q.Electrospinningmaterialsforenergy- Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. relatedapplicationsanddevices.J.PowerSources196,4886–4904(2011). 16.Wu,D.etal.PreparationofPolymericNanoscaleNetworksfromCylindrical License:ThisworkislicensedunderaCreativeCommons MolecularBottlebrushes.ACSNano6,6208–6214(2012). Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis 17.Su,D.S.TheUseofNaturalMaterialsinNanocarbonSynthesis.Chemsuschem2, license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ 1009–1020(2009). Howtocitethisarticle:Liang,Y.,Wu,D.&Fu,R.CarbonMicrofiberswithHierarchical 18.Inagaki,M.,Yang,Y.&Kang,F.Carbonnanofiberspreparedviaelectrospinning. PorousStructurefromElectrospunFiber-LikeNaturalBiopolymer.Sci.Rep.3,1119; Adv.Mater.24,2547–2566(2012). DOI:10.1038/srep01119(2013). SCIENTIFICREPORTS |3:1119|DOI:10.1038/srep01119 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.