ebook img

Calculus of Variations and Optimal Control Theory: A Concise Introduction PDF

254 Pages·2012·3.245 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus of Variations and Optimal Control Theory: A Concise Introduction

cvoc-formatted August 24, 2011 7x10 Calculus of Variations and Optimal Control Theory cvoc-formatted August 24, 2011 7x10 cvoc-formatted August 24, 2011 7x10 Calculus of Variations and Optimal Control Theory A Concise Introduction Daniel Liberzon PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2012 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved ISBN: 978-0-691-15187-8 Library of Congress Control Number: 2011935625 British Library Cataloging-in-Publication Data is available This book has been composed in LA TEX The publisher would like to acknowledge the author of this volume for providing the digital files from which this book was printed Printed on acid-free paper ∞ press.princeton.edu Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 cvoc-formatted August 24, 2011 7x10 Since the building of the universe is perfect and is created by the wisdom creator, nothing arises in the universe in which one cannot see the sense of some maximum or minimum. |Leonhard Euler The words \control theory" are, of course, of recent origin, but the subject itself is much older, since it contains the classical calculus of variations as a special case, and the (cid:12)rst calculus of variations problems go back to classical Greece. |Hector J. Sussmann cvoc-formatted August 24, 2011 7x10 cvoc-formatted August 24, 2011 7x10 Contents Preface xiii 1 Introduction 1 1.1 Optimal control problem 1 1.2 Some background on (cid:12)nite-dimensional optimization 3 1.2.1 Unconstrained optimization . . . . . . . . . . . . . . . 4 1.2.2 Constrained optimization . . . . . . . . . . . . . . . . 11 1.3 Preview of in(cid:12)nite-dimensional optimization 17 1.3.1 Function spaces, norms, and local minima . . . . . . . 18 1.3.2 First variation and (cid:12)rst-order necessary condition . . . 19 1.3.3 Second variation and second-order conditions . . . . . 21 1.3.4 Global minima and convex problems . . . . . . . . . . 23 1.4 Notes and references for Chapter 1 24 2 Calculus of Variations 26 2.1 Examples of variational problems 26 2.1.1 Dido’s isoperimetric problem . . . . . . . . . . . . . . 26 2.1.2 Light re(cid:13)ection and refraction . . . . . . . . . . . . . . 27 2.1.3 Catenary . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.4 Brachistochrone . . . . . . . . . . . . . . . . . . . . . 30 2.2 Basic calculus of variations problem 32 2.2.1 Weak and strong extrema . . . . . . . . . . . . . . . . 33 2.3 First-order necessary conditions for weak extrema 34 2.3.1 Euler-Lagrange equation . . . . . . . . . . . . . . . . . 35 2.3.2 Historical remarks . . . . . . . . . . . . . . . . . . . . 39 2.3.3 Technical remarks . . . . . . . . . . . . . . . . . . . . 40 vii cvoc-formatted August 24, 2011 7x10 viii CONTENTS 2.3.4 Two special cases . . . . . . . . . . . . . . . . . . . . . 41 2.3.5 Variable-endpoint problems . . . . . . . . . . . . . . . 42 2.4 Hamiltonian formalism and mechanics 44 2.4.1 Hamilton’s canonical equations . . . . . . . . . . . . . 45 2.4.2 Legendre transformation . . . . . . . . . . . . . . . . . 46 2.4.3 Principle of least action and conservation laws . . . . 48 2.5 Variational problems with constraints 51 2.5.1 Integral constraints . . . . . . . . . . . . . . . . . . . . 52 2.5.2 Non-integral constraints . . . . . . . . . . . . . . . . . 55 2.6 Second-order conditions 58 2.6.1 Legendre’s necessary condition for a weak minimum . 59 2.6.2 Su(cid:14)cient condition for a weak minimum . . . . . . . . 62 2.7 Notes and references for Chapter 2 68 3 From Calculus of Variations to Optimal Control 71 3.1 Necessary conditions for strong extrema 71 3.1.1 Weierstrass-Erdmann corner conditions . . . . . . . . 71 3.1.2 Weierstrass excess function . . . . . . . . . . . . . . . 76 3.2 Calculus of variations versus optimal control 81 3.3 Optimal control problem formulation and assumptions 83 3.3.1 Control system . . . . . . . . . . . . . . . . . . . . . . 83 3.3.2 Cost functional . . . . . . . . . . . . . . . . . . . . . . 86 3.3.3 Target set . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4 Variational approach to the (cid:12)xed-time, free-endpoint problem 89 3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 89 3.4.2 First variation . . . . . . . . . . . . . . . . . . . . . . 92 3.4.3 Second variation . . . . . . . . . . . . . . . . . . . . . 95 3.4.4 Some comments . . . . . . . . . . . . . . . . . . . . . 96 3.4.5 Critique of the variational approach and preview of the maximum principle . . . . . . . . . . . . . . . . . 98 3.5 Notes and references for Chapter 3 100 cvoc-formatted August 24, 2011 7x10 CONTENTS ix 4 The Maximum Principle 102 4.1 Statement of the maximum principle 102 4.1.1 Basic (cid:12)xed-endpoint control problem . . . . . . . . . . 102 4.1.2 Basic variable-endpoint control problem . . . . . . . . 104 4.2 Proof of the maximum principle 105 4.2.1 From Lagrange to Mayer form . . . . . . . . . . . . . 107 4.2.2 Temporal control perturbation . . . . . . . . . . . . . 109 4.2.3 Spatial control perturbation . . . . . . . . . . . . . . . 110 4.2.4 Variational equation . . . . . . . . . . . . . . . . . . . 112 4.2.5 Terminal cone. . . . . . . . . . . . . . . . . . . . . . . 115 4.2.6 Key topological lemma . . . . . . . . . . . . . . . . . . 117 4.2.7 Separating hyperplane . . . . . . . . . . . . . . . . . . 120 4.2.8 Adjoint equation . . . . . . . . . . . . . . . . . . . . . 121 4.2.9 Properties of the Hamiltonian . . . . . . . . . . . . . . 122 4.2.10 Transversality condition . . . . . . . . . . . . . . . . . 126 4.3 Discussion of the maximum principle 128 4.3.1 Changes of variables . . . . . . . . . . . . . . . . . . . 130 4.4 Time-optimal control problems 134 4.4.1 Example: double integrator . . . . . . . . . . . . . . . 135 4.4.2 Bang-bang principle for linear systems . . . . . . . . . 138 4.4.3 Nonlinear systems, singular controls, and Lie brackets 141 4.4.4 Fuller’s problem . . . . . . . . . . . . . . . . . . . . . 146 4.5 Existence of optimal controls 148 4.6 Notes and references for Chapter 4 153 5 The Hamilton-Jacobi-Bellman Equation 156 5.1 Dynamic programming and the HJB equation 156 5.1.1 Motivation: the discrete problem . . . . . . . . . . . . 156 5.1.2 Principle of optimality . . . . . . . . . . . . . . . . . . 158 5.1.3 HJB equation . . . . . . . . . . . . . . . . . . . . . . . 161 5.1.4 Su(cid:14)cient condition for optimality . . . . . . . . . . . 165 5.1.5 Historical remarks . . . . . . . . . . . . . . . . . . . . 167 5.2 HJB equation versus the maximum principle 168

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.