ebook img

Calculation of Aerodynamic Noise of Wing Airfoils by Hybrid Methods PDF

240 Pages·2016·9.97 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculation of Aerodynamic Noise of Wing Airfoils by Hybrid Methods

Calculation of Aerodynamic Noise of Wing Airfoils by Hybrid Methods Rabea Matouk Department of Aero-Thermo-Mechanics Brussels School of Engineering, Université Libre de Bruxelles This dissertation is submitted for the degree of Doctor of Engineering Sciences and Technology Promotors: Prof. Gérard Degrez Prof. Jean Louis Migeot Academic year: 2016-2017 Acknowledgements First,IwouldliketothankalotmysupervisorProf. GérardDegrez(ULB)forthedirection ofthiswork,forhisvaluableadviceandsupportduringtherealizationofthisthesisandfor hisavailability. Next, I want to thank my co-supervisor Prof. Jean Louis Migeot (ULB,FFT) and the FFT Company for providing ACTRAN, for their permanent support and for giving the opportunityforaninternshipinthecompany. IwanttothankDr. ChristopheJulien(thevonKarmanInstituteforFluidDynamics)for hishelpandrichdiscussionsaboutmywork,forsendingmehisresultstocomparewithmy resultsandforthehelptorealizemyfirstpaper. IalsowanttothankalotDr. YvesDetandt(FFT)forhishelpandsupporttorealizethe secondpaperandforhisadviceduringthethesiscommitteemeetings. IwouldalsoliketoacknowledgemycommitteemembersandthePhDthesiscommission members: Prof. GérardDegrez Prof. JeanLouisMigeot Prof. HermanDeconinck Dr. YvesDetandt Prof. ChristopheSchram Prof. GhaderGhorbaniasl Myfamilyand bestfriendshavebeen encouraging,supportingand showing beliefinme andmywork. Sothanksalottoallyou. IacknowledgetheUniversitéLibredeBruxelles(ULB)andinparticulartheSchoolof Engineering, Department of Aero-Thermo-Mechanics to welcome my research and all its iv membersespeciallyDr. XavierDeschamps(ULB)andShirleyWaynefortheirsupport. I gratefully acknowledge the University of Aleppo (Syria) for the financial support of this research, and in particular the mechanical engineering faculty and all its professors particularlyProf. MustafaTaki,mysupervisorinSyria. Finally,IwouldliketothankaswelltheConsortiumdesEquipementsdeCalculIntensif en Fédération Wallonie Bruxelles CECI for providing the supercomputing resources funded byFRS-FNRS(Belgium). Abstract This research is situated in the field of Computational AeroAcoustics (CAA). The thesis focusesonthe computationoftheaerodynamic noise generatedbyturbulent flowsaround wing, fan or propeller airfoils. The computation of the noise radiated from a device is the firststepfordesignerstounderstandtheacousticalcharacteristicsandtodeterminethenoise sources in order to modify the design toward having acoustically efficient products. As a casestudy,thebroadbandortrailing-edgenoiseemanatingfromaCD(Controlled-Diffusion) airfoil, belonging to a fan is studied. The hybrid methods of aeroacoustic are applied to simulateandpredicttheradiatednoise. Thenecessarytoolswereresearchedanddeveloped. Thehybridmethodsconsistintwostepssimulations,wherethedeterminationoftheaerody- namicfieldisdecoupledfromthecomputationoftheacousticwavespropagationtothefar field,sothefirstpartofthisthesisisdevotedtoanaerodynamicstudyoftheconsideredairfoil. Inthispartofthethesis,acompleteaerodynamicstudyhasbeenperformed. Someaspects havebeen developedinthe used in-housesolverSFELES, includingtheimplementationof a new SGS model, a new outlet boundary condition and a new transient format which is usedtoextractthenoisesourcestobeexportedtotheacousticsolver,ACTRAN.Thesecond partof thisthesisis concernedwiththe aeroacousticstudywhere fourmethodshavebeen applied,amongthemtwoareintegralformulationsandthetwoothersarepartial-differential equations. ThefirstmethodappliedisAmiet’stheory,implementedinMatlab,basedonthe wall-pressurespectrumextractedinapointnearthetrailingedge. The second method is Curle’s formulation. It is applied proposing two approaches; the first approach is the implementation of the volume and surface integrals in SFELES to be calculated simultaneously with the flow in order toavoid the storage of noise sources which requiresahugespace. Inthesecondapproach,thefluctuatingaerodynamicforces, already obtained during the aerodynamics simulation, are used to compute the noise considering justthesurfacesources. Finally,LighthilandMöhringanalogieshavebeenappliedviathe acoustic solver ACTRAN using sources extracted via SFELES. Maps of the radiated noise aredemonstratedforseveralfrequencies. Therefractioneffectsofthemeanflowhavebeen studied. Table of contents Listoffigures xi Listoftables xix Nomenclature xxi 1 Introduction 1 1.1 Fannoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Airfoiltrailing-edgenoisemechanisms . . . . . . . . . . . . . . . 3 1.2 ComputationalmethodsofAeroacoustics . . . . . . . . . . . . . . . . . . 5 1.2.1 Thedirectnumericalacousticsmethod: . . . . . . . . . . . . . . . 5 1.2.2 Thehybridmethodsofaeroacoustics: . . . . . . . . . . . . . . . . 6 1.3 Objectivesofthedissertation . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Thesisorganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Maincontributionsandoriginalwork . . . . . . . . . . . . . . . . . . . . 8 2 Reviewofaeroacousticstheories,soundsourcesdefinition 11 2.1 Lighthill’sanalogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 ApproximationofLighthill’sstresstensor . . . . . . . . . . . . . . 13 2.1.2 IntegralsolutionofLighthill’sanalogy . . . . . . . . . . . . . . . . 13 2.2 Curle’sformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 FfowcsWilliamsandHall’stheory . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Möhring’sanalogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Amiet’saeroacoustictheory . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.1 Derivationofthegeneralizedtrailing-edgenoiseformulation . . . . 20 2.6 Soundsourcesdefinition: Monopole,dipole&quadrupole . . . . . . . . . 27 viii Tableofcontents 3 Solversandnumericalmethods 31 3.1 TheCFDsolver,SFELES . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Turbulencemodeling . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Theacousticsolver,ACTRAN . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 The variational FE formulation of the acoustic analogies as imple- mentedinACTRAN . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Theinfiniteelements . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.3 Mappingmethods . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Flowandacousticcharacteristicscales,meshesbuildingcriteria . . . . . . 46 4 FlowregimesofControlled-DiffusionAirfoils 49 4.1 Descriptionoftheconfiguration . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.1 ThecomputationaldomainandCFDmeshes . . . . . . . . . . . . 50 4.1.2 TheBoundaryconditions . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.3 PreviousexperimentalandnumericalstudiesoftheCDairfoil . . . 53 4.2 FlowpatternsaroundtheCDairfoilaccordingtoflowReynoldsnumber . . 55 4.2.1 Attachedflow(creeping)0<Re<270 . . . . . . . . . . . . . . . . . 56 4.2.2 Steady,separatedflow270<Re<1300 . . . . . . . . . . . . . . . . 56 4.2.3 2-dunsteadylaminaroscillatingflow(vortexstreet)1300<Re<6450 57 4.2.4 3-dunsteadylaminaroscillatingflow6450<Re<14000 . . . . . . . 57 4.2.5 3-dturbulentwake,2-dlaminarboundarylayerregime 14000<Re<47500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.6 Recirculation bubble appearance near the leading edge, laminar boundarylayerRe=47500 . . . . . . . . . . . . . . . . . . . . . . 59 4.2.7 Recirculation bubble explosion, 3-d laminarperiodic boundarylayer andturbulentwake50000=<Re<52000 . . . . . . . . . . . . . . . 60 4.2.8 FullyturbulentregimeRe>=52000 . . . . . . . . . . . . . . . . . . 60 4.2.9 Pressureandfrictioncoefficientsdistribution . . . . . . . . . . . . 61 4.2.10 EvolutionoftheliftanddragcoefficientswithReynoldsnumberand theflowregime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.11 EvolutionoftheStrouhalnumberwithReynoldsnumber . . . . . . 65 5 TurbulentflowoverCDairfoil(Re=160000) 69 5.1 EvolutionofGhorbaniasl’smodelconstantC . . . . . . . . . . . . . . . . 70 s 5.2 Flowtopology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3 Pressureandfrictioncoefficientsdistributionontheairfoilsurface . . . . . 73 5.4 Boundarylayervelocityprofiles . . . . . . . . . . . . . . . . . . . . . . . 75 Tableofcontents ix 5.5 Wallpressurespectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.6 Theaveragevelocityprofilesinthewake . . . . . . . . . . . . . . . . . . . 79 5.7 Stressesintheturbulentboundarylayerandthelawofthewall . . . . . . . 84 5.8 Spanwisepressurecoherencefunctionandlength . . . . . . . . . . . . . . 87 5.9 Spatialconvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.1 Flowtopology,pressureandfrictioncoefficientsdistribution . . . . 90 5.9.2 Boundarylayervelocityprofiles . . . . . . . . . . . . . . . . . . . 93 5.9.3 Stressesintheturbulentboundarylayer . . . . . . . . . . . . . . . 93 5.9.4 Wallpressurespectra . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.9.5 Spanwisepressurecoherencefunctionandlength . . . . . . . . . . 94 5.10 Spanwiseextensioneffects,z/C=0.2 . . . . . . . . . . . . . . . . . . . . . 96 6 Aerocousticsresults 101 6.1 BroadbandnoiseatReynoldsnumberof160000 . . . . . . . . . . . . . . . 101 6.1.1 Amiet’saeroacousticstheory . . . . . . . . . . . . . . . . . . . . . 101 6.1.2 Curle’sintegralformulation . . . . . . . . . . . . . . . . . . . . . 106 6.1.3 Lighthill’sanalogy . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Comparisonoftheappliedhybridmethods,conclusions . . . . . . . . . . . 131 7 Conclusionsandperspectives 139 References 145 AppendixA Theleading-edgenoiseorturbulenceimpactnoiseformulation[29] 155 AppendixB Amiet’stheory: transferfunctionsderivation[29,31–33,99] 163 B.1 Leadingedgecase(turbulence-interactionnoise): . . . . . . . . . . . . . . 163 B.1.1 TheanalyticsolutionusingSchwarzschild’stechnique . . . . . . . 165 B.2 Trailingedgecase: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 B.2.1 Supercriticalgust: . . . . . . . . . . . . . . . . . . . . . . . . . . 170 B.2.2 Subcriticalgust: . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 AppendixC Ghorbaniasl’sSGSmodelderivation[50] 173 Appendix D The spatial discretization of the 2D NS equations by Galerkin finite elementsmethods[43] 177 AppendixE EnsightGoldformatasimplementedinSFELES 181 x Tableofcontents AppendixF Hydrodynamicsreflectionsatthemeshoutlet,thephysicalboundary condition 183 F.1 Thephysicalboundarycondition . . . . . . . . . . . . . . . . . . . . . . . 186 F.1.1 Thegoverningequations . . . . . . . . . . . . . . . . . . . . . . . 186 F.1.2 AdaptationforastructuredpolargridandaCartesiangrid . . . . . 189 F.1.3 Implementation in SFELES for unstructured grids, generalization for3Dflows,proposingapressureequationfortheoutletBC . . . 190 F.1.4 Validationofthephysicalboundarycondition: Velocitiesapproach . 191 F.1.5 Validationofthephysicalboundarycondition: Pressureapproach . 196 Appendix G Tonal noise corresponding to the vortex shedding at Reynolds num- berof12000 203 G.1 ThesoundradiatedoftheCDairfoilina2dlaminarunsteadyregime,Re=12000204 G.1.1 ResultsforLighthill’sanalogy . . . . . . . . . . . . . . . . . . . . 204 G.1.2 ResultsforMöhring’sanalogy . . . . . . . . . . . . . . . . . . . . 208 G.1.3 ResultsforCurle’sformulation . . . . . . . . . . . . . . . . . . . . 212 G.2 ThesoundradiatedoftheCDairfoilina3dlaminarunsteadyregime,Re=12000215

Description:
[5] Roeck, W.R., Hybrid methodologies for the computational aeroacoustic analysis of confined, subsonic flows, 2007, PhD Thesis, Katholieke Universiteit Leuven, Belgium. [6] Brooks, T.F., Pope, D.S. and Michael, A., Airfoil Self-Noise and Prediction, NASA reference publication, 1989, (1218). [7] Br
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.