ebook img

Canonical Problems in Scattering and Potential Theory Part II: Acoustic and Electromagnetic Diffraction by Canonical Str PDF

315 Pages·2002·2.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Canonical Problems in Scattering and Potential Theory Part II: Acoustic and Electromagnetic Diffraction by Canonical Str

194 4. Electromagnetic Di(cid:11)raction froma Metallic Spherical Cavity. 1 q (1) qTM (2) 0.9 TM (s) M qT0.8 N , TIO0.7 U B RI0.6 T N O C0.5 Y G ER0.4 N E C 0.3 NI O M0.2 R A H 0.1 0 0 2 4 6 8 10 12 14 16 18 20 ka Æ FIGURE 4.3. Excitation of the cavity ((cid:18) = 30 ) by a electric dipole located in z<0 with q=d=a=0:9. First (solid) and second (dashed) harmonic terms. 4.1.2 The Vertical Magnetic Dip ole (TE Case) Letusnowconsidertheverticalmagneticdipolereplacingtheverticalelec- tric dipole described at the beginning of Section 4.1. Taking into account the continuity condition and the far-(cid:12)eld behaviour of the scattered (cid:12)eld, we decompose the total (cid:12)eld as the sum (0) s E(cid:30) =E(cid:30) +E(cid:30); and seek the scattered (cid:12)eld in the form 2 1 s mk 1 (cid:16)n(ka) n(kr); r <a E(cid:30) = ynPn(cos(cid:18)) (4.50) (cid:0) r n=1 (cid:26) n(ka)(cid:16)n(kr); r >a X where the unknown coeÆcients yn are to be found. The (cid:12)nite energy con- dition(4.6)e(cid:11)ectively de(cid:12)nedthesolutionclassforthecoeÆcient sequence 1 yn n=1: Takingthe integration region in (4.6) to be the sphere of radius f g a, it is easily deduced that 2 4 W =WTE =2(cid:25)m k a (cid:2) 1 n(n+1) 2 2 02 n(n+1) 2 yn (cid:16)n(ka) n (ka) 2 1 n(ka) n=1 2n+1 j j j j ( (cid:0)" (ka) (cid:0) # ) X (4.51) 4.1 Electric or Magnetic Dipole Excitation. 195 mustbe(cid:12)nite.UsingtheasymptoticbehaviourofthesphericalBesselfunc- tions and their derivatives (see equations [4.10]) it can be readily shown that 1 2 WTE C2(ka) yn (4.52) (cid:20) j j n=1 X where C2(ka) is a function of ka alone, with (cid:12)nite value. Thus the coeÆ- 1 cient sequence yn n=1 is square summableand belongs to the functional f g space l2. Now enforce the boundary conditions (4.3){(4.4), bearing in mind the explicitformofthe scattered (cid:12)eld (4.50),the incident (cid:12)eld(1.213)and the relationsbetween the basic (cid:12)eld componentE’ and the other (cid:12)eld compo- nents (1.90). As a result, one obtains the followingdual series equations. 1 1 ynPn(cos(cid:18))=0, (cid:18) (0;(cid:18)0) (4.53) 2 n=1 X 1 1 yn n(ka)(cid:16)n(ka)Pn(cos(cid:18))= n=1 X 1 (cid:0)2 1 (kd) (2n+1) n(kd)(cid:16)n(ka)Pn(cos(cid:18)), (cid:18) ((cid:18)0;(cid:25)): (4.54) (cid:0) 2 n=1 X The (cid:12)rst step is to identify a suitable asymptotically small parameter. Thus de(cid:12)ne i 4n(n+1) (cid:22)n =1 n(ka)(cid:16)n(ka): (4.55) (cid:0) ka 2n+1 (cid:0)2 It is readily veri(cid:12)ed from the asymptotics (4.10) that (cid:22)n = O n , as n : The dual series equations (4.53){(4.54)maybe rearranged as !1 (cid:0) (cid:1) 1 1 ynPn(cos(cid:18))=0, (cid:18) (0;(cid:18)0) (4.56) 2 n=1 X 1 2n+1 1 (1 (cid:22)n)ynPn(cos(cid:18)) n(n+1) (cid:0) n=1 X 1 2n+1 1 = (cid:12)nPn(cos(cid:18)), (cid:18) ((cid:18)0;(cid:25)) (4.57) n(n+1) 2 n=1 X 196 4. Electromagnetic Di(cid:11)raction froma Metallic Spherical Cavity. where 4 (cid:12)n = i 2n(n+1) n(kd)(cid:16)n(ka): (4.58) (cid:0) ka(kd) Because the unknowncoeÆcient sequence issquare summable,itcan be readily estimated that the general term of series (4.56) and (4.57) decay 1 3 (cid:0)2 (cid:0)2 at rates O n and O n ; respectively, as n : Thus the (cid:12)rst ! 1 series conve(cid:16)rges u(cid:17)niformly(cid:16),whil(cid:17)st the second converges nonuniformly.The diÆculty is circumvented in the same way as for the VED case. Set 1 d Pn(cos(cid:18))= Pn(cos(cid:18)) (cid:0)d(cid:18) 1 and then validlyintegrate term by term (because yn n=1 l2) to obtain f g 2 thefollowinguniformlyconvergingseries towhichAbelintegraltransforms maybe applied, 1 ynPn(cos(cid:18))=C2; (cid:18) (0;(cid:18)0) (4.59) 2 n=1 X where C2 is a constant of integration. We now use the integral representations (4.19) of Mehler-Dirichlet kind to obtain the equivalent pre-regularised form 1 1 C12cos12(cid:18); (cid:18) 2(0;(cid:18)0) yncos n+ (cid:18) = 1 nX=1 (cid:18) 2(cid:19) 8< n=1((cid:12)n+(cid:22)nyn)cos n+ 2 (cid:18); (cid:18) 2((cid:18)0;(cid:25)): P (cid:0) (cid:1) (4.60) : The constant C2 formally arising as the result of integration has an interpretation that parallels that given to the constant C1 in the previ- ous section. The original dual series equations were series expansions in 1 the complete orthogonal family of functions Pn(cos(cid:18)) (n=1;2;:::); the transformed equations are series expansions in another complete orthog- 1 1 onal family of functions, the trigonometric functions cos n+ 2 (cid:18) n=0; the unknown coeÆcients yn are associated with an incomplete subset of (cid:8) (cid:0) (cid:1) (cid:9) this family (indexed by n = 1;2;:::); and the constant C2 is associated 1 with the zero index element (cos 2(cid:18)) that makes this family of functions complete. Makinguse oforthogonality,the equations (4.60)are easily transformed to the i.s.l.a.e.of the second kind 1 1 (1) (1) (1 (cid:22)m)ym+ yn(cid:22)nQnm((cid:18)0)=(cid:12)m (cid:12)nQnm((cid:18)0); (4.61) (cid:0) (cid:0) n=1 n=1 X X 4.1 Electric or Magnetic Dipole Excitation. 197 (1) where m=1;2;::: and Qnm((cid:18)0) was de(cid:12)ned in the previous section. Introducing the angle (cid:18)1 = (cid:25) (cid:18)0 leads to the alternative and more (cid:0) compact form(recall [4.24]) 1 1 (1) (1) Ym Yn(cid:22)nRnm((cid:18)1)= BnRnm((cid:18)1); (4.62) (cid:0) n=1 n=1 X X where m=1;2;::: and m m Ym =( 1) ym; Bm =( 1) (cid:12)m: (4.63) (cid:0) (cid:0) Equations (4.61) or (4.62) remain valid when d < a and the dipole is locatedinupper half-spacez >0,providedthe coeÆcients (cid:12)n arereplaced by 4 (cid:12)n = i 2n(n+1)(cid:16)n(kd) n(ka): (4.64) (cid:0) ka(kd) If the dipole is located in lower half-space (z < 0) then the values of (cid:12)n, de(cid:12)ned by (4.58) or (4.64), are modi(cid:12)ed by a simple multiplication with n(cid:0)1 the factor ( 1) . (cid:0) Letuscollectthenear-(cid:12)eldandfar-(cid:12)eldcharacteristics. Thesurface cur- rent density has one component and is equal to the jump in the magnetic (cid:12)eld intensity across the shell, 2 1 mk 1 j(cid:30) = H(cid:18)(a 0;(cid:18)) H(cid:18)(a+0;(cid:18)) = ynPn(cos(cid:18)): (4.65) (cid:0)f (cid:0) (cid:0) g (cid:0) a n=1 X v ikr The radiation pattern S2 de(cid:12)ned by E(cid:18);H(cid:30) S2((cid:18))e =r as r ! 1 equals 1 2 n(kd) n(ka) n(cid:0)1 1 S2((cid:18))=mk (2n+1) 2 + yn ( 1) Pn(cos(cid:18)): n=1 ( (kd) 2n+1 ) (cid:0) X (4.66) The radiation resistance equals 1 2 3 n(kd) n(ka) R= n(n+1)(2n+1) 2 + yn : (4.67) 2n=1 (cid:12) (kd) 2n+1 (cid:12) X (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 198 4. Electromagnetic Di(cid:11)raction froma Metallic Spherical Cavity. Finally the stored external energy (see the discussion in the previous section) is 1 (e) 2 4 n(n+1) 2 2 WTE =2(cid:25)m k a yn n(ka) 2n+1 j j (cid:2) n=1 X n(n+1) 2 0 2 2+ 2 1 (cid:16)n(ka) (cid:16)n(ka) : ( " (ka) (cid:0) #j j (cid:0) ) (cid:12) (cid:12) (cid:12) (cid:12) The totalstored energy isthe sumofscattered energy thatis stored inthe internal (r<a) and external (r>a) regions i (e) WTE =WTE +WTE, (4.68) i where the value of WTE is de(cid:12)ned by formula(4.51). InanalysinghighQ-factoroscillationsthatdevelopinthisopenspherical resonator it we maydecompose, as in the TM case, 1 (n) WTE = WTE (4.69) n=1 X intoasumoftermsrepresentingthenormalisedenergycontributionofeach harmonic,and to examine the ratios (n) (n) WTE qTE = . (4.70) WTE Before presenting numericalresults let us consider analyticalfeatures of the solution obtained above. First, a careful look at the expressions for surface current density(4.65)reveals thatgeneral termsofthe series decay 1 (cid:0)2 at the rate O n as n ,i.e.,the series is slowlyconverging,and at !1 a rate that is(cid:16)rathe(cid:17)r slower than the corresponding series for the VED. Acceleration ofconvergence is achieved byrearrangement ofthe i.s.l.a.e. (4.62) in the form 1 (1) Yn = (Ys(cid:22)s+Bs)Rsn ((cid:18)1): (4.71) s=1 X n Setting Yn = ( 1) yn into formula (4.65) and interchanging the order of (cid:0) summationproduces thecomputationalformulaforsurface current density 2 1 mk j’ = (Ys(cid:22)s+Bs)Ls(#;(cid:18)1); (4.72) a s=1 X 4.1 Electric or Magnetic Dipole Excitation. 199 where #=(cid:25) (cid:18) and (cid:0) 1 (1) 1 Ls(#;(cid:18)1)= Rsn ((cid:18)1)Pn(cos#): (4.73) n=1 X This function maybe expressed in the form Rs0((cid:18)1) Fs(#;(cid:18)1) 1(cid:0)R00((cid:18)1)F0(#;(cid:18)1);# (0;(cid:18)1) Ls(#;(cid:18)1)= (cid:0) (cid:0) 2 (4.74) ( 0; # ((cid:18)1;(cid:25)) 2 where @ Fs(#;(cid:18)1)= Gs(#;(cid:18)1) (4.75) @# and Gs was de(cid:12)ned by (2.178).The function Fs(#;(cid:18)1) maybe easily com- puted fromthe recurrence formula 1 2 cos s 2 (cid:18)1 2s 1 Fs(#;(cid:18)1)= sin# (cid:0) (cid:0) sin#Gs(cid:0)1(#;(cid:18)1) (cid:25)s 2(co(cid:0)s# c(cid:1)os(cid:18)1) (cid:0) s (cid:0) 2s 1 s 1 + p(cid:0) cos#Fs(cid:0)1((cid:23);(cid:18)1) (cid:0) Fs(cid:0)2(#;(cid:18)1); (4.76) s (cid:0) s validfor s=1;2;:::, initialised by the elementary expression for F0 1 2 tan 2# F0(#;(cid:18)1)= (cid:0)(cid:25) 2(cos#(cid:0) c(cid:1)os(cid:18)1) (cid:2) (cid:0) 1 1 sin(cid:18)1 sin2(cid:18)1+p 2(cos# cos(cid:18)1) +cos 2(cid:18)1(cos# cos(cid:18)1) (cid:0) (cid:0) : (4.77) n1+cos# p2cos(cid:18)1+2sin12(cid:18)1o 2(cos# cos(cid:18)1) (cid:0) (cid:0) p (cid:0)25 Theconvergence rate ofthe modi(cid:12)edseries (4.72)isO s ass . !1 More importantly,the vanishing of Ls(#;(cid:18)1) when # ((cid:16)(cid:18)1;(cid:25))(cid:17)shows that 2 the boundary condition (4.3) is satis(cid:12)ed term by term; using (4.76) and (4.77), analysis of the form (4.74) of Ls(#;(cid:18)1) in the interval # (0;(cid:18)1) 2 reveals that the surface current j’ has the expected singular behaviour as (cid:18) (cid:18)0 (or # (cid:18)1): each term in (4.72) has the correct behaviour (a sin- ! ! (cid:0)12 gularityof form(cos# cos(cid:18)1) ) in the vicinity ofthe sharp edge. Thus (cid:0) accurate calculationofsurface current density distributionisfacilitatedby this transformationto a muchmore rapidly convergent series. Now consider the quasi-eigenoscillationsthat develop inthe open spher- ical cavity with a small aperture ((cid:18)0 1) when the excitation frequency (cid:28) coincides with one of the quasi-eigenvalues of spectrum (cid:23)sl. The spectrum 200 4. Electromagnetic Di(cid:11)raction froma Metallic Spherical Cavity. s=1 2 3 4 5 6 7 l=1 4:493 5:763 6:988 8:183 9:356 10:513 11:657 2 7:725 9:095 10:417 11:705 12:967 14:207 15:431 3 10:90 12:323 13:698 15:040 16:355 17:648 18:923 (0) TABLE4.2. TEls0-oscillations, spectral values (cid:23)sl ofeigenvaluesofquasi-eigenoscillationsinthe closed cavity(ofTEls0-type) (0) is determined by the roots (cid:23)sl (l =1;2;:::) ofthe characteristic equation (0) s (cid:23)sl =0; (4.78) (cid:16) (cid:17) where s=1;2;:::; foreach s, the roots are indexed inincreasing order by l. The indices s and l designate the numberof(cid:12)eld variationsinthe radial and angular variables (r and (cid:18)), respectively. Some lower order roots are shown in Table 4.2. Following the same idea used in Chapters 2 and 3, the perturbation to (0) the spectral value (cid:23)sl caused by a small aperture (with (cid:18)0 1) may be (cid:28) analyticallycalculated: (0) 2s+1 (1) (cid:23)sl=(cid:23)sl =1 Qss ((cid:18)0) (cid:0) 4s(s+1) (cid:0) 1 (1) (1) 2s+1 (0) 2n+1 Qns ((cid:18)0)Qsn ((cid:18)0) i (cid:23)sl 2 : (4.79) 16s(s+1) n(n+1) (0) nnX=6=1s (cid:16)n (cid:23)sl (cid:12) (cid:16) (cid:17)(cid:12) (cid:12) (cid:12) (0) (cid:12) (cid:12) Thus Re((cid:23)sl) < (cid:23)sl and Im((cid:23)sl) < 0, indicating radiative losses with Q-factor TE Re((cid:23)sl) Qls0 = 2 (4.80) (cid:0) Im((cid:23)sl) of (cid:12)nite value. Providing that (2n+1)(cid:18)0 1 and (2s+1)(cid:18)0 1, the angle functions (1) (1) (cid:28) (cid:28) Rns ((cid:18)0) and Qns ((cid:18)0) may be approximated by formulae (4.41){(4.41), and so for small apertures ((cid:18)0 1), the followingseries in (4.79) may be (cid:28) approximated 1 (1) (1) 2 2 1 2n+1 Qns ((cid:18)0)Qsn ((cid:18)0) 4s (s+1) n(n+1)(2n+1) 10 2 2 2 (cid:18)0 n(n+1) (0) ’ 2025(cid:25) (0) nnX=6=1s (cid:16)n (cid:23)sl nnX=6=1s (cid:16)n (cid:23)sl (cid:12) (cid:16) (cid:17)(cid:12) (cid:12) (cid:16) (cid:17)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (4.81) (cid:12) (cid:12) (cid:12) (cid:12) 4.2PlaneWaveDi(cid:11)ractionfromaCircularHoleinaThinMetallicSphere. 201 and hence TE (cid:0)10 Qls0 (cid:18)0 : (4.82) (cid:24) The above formula is of restricted interest. For accurate values of the Q-factor for larger apertures, it is necessary to (cid:12)nd the complex roots of the full characteristic equation, that may by approximated by the matrix equation of order N (N must be chosen suÆciently large), det IN M +B =0 (4.83) f (cid:0) g where IN is the identity matrix of order N, M is the diagonal matrix diag((cid:22)1;(cid:22)2;(cid:22)3;:::;(cid:22)N); and B is the square matrix (1) (1) (1) (1) (cid:22)1Q11 (cid:22)2Q21 (cid:22)3Q31 ::: (cid:22)NQN1 (1) (1) (1) (1) 0 (cid:22)1Q12 (cid:22)2Q22 (cid:22)3Q32 ::: (cid:22)NQN2 1 (1) (1) (1) (1) B = (cid:22)1Q13 (cid:22)2Q23 (cid:22)3Q33 ::: (cid:22)NQN3 : (4.84) B C B ::: ::: ::: ::: ::: C B (1) (1) (1) (1) C B (cid:22)1Q1N (cid:22)2Q2N (cid:22)3Q3N ::: (cid:22)NQNN C B C @ A Finally,inparallelwithequation(4.49),theloadedQ-factorofaspherical open resonator is given by TE 3 Qls0 = ka WTE=R: (4.85) 2 (cid:1) By way of illustration, the frequency dependence of the stored internal (i) (e) and external energies (WTE and WTE), respectively, is presented in Fig- Æ ure 4.4 for the open spherical resonator with parameter (cid:18)0 = 30 excited by a vertical magnetic dipole located in the lower half-space (z < 0) with q = d=a = 0:9. As we have already seen in the electric dipole case, the energy stored outside the resonator is very smallcompared to that stored (s) internally.The value of qTE, (s=1;2),is displayed in Figure 4.5,showing that at least for the (cid:12)rst three resonances (solid line) the energy contribu- tion of the (cid:12)rst harmonics exceeds 95%. 4.2 Plane Wave Di(cid:11)raction from a Circular Hole in a Thin Metallic Sphere. The previous section considered vertical dipole excitation of the spherical cavity with a circular hole. If the dipole is located along the vertical axis of symmetry, only TM or TE waves are excited depending upon whether 202 4. Electromagnetic Di(cid:11)raction froma Metallic Spherical Cavity. 104 W i W e 103 W Y , 102 G R E N E ED 101 R O T S 100 10−1 2 4 6 8 10 12 14 16 18 20 ka FIGURE 4.4. Internal (solid) and external (dashed) stored energy for cavity Æ ((cid:18)=30 )excited by a magnetic dipole located in z<0 with q =d=a=0:9. 1 q (1) qTE (2) 0.9 TE (s) E qT0.8 N , TIO0.7 U B RI0.6 T N O C0.5 Y G ER0.4 N E C 0.3 NI O M0.2 R A H 0.1 0 0 2 4 6 8 10 12 14 16 18 20 ka FIGURE 4.5.Harmonic energy fractions for dipole excited cavity of Figure 4.4. 4.2PlaneWaveDi(cid:11)ractionfromaCircularHoleinaThinMetallicSphere. 203 a) z b) z (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) y y o a o x (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) x n n H H E E FIGURE 4.6. The spherical cavity illuminated by a plane wave a) at normal incidence (cid:11)=0 and b) with (cid:11)=(cid:25). the dipole is of electric or magnetic type. However, when the cavity is illuminated by an electromagnetic plane wave the TM and TE waves are coupled even if the wave propagates normallyto the aperture plane. This more complex cavity scattering scenario is addressed in this section (see also [99], [111]). Consider then a thin metallic sphere with a circular hole irradiated by a plane electromagnetic wave, as shown in Figure 4.6a. Thez-axis is nor- malto the aperture plane and the direction of propagation coincides with positive z-axis. The incident (cid:12)eld is described by 0 0 Ex = Hy =exp(ikz)=exp(ikrcos(cid:18)) (4.86) (cid:0) where we have employed the symmetrised form of Maxw ell’s equations (1.58){(1.59). 0 0 According to (1.243) the associated electric (U ) and magnetic (V ) Debye potentials are 1 0 U cos’ 1 1 V0 = sin’ ik2r An n(kr)Pn(cos(cid:18)), (4.87) (cid:26) (cid:27) (cid:26) (cid:27) n=1 X where n 2n+1 An =i : n(n+1) s s s s Debye potentials (U , V ) associated with the scattered (cid:12)eld (cid:0)E!;(cid:0)H! must satisfy the Helmholtz equation. Furthermore, the total (cid:12)eld must

Description:
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determinin
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.