ebook img

Carbon Allocation between the Canopy and the Root System in the Tropical Tree Ceiba Pentandra PDF

185 Pages·2017·9.79 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Carbon Allocation between the Canopy and the Root System in the Tropical Tree Ceiba Pentandra

ETH Library Carbon Allocation between the Canopy and the Root System in the Tropical Tree Ceiba Pentandra: Transfer Velocity, Magnitude and Biotic Controls Doctoral Thesis Author(s): Mannerheim, Neringa Publication date: 2018 Permanent link: https://doi.org/10.3929/ethz-b-000267469 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. DISS. ETH NO. 24874 CARBON ALLOCATION BETWEEN THE CANOPY AND THE ROOT SYSTEM IN THE TROPICAL TREE CEIBA PENTANDRA: TRANSFER VELOCITY, MAGNITUDE AND BIOTIC CONTROLS A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. Sc. ETH Zurich) presented by NERINGA MANNERHEIM M. Sc., Vilnius Gediminas Technical University born on 18.11.1986 citizen of Lithuania accepted of the recommendation of Prof. Dr. Nina Buchmann Prof. Dr. José Grünzweig Prof. Dr. Daniel Epron 2018 Table of contents Table of contents Table of contents ................................................................................................................................... i Abstract ............................................................................................................................................... iii Zusammenfassung .............................................................................................................................. vii General introduction......................................................................................................................... 1 1.1 Reproducibility of scientific studies.......................................................................................... 1 1.2 The use of stable isotopes in plant ecology ............................................................................... 5 1.3 Carbon allocation in plants ....................................................................................................... 9 1.4 Sink and source relationship ................................................................................................... 11 1.5 Objectives ............................................................................................................................... 13 1.6 Thesis outline .......................................................................................................................... 14 1.7 References ............................................................................................................................... 15 Genotypic variability enhances the reproducibility of an ecological study ................................... 19 2.1 Introduction ............................................................................................................................. 21 2.2 Methods ................................................................................................................................... 24 2.3 Results ..................................................................................................................................... 32 2.4 Discussion ............................................................................................................................... 40 2.5 Acknowledgements ................................................................................................................. 44 2.6 References ............................................................................................................................... 44 2.7 Appendix A ............................................................................................................................. 47 Measurement precision and memory effects of high enrichment 13C and 15N tracer samples ....... 57 3.1 Introduction ............................................................................................................................. 58 3.2 Material and methods .............................................................................................................. 60 3.3 Results and discussion ............................................................................................................ 64 3.4 Conclusions ............................................................................................................................. 70 3.5 Acknowledgements ................................................................................................................. 71 3.6 References ............................................................................................................................... 71 3.7 Appendix B ............................................................................................................................. 74 Carbon allocation to the root system of tropical Ceiba pentandra using 13C pulse-labelling in an aeroponic facility ............................................................................................................................... 77 4.1 Introduction ............................................................................................................................. 78 4.2 Methods ................................................................................................................................... 82 i 4.3 Results .................................................................................................................................... 92 4.4 Discussion ............................................................................................................................ 106 4.5 Conclusions .......................................................................................................................... 111 4.6 Acknowledgements .............................................................................................................. 111 4.7 References ............................................................................................................................ 111 4.8 Appendix C........................................................................................................................... 117 Carbon allocation belowground in the tropical tree Ceiba pentandra is controlled by sink strength ......................................................................................................................................................... 125 5.1 Introduction .......................................................................................................................... 126 5.2 Methods ................................................................................................................................ 127 5.3 Results .................................................................................................................................. 135 5.4 Discussion ............................................................................................................................ 146 5.5 Conclusions .......................................................................................................................... 150 5.6 Acknowledgements .............................................................................................................. 150 5.7 References ............................................................................................................................ 150 5.8 Appendix D .......................................................................................................................... 154 General discussion ........................................................................................................................ 159 Acknowledgements ......................................................................................................................... 169 ii Abstract Abstract Tropical forests largely contribute to the global carbon (C) cycle and strongly regulate regional and global climate. They are responsible for one-third of the global terrestrial gross primary productivity and store large amounts of C in their biomass. Climate change is currently threatening all terrestrial ecosystems and especially tropical forests. Despite the important role of tropical forest ecosystems in uptake and storage of atmospheric carbon dioxide (CO ), C dynamics of tropical tree species remain poorly investigated. Although tree 2 root systems contribute greatly to terrestrial C cycling, precise estimates of the contribution of roots to the terrestrial C cycle still lack for most ecosystems. The sink and source relationship is a key factor driving C uptake from the atmosphere and allocation within plant tissues. Understanding the control of this relationship has a potential for improving plant productivity in forestry and crop sciences. The influence of aboveground sink (fruit) and source (leaf) activity on C partitioning has been studied in several woody plant species; however, the contribution of the root system in the control of C allocation is still unclear. The inaccessibility of the root system greatly contributes to this issue. This thesis consists of six chapters. The main scientific questions of this thesis were addressed in Chapters 4 and 5. In Chapter 2, we tested whether a study design with a controlled systematic variability in ecological microcosm can improve reproducibility among and within laboratories. 14 laboratories were provided with identical protocols, soil and seeds of grass Brachypodium distachyon and legume Medicago truncatula. During the experiment, 72 pots were assigned to six controlled systematic variability groups that contained various combinations of soil homogeneity and plant genotypes. Combined data analysis revealed that the introduction of genotypes leads to lower among-laboratory variability and may be used as a solution for improving the reproducibility of ecological studies performed in controlled environments. In Chapter 3, we were looking for methodological solutions to evaluate memory effect and improve measurement precision of high enrichment 15N and 13C tracer sample. We tested whether tracer sample dilution, arranged sample positioning and frequent use of natural iii isotopic abundance materials improve measurements precision of highly enriched biomass samples up to +18000 mUr. Frequent use of natural isotopic abundance materials and arranged sample positioning increased the precision of tracer samples, but had a negative effect on the inter-laboratory standards precision. 15N and 13C tracer sample dilution only slightly improved measurement precision, nonetheless, pure and diluted samples were highly related. We conclude that highly enriched tracer samples do not require dilution prior to measurement and that measurement precision can be evaluated and improved by using natural isotope abundance materials and arranged positioning. In Chapter 4, we investigated C allocation dynamics to the belowground root system and C transfer velocity in the tropical tree Ceiba pentandra. We applied 13CO pulse-labelling on 2 9-months old C. pentandra saplings grown in a large-scale aeroponic facility in Israel, called Root laboratory. The 13C pulse was traced in bulk tissue, sugars and starch, with special focus given to woody and non-woody roots. We found tight coupling between the canopy and the root system. We calculated a potential maximum C transfer velocity of 2.4 m h-1, while the mean C transfer velocity to root sugars ranged in between 24 - 34 h. Five days after pulse-labelling, 27% of 13C taken up by the trees was found in the leaves, 13% in the woody tissue of the trunk, 6% in the bark, 2% in the root system and a total of 52% was lost. In addition, we identified sink strength differences within woody and non-woody roots. Sink strength decreased with the depth of the root system for coarse woody brown roots, while it increased with root depth for non-woody white roots. These findings with tropical trees compare well with temperate trees and give new insights into C dynamics between different root depths and root categories. In Chapter 5, we performed a sink size manipulation experiment to test whether short-term C allocation is driven by sink (root) or source (canopy) strength in the tropical tree C. pentandra. The 13CO pulse-labelling was followed by root removal treatments, and a 13C 2 signal was traced into the leaves, woody and non-woody root categories during a 70 h post- treatment period. Root removal strongly affected C allocation and C recovery in the entire tree. Trees with lower root to shoot ratios allocated less C to the root system than trees with higher root to shoot ratios. C allocation to root bulk tissue, sugars, starch and respiration significantly differed among root categories. In addition, in all studied materials iv Abstract and compounds (except sugars) C allocation to the roots significantly differed by root depth. In Chapter 5, we concluded that C allocation to the root system is strongly driven by sink strength. These findings contribute to a better understanding of the extent the root system is contributing to the control of C allocation. v vi Zusammenfassung Zusammenfassung Tropische Wälder stellen einen wichtigen Teil des globalen Kohlenstoffkreislaufs dar und haben darüber hinaus einen starken Einfluss auf das regionale und globale Klima. Sie sind für ein Drittel der globalen terrestrischen Primärproduktion verantwortlich und speichern eine grosse Menge an Kohlenstoff in ihrer Biomasse. Der Klimawandel bedroht alle terrestrischen Ökosysteme und besonders tropische Wälder. Unabhängig von ihrer bedeutsamen Rolle in der Aufnahme und Speicherung von atmosphärischem Kohlendiodid (CO ) sind Kohlenstoffdynamiken von tropischen Baumarten bisher nur wenig erforscht. 2 Obwohl Wurzelsysteme von Bäumen einen grossen Teil zum terrestrischen Kohlenstoffkreislauf beitragen, fehlen präzise Schätzungen für die meisten Ökosysteme. Das Quellen-Senken Verhältnis beeinflusst die Aufnahme von Kohlenstoff aus der Atmosphäre und die Allokation innerhalb der Pflanze. Ein besseres Verständnis der Kontrolle dieser Beziehung kann zur Verbesserung der Pflanzenproduktivität in Agrar- und Forstwirtschaft beitragen. Der Einfluss der Aktivität oberirdischer Senken (z.B. Frucht) und Quellen (z.B. Blatt) auf die Kohlenstoffpartitionierung wurde bisher erst in einigen Gehölzen untersucht. Dennoch ist der Beitrag des Wurzelsystems zur Kontrolle der Kohlenstoffallokation noch unbekannt, unter anderem weil das Wurzelsystem für Untersuchungen nicht zugänglich ist. Diese Doktorarbeit besteht aus sechs Kapiteln, wobei die Hauptfragen dieser Arbeit in den Kapitel 4 und 5 behandelt werden. Im zweiten Kapitel wurde getestet, ob ein Studiendesign mit einer systematischen kontrollierten Variabilität in ökologischen Mikrokosmen die Reproduzierbarkeit zwischen und innerhalb Laboratorien verbessert. Vierzehn Labore wurden mit identischen Protokollen sowie Bodenproben und Samen der Grasart Brachypodium distachyon und der Leguminose Medicago truncatula ausgestattet. Während des Experiments wurden 72 Töpfe sechs kontrollierten systematischen Variabilitätsgruppen zugeordnet, welche verschiedene Kombinationen von Bodenhomogenität und Pflanzengenotypen beinhalteten. Eine kombinierte Datenanalyse stellte fest, dass die Einführung von Genotypen zu einer geringeren Variabilität zwischen Laboren führte und vii

Description:
the Tropical Tree Ceiba Pentandra: Transfer Velocity, Magnitude .. Die potentielle maximale C-Transfergeschwindigkeit war 2.4 mh-1, während die
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.