ebook img

Boundary Stabilization of Parabolic Equations PDF

222 Pages·2019·3.065 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Boundary Stabilization of Parabolic Equations

Progress in Nonlinear Differential Equations and Their Applications Subseries in Control 93 Ionut¸ Munteanu Boundary Stabilization of Parabolic Equations Progress in Nonlinear Differential Equations and Their Applications PNLDE Subseries in Control Volume 93 Editors Jean-Michel Coron, Université Pierre et Marie Curie, Paris, France Editorial Board ViorelBarbu,FacultateadeMatematică,Universitatea“AlexandruIoanCuza”din, Iaşi, Romania Piermarco Cannarsa, Department of Mathematics, University of Rome “Tor Vergata”, Roma, Italy Karl Kunisch, Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria Gilles Lebeau, Laboratoire J.A. Dieudonné, Université de Nice Sophia-Antipolis, Nice, France Tatsien Li, School of Mathematical Sciences, Fudan University, Shanghai, China Shige Peng, Institute of Mathematics, Shandong University, Jinan, China EduardoSontag,DepartmentofElectricalandComputerEngineering,Northeastern University, Boston, MA, USA EnriqueZuazua,DepartamentodeMatemáticas,UniversidadAutónomadeMadrid, Madrid, Spain More information about this series at http://www.springer.com/series/15137 ţ Ionu Munteanu Boundary Stabilization of Parabolic Equations Ionuţ Munteanu Faculty of Mathematics Alexandru IoanCuzaUniversity Iaşi,Romania ISSN 1421-1750 ISSN 2374-0280 (electronic) Progressin Nonlinear Differential EquationsandTheir Applications PNLDESubseries inControl ISBN978-3-030-11098-7 ISBN978-3-030-11099-4 (eBook) https://doi.org/10.1007/978-3-030-11099-4 LibraryofCongressControlNumber:2018966441 Mathematics Subject Classification (2010): 35K05, 93D15, 93B52, 93C20, 47F05, 60H15, 35R09, 35Q30,35Q92 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my beloved daughter, Anastasia Preface In recent years, many researchers have been working on designing stabilizers in different technological areas suchas surface designfor controlling aircraft, voltage regulators in electronics, camera stabilizers, chemical substances to prevent unwanted change in the state of another substance, different types offood preser- vatives,medicalprocessesforpreventingshockinsickorinjuredpeople,andmood stabilizers, among many others. Inthisbook,wewilltreatthissubjectfromamathematicalpointofview.More exactly, we will consider different models from different fields such as fluid flows modeledbytheNavier–Stokesequations;electricallyconductedfluidflowsmodeled by the magnetohydrodynamic equations; phase separation modeled by the Cahn– Hilliardequations;differentcasesofsemilinearheatequationsarisingfrombiology, chemistry,orpopulationdynamicsaswellastheirstochasticversions.Thenwewill address the problem of boundary stabilization associated with these models. All thesemodelscanbecombinedundertherubricofabstractparabolic-likeequations, namelyequationswhoselinearpartsaregeneratedbyanalyticC -semigroups.That 0 is why, in Chap. 2, we consider the boundary stabilization problem associated to abstract parabolic-like equations and develop an algorithm to design proportional- type boundary feedback stabilizers, offinite-dimensional structure, expressed in a verysimpleform,thatareeasytomanipulateinnumericalsimulations.Itshouldbe emphasized that no rigorous stabilization theory is possible without a unique con- tinuation theory for the eigenfunctions of the linear operator obtained from the linearization of the equation around the target solution. So, once a model, such as thoseabove,canbeformulatedinaparabolicabstractform,theboundarystabilizing controldesignmethodcanbeapplied,providedthatauniquecontinuationproperty oftheeigenfunctions isestablished. Thisprovides thepowerofthiscontroldesign technique;namely,itcanbeappliedtoawiderangeofmodels.Butitrequiresthat we prove a priori a unique continuation result that relies onsome advancedresults andtechniquesinvolvingboththetheoryofparabolic-likeequationsandfunctional analysis. vii viii Preface Wementionthatintheliterature,therearealsoothernotableresultsconcerning the boundary stabilization of parabolic equations, and though we mention some basicreferencesandofferabriefpresentationofothersignificantworksinthefield, wehavenotpresentedthemindetail.Weconfineourselvestotheproportional-type feedbackdesignonly,whichisbasedonthespectraldecompositionofalinearized system in stable and unstable systems, thereby omitting other important results in theliterature.Thisbookwaswrittenwiththegoalofpresentingindetailnewresults related to an algorithm for the design of proportional-type feedback forms, which enabledustoobtainsomeofthefirstresultsinareassuchasboundarystabilization of the Cahn–Hilliard system, and trajectories for the semilinear heat equation and even for stochastic partial differential equations. These ideas are still being devel- oped, andone might expect inthe future toobtain other spectacular achievements. Besides stabilization, the robustness of stabilizable feedback under stochastic perturbations is also discussed. The form of the feedback is based on the eigen- functions of the linear operator, and we have tried to use a minimal set of them. The reader is assumed to have a basic knowledge of linear functional analysis, linear algebra, probability theory, and the general theory of elliptic, parabolic, and stochastic equations. Most ofthis isreviewed inChap.1. The material includedin this book (excepting the comments on the references) represents the original con- tribution of the author and his coworkers. TheauthorisindebtedtoProf.ViorelBarbuforsuggestingtous,fiveyearsago, that we develop some of his own earlier ideas on constructing proportional-type feedbackforms,whichledtotheconceptionofthisentirebook.Weareindebtedto him as well for encouraging us to write this book and for useful discussions, pertinent observations and suggestions, andunstinting supportand guidance inthe writing of this book. Many thanks go to Hanbing Liu, and special thanks to my parents for their love and support. Also, the author is indebted to Mrs. Elena Mocanu, from the Institute of Mathematics Iaşi, who assisted in the typesetting of this text. Iaşi, Romania Ionuţ Munteanu August 2018 Contents 1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Notation and Theoretical Results. . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Stabilization of Abstract Parabolic Equations. . . . . . . . . . . . . . . . . . 19 2.1 Presentation of the Abstract Model . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 The Design of the Boundary Stabilizer . . . . . . . . . . . . . . . . . . . . 25 2.2.1 The Case of Mutually Distinct Unstable Eigenvalues. . . . . 26 2.2.2 The Semisimple Eigenvalues Case . . . . . . . . . . . . . . . . . . 37 2.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Stabilization of Periodic Flows in a Channel. . . . . . . . . . . . . . . . . . . 49 3.1 Presentation of the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 The Stabilization Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.1 The Feedback Law and the Stability of the System . . . . . . 63 3.3 Design of a Riccati-Based Feedback . . . . . . . . . . . . . . . . . . . . . . 71 3.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Stabilization of the Magnetohydrodynamics Equations in a Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1 The Magnetohydrodynamics Equations of an Incompressible Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 The Stabilizing Proportional Feedback. . . . . . . . . . . . . . . . . . . . . 86 4.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Stabilization of the Cahn–Hilliard System . . . . . . . . . . . . . . . . . . . . 93 5.1 Presentation of the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.1 Stabilization of the Linearized System . . . . . . . . . . . . . . . 96 5.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ix x Contents 6 Stabilization of Equations with Delays . . . . . . . . . . . . . . . . . . . . . . . 109 6.1 Presentation of the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 Stability of the Linearized System . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3 Feedback Stabilization of the Nonlinear System (6.1) . . . . . . . . . . 120 6.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Stabilization of Stochastic Equations. . . . . . . . . . . . . . . . . . . . . . . . . 127 7.1 Robustness in the Presence of Noise Perturbation of the Boundary Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2 Stabilization of the Stochastic Heat Equation on a Rod. . . . . . . . . 136 7.2.1 Mild Formulation of the Solution and Proof of the Main Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.3 Stabilization of the Stochastic Burgers Equation. . . . . . . . . . . . . . 150 7.4 Stabilization by Discrete-Time Feedback Control . . . . . . . . . . . . . 162 7.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8 Stabilization of Unsteady States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.1 Presentation of the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.2 The Stabilization Result and Applications . . . . . . . . . . . . . . . . . . 172 8.2.1 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 9 Internal Stabilization of Abstract Parabolic Systems . . . . . . . . . . . . 187 9.1 Presentation of the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 9.2 Stabilization of the Full Nonlinear Equation (9.9). . . . . . . . . . . . . 195 9.3 The Design of a Real Stabilizing Feedback Controller . . . . . . . . . 203 9.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 References.... .... .... .... ..... .... .... .... .... .... ..... .... 207 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 213

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.