ebook img

Bottom Mass from Nonrelativistic Sum Rules at NNLL PDF

0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bottom Mass from Nonrelativistic Sum Rules at NNLL

Bottom Mass from Nonrelativistic Sum Rules at NNLL∗ 3 1 0 2 Maximilian Stahlhofen† n DESYTheoryGroup,Notkestraße85,D-22607Hamburg,Germany a E-mail: [email protected] J 4 2 We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) ϒ ] sumruleswithrenormalizationgroupimprovement(RGI)atnext-to-next-to-leadinglogarithmic h p (NNLL)order. Thecomparisontopreviousfixed-orderanalysesshowsthattheRGIcomputedin - thevNRQCDframeworkleadstoasubstantialstabilizationofthetheoreticalsumrulemoments p e withrespecttoscalevariations. Asinglemomentfit(n=10)totheavailableexperimentaldata h yieldsM1S=4.755±0.057 ±0.009 ±0.003 GeVforthebottom1Smassandm (m )= [ b pert αs exp b b 4.235±0.055 ±0.003 GeVforthebottomMSmass. Thequoteduncertaintiesrefertothe 3 pert exp v perturbativeerrorandtheuncertaintiesassociatedwiththestrongcouplingandtheexperimental 3 input. 9 4 3 . 1 0 3 1 : v i X r a XthQuarkConfinementandtheHadronSpectrum, October8-12,2012 TUMCampusGarching,Munich,Germany ∗preprintDESY13-008,UWThPh-2013-3 †Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen 1. Introduction Determinationsofthebottomquarkmassm havebeenthesubjectofalargenumberofQCD b precisionstudiesinthepast. ForasummarywerefertoRef.[1]. Thebottommassisanimportant parameterinnumeroustheoreticalpredictionsnotonlywithin,butalsobeyondthestandardmodel. The data from e+e− collisions is the common experimental input in many determinations of m ,becauseinparticulartheregionclosetothebb¯ thresholdandtheϒresonancesofthetotalcross b sectionareverysensitivetothebottommassparameter. Oneclassicapproachisbasedonthesum rule[2]thatstatestheequalityoftheexperimentalmoment (cid:90) ∞ ds Pnexp = sn+1Rbb¯(s), (1.1) 0 where Rbb¯ = σ(e+e− → bb¯+X)/σpt is the measured inclusive (hadronic) bottom pair produc- tioncrosssectionnormalizedbyσ =4πα2/3s,andthecorrespondingtheoreticalexpressionPth pt n obtained from an operator product expansion (OPE) in QCD. For not too large n nonperturbative powercorrectionstoPtharesuppressedandthetheoreticalpredictionisdominatedbytheperturba- n tiveQCD(pQCD)resultforanexternalbottomquarkpair. Concerningtheappropriatetheoretical formalism bottom mass determinations from the equation Pth(m )=Pexp differ depending on the n b n valuesforn. Wedistinguishtwoclasses. For n< 3 the theoretical moment Pth is governed by fluctuations at the scale m . Therefore ∼ n b higherordertermsintheOPEtypicallyscalelikepowersofΛ /m andtheconventionalpQCD QCD b resultisinprinciplesufficientforaprecisedeterminationofthebottommass. Recentlow-nanaly- ses[3,4]employanapproximatefour-looppQCDcalculation. Ref.[5]usesarelatedvariantofthis method,wheretheintegrationinEq.(1.1)isonlycarriedoutoverafiniterangeandacompensating term (according to Cauchy’s theorem) is added to the theory prediction. Both low-n approaches have the drawback that precise experimental data is currently only available in the region close to the production threshold (and for the ϒ resonances) and this deficiency has to be compensated by additional theory input in one way or the other1, see e.g. Refs. [6, 4] for discussions on the cor- respondinguncertainties. Powercorrectionstotheadditionaltheorycontribution2 inthemoments arecommonlyassumedtobesmall. On the other hand large-n moments, where 4<n<10, receive only negligible contributions ∼ ∼ from the energy regions beyond threshold and are dominated by the experimentally well-known ϒ-resonances and hence nonrelativistic bound state dynamics. The corresponding sum rules are thereforeoftencallednonrelativisticorϒsumrules. Duetothenonrelativisticnatureofthelarge-n √ momentsinadditiontothehardscalem thesoftscalem / nandtheultrasoftscalem /nemerge b b b as relevant short-distance scales and the convergence of the OPE requires the upper limit n<10. ∼ √ The hierarchy between these scales induces sizable terms ∝(α n)k, the so-called Coulomb sin- s gularities,andlargelogarithms∝(α ln(n))l intheperturbativeloopexpansion. Theresummation s 1In fact the finite energy sum rule used in Ref. [5] is equivalent to an infinite energy sum rule, if in the range abovethefiniteenergylimitthetheoryresultisusedforthetotalcrosssectionRbb¯ inEq.(1.1)andtheinfinitemoment integrationconverges. 2relatedtothefactthattheenergyintegrationcontourneedstobedeformedontothepositiverealaxisclosetothe finiteenergycutoff 2 BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen of the Coulomb singular terms to all orders can be performed within the effective field theory NRQCD [7, 8]. Extensions of this framework like the pNRQCD [9, 10] and the vNRQCD [11] formalism also allow the systematic resummation of the logarithmic terms. The renormalization group improved (RGI) result for the theoretical large-n moments is expressed as a simultaneous √ expansioninα and1/ nandschematicallytakestheform s √ (cid:104) √ √ (cid:105) P ∼ ∑(α n)k(α ln(n))l 1(LL);α ,1/ n(NLL);α2,α / n,1/n(NNLL);... (1.2) n s s s s s k,l for the leading logarithmic (LL), next-to leading logarithmic (NLL) and next-to-next-to leading logarithmic (NNLL) order. Prior to the work presented here the RGI bottom mass determination fromlarge-nsumrulesreachedNLLandpartlyNNLLlevel[12,13],butdidnotincludetheNNLL runningofthedominantheavyquarkpairproductioncurrent. Earlierfixed-orderanalyses[14,15, 16,17,18,19] up tonext-to-next-to-leading order (NNLO) only resumthe Coulomb singularities and count (α ln(n))l as αl in Eq. (1.2). The convergence of the fixed-order expansion however s s turned out to be rather unsatisfactory, see Ref. [20] for a review. As we will show below RGI computationsimprovetheconvergencepropertiessubstantiallyandallowforareliableandprecise determinationofthebottomquarkmassfromnonrelativisticsumrules. Foranydeterminationofthebottommassparameterwithaprecisionatthepercentlevelitis mandatorytoadoptanappropriateshort-distancemass-schemeinordertoavoidO(Λ )infrared QCD renormalon ambiguities. Suitable mass schemes are the MS scheme for the low-n sum rules and so-calledthresholdmass-schemes[21,22,23,24]forthelarge-nsumrules. The present talk focuses on the determination of the 1S bottom mass [22] from RGI large-n sumrulesandismostlybasedontherecentlypublishedRef.[25]. Inthisanalysissinglemoment fits of the mass parameter are carried out including for the first time the almost complete NNLL correction to the theoretical moments. The still missing contribution from the NNLL soft mix- ing correction to the running of the heavy quark production current can be neglected under the assumptionthatitssizeiscomparabletothealreadyknownsoftNNLLterms. 2. ExperimentalMoments Thedominantcontribution(87%-98%forn=6-12)totheexperimentalmomentsinEq.(1.1) for large n comes from the first four ϒ resonances, ϒ(1S)-ϒ(4S), which we construct from their electromagneticdecaywidthsandmasses[1]usingthenarrowwidthapproximation. Forthecon- tribution from the threshold region (5.7% - 1.4% for n=6-12) we use BABAR data [26] in the √ √ energy range between s=10.62 and s=11.21 and follow the approach of Ref. [27]. Finally the continuum region above 11.21 GeV contributes only a tiny fraction. It can be modelled by the respective pQCD result [28] assigning a model uncertainty of 10% to the cross section with- outintroducinganumericallyrelevanterrortotheexperimentalmoments. Weemphasizethatthis continuumcontributionshouldberegardedasaroughestimateforthe(missing)experimentaldata ratherthananadditionaltheoryinput. Theprecisenumbersfortherelevantexperimentalmoments togetherwiththeirstatisticalandsystematicalerrorscanbefoundinRef.[25]. 3 BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen 3. TheoreticalMomentsatNNLL For details on the derivation of the theoretical moments according to the scheme in Eq. (1.2) we refer to Refs. [14, 15, 18, 25]. The resummation of nonrelativistic logarithms follows the vN- RQCDapproach[25]. Hereweshallonlydiscussthegeneralstructureandthelatestcomputational progressconcerningtheRGIofthetheoreticallarge-nmoments. Thetheorypredictionforthenor- malized total bb¯ pair production cross section Rbb¯(s) in the threshold region is due to the optical theoremrelatedtononrelativisticcurrent-currentcorrelators,whichdescribetheproductionandan- nihilationofaheavyquarkpair. Explicitresultsforthesecorrelatorscanbeadoptedfromprevious worksontt¯thresholdproductionine+e− collisions[29,30,31,32]. Afterthemomentintegration overstheresultforthen-thmomentthroughNNLLordercanbeexpressedas √ 3N Q2 π (cid:26) (cid:27) Pth,NNLL= c b c (h,ν)2ρ (h,ν)+2c (h,ν)c (h,ν)ρ (h,ν) , (3.1) n 4n+1(Mpole)2nn3/2 1 n,1 1 2 n,2 b where the ρ arise from the integration of the nonrelativistic current correlators and the c are n,i i Wilson coefficients of the respective effective currents. The variables h and ν are introduced to parametrizethematchingandrenormalizationscalesoftheeffectivetheory. Thenaturalchoiceis √ h∼1,ν ∼1/ n. Theresidualdependenceofthebottommassfitontheseparametersisusedfor theperturbativeerrorestimateinSec.4. Equation(3.1)explicitlydependsonthebottompolemassMpole,whichwetranslatetothe1S b massM1S usingtherelation b Mpole=M1S{1+∆LL+∆NLL+[(∆LL)2+∆NNLL+∆NNLL]}. (3.2) b b c m The∆termsarelabeledaccordingtothenonrelativisticordercountingschemeinEq.(1.2). Explicit expressionscanbefoundinRef.[30]. Forthefinaltheoreticalexpressionusedinthesinglemoment fitsbelowweconsistentlyexpandouttheperturbativeseriesfortheWilsoncoefficientsc together i with the nonrelativistic expansion series for the ρ and Mpole in Eq. (3.1).3 The convergence n,i b propertiesofthisexpansionarediscussedindetailinRef.[25]. Apart from the NNLL correction to the renormalization group (RG) running of the Wilson coefficient c associated with the dominant heavy quark production current all relevant contribu- 1 tions to Eq. (3.1) are known completely. Concerning the NNLL running of c all (“non-mixing”) 1 contributions from genuine vNRQCD three-loop diagrams were computed in Ref. [32]. The cor- responding pNRQCD calculation is not available at present. The remaining NNLL (“mixing”) contributions are generated by corrections to the vNRQCD four-quark operator (“potential”) co- efficients appearing in the NLL anomalous dimension of c . Recent results for the ultrasoft NLL 1 runningofthesubleading(O(v)andO(v2))nonrelativisticquark-antiquarkpotentials[33,34,35] completed the calculation of the ultrasoft part of the NNLL mixing contributions [34]. It is the dominantNNLLmixingeffect[36,25]intherunningofc . Likewisetheultrasofttermsdominate 1 the NNLL non-mixing running [32]. Thus at present the only unknown piece in Pth,NNLL is the n NNLLsoftmixingcontributiontotheRGevolutionofc . 1 3WeareforcedtosimultaneouslyexpandouttheseriesforMbpole andtheρn,i inthewayexplainedinRef.[18]in ordertoachieveapropercancellationoftheleadingrenormalon. 4 BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen 1.30 1.25 1.20 c (ν) 1 1.15 c (1) 1 1.10 1.05 1.00 0.3 0.4 0.5 0.6 0.7 0.8 Ν Figure1: RGevolutionofthecurrentcoefficientc : NLL(blue)andapproximateNNLLresult(red)with 1 uncertaintyduetotheunknownNNLLsoftmixingcontribution(lightredband). Figure 1 shows the dependence of the current coefficient c (ν)≡c (h=1,ν) on the renor- 1 1 malizationparameterν forthecompleteNLLresult(blue)andanapproximateNNLLresult(red), whereallknownNNLLcontributions4 areadded. The(lightred)bandaroundtheNNLLcurveis generated by varying all known soft NNLL contributions to that curve by a factor between 0 and 2. The uncertainty due to the unknown NNLL soft mixing terms estimated by this band is much smallerthanthelargetotalNNLLcorrectionfromtherunningintherelevantrange0.3(cid:46)ν (cid:46)0.6 andcansafelybeneglectedinthefollowing[25]. The (known) leading nonperturbative power correction to the moment Pth,NNLL is associated n with the gluon condensate [14] and turns out to be completely negligible for our analysis [25]. Higherorderpowercorrectionsaresufficientlysuppressedforn(cid:46)10. 4. SingleMomentFits ThevNRQCDexpressionforthetheoreticalmomentPth,NNLL exhibitsaresidualdependence n on the scale µ =hm , where the effective theory is matched to full QCD, as well as on the two h b correlated renormalization scales µ =hm ν (soft) and µ =hm ν2 (ultrasoft). Here and in the S b U b following m ≡ M1S. The three unphysical scales can be consistently parametrized by the two b b variableshandν. Inordertoestimatetheuncertaintiesfromhigherorderperturbativecorrections wechoosetovarytheparametersforthebottommassfitswithintheh-ν regionaroundthedefault √ valuesν =ν :=1/ n+0.2andh=1asdefinedinFig.2a. Theplotalsoshowsthecontoursof ∗ theresultforM1S fromtheequationPth(M1S)=Pexp,i.e. aNNLLsinglemomentfitforn=10. b 10 b 10 Withtheseconventionsfortheh-ν scalingvariationswecannowgenerateerrorbandsaround thedefaultfits(dashedlines)forM1S(α )asshowninFig.3. Thetwopanelsinthisfigurecompare b s thefitsofthebottommassasafunctionofthestrongcouplingα (M )usingtheoreticalmoments s Z calculatedinthefixed-order(a)andtheRGIapproach(b). Thefixed-ordermomentsareobtained by switching off the all-order resummation of nonrelativistic logarithms in our RGI moments as explainedinRef.[25]. Sinceatleadingorder(LO)theonlyrelevantphysicalscaleisthesoftscale 4These even include the first logarithm ∝α3lnν in the NNLL series of the soft mixing contribution [32]. The s subsetofspin-dependenttermsintheNNLLsoftmixingcontributionisalsoknown[37],buttinyandneglectedhere. AllrelevantanalyticNNLLexpressionsforc aregiveninRef.[25]. 1 5 BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen a) b) 2.0 4.73 4.90 4.67 4.85 1.5 " V 4.80 f 4.82 Ge ! 4.76 4.7 S 4.75 1.0 1 M 4.85 4.70 4.91 4.974.88 0.5 4.94 4.79 4.7 4.65 5 10 15 20 0.5 1.0 1.5 2.0 n h Figure2: Panela): Contourplotofthe1SbottommassdeterminedfromPth(m )=Pexp asafunctionof 10 b 10 theparametershand f ≡ν/ν . ThedifferentcontoursarelabeledbytherespectivemassvalueinGeV.The ∗ regionintheh-f planeboundedbythereddashedlinerepresentstheparameterspacewescantodetermine the variation of the mass, which contributes to our perturbative error estimate. The region is defined by 0.75≤h≤1/0.75anddemandingthat 0.5µ∗ ≤µ ≤2µ∗, where µ∗ =m ν2. Theredpointinsidethis U U U U b ∗ areaindicatesourdefaultvalues f =h=1forthemassdetermination. Panelb): 1Smassresults(dots)with perturbativeerrorbarsfromsinglemomentfitsforn=4ton=20asexplainedinthetext. theLOandLLbandsinFig.3agreeexactly. Comparingthenext-to-leading(NLO)withtheNLL and in particular the NNLO with the NNLL results we however observe much larger scale vari- ations of the fixed-order results. This clearly indicates a substantially improved precision related to the resummation of logarithms in the RGI approach. As argued in Ref. [25] we believe that in contrasttotheLLband,whichisgeneratedonlybysoftscalevariations,andthe(w.r.t. thedefault fits) strongly asymmetric NLL error bands the NNLL mass range gives a reliable estimate of the perturbative uncertainty. The observed bottom mass dependence on the input value for α (M ) is s Z rathermildandatleastintheinterval0.113≤α (M )≤0.120lineartoagoodapproximation[25]. s Z A far more detailed analysis of the numerical results including plots of Fig. 3 b type for different valuesofnaswellasmultiplemomentfitshasbeencarriedoutinRef.[25]. Thefinalresultforthe1SbottommassfromtheNNLLRGIsinglemomentanalysisforn=10 outlinedaboveis M1S = 4.755±0.057 ±0.009 ±0.003 GeV, (4.1) b pert αs exp where we have used the current world average α (M ) = 0.1183±0.0010 for the strong cou- s Z pling[38]. ThecentralvalueinEq.(4.1)correspondstotheresultofthedefaultfit(h=1,ν =ν ). ∗ The quoted errors refer to the perturbative uncertainty, which we estimate by half the size of the band from the scale variations, and the errors from the uncertainties of α and the experimental s datausedforthefit. Figure2bcomparestheM1S resultsandtheirrespectiveperturbativeerrorbarsfromfitsusing b the moments n = 4 to n = 20. Within the errors all central values are in very good agreement. Wehoweveremphasizethatfornconsiderablylargerthan10formallytheOPEforthetheoretical moments breaks down due to possibly uncontrolled higher order power corrections, although the 6 BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen a) n(cid:61)10 b) n(cid:61)10 5.0 5.0 5.0 5.0 NNLO NNLL 4.8 4.8 4.8 4.8 LO LL V (cid:76) V (cid:76) e 4.6 4.6 e 4.6 4.6 G G NLL (cid:72) (cid:72) 1S 4.4 4.4 1S 4.4 4.4 M NLOM 4.2 4.2 4.2 4.2 4.0 4.0 4.0 4.0 0.116 0.117 0.118 0.119 0.120 0.116 0.117 0.118 0.119 0.120 Α M Α M s Z s Z (cid:72) (cid:76) (cid:72) (cid:76) Figure3: Comparisonofthemassesobtainedfromthefixedorder(a)andRGIcalculation(b)ofthe10-th moment,Pth(m )=Pexp. InpanelsaandbweshowthemassvalueswithLO,NLO,NNLOandLL,NLL, 10 b 10 NNLLaccuracy, respectively. Thedashedlinesdisplaytheresultsfromthefitswiththedefaultvaluesfor theparametershandν.Thecorresponding(partlyoverlapping)errorbandsweregeneratedbyvaryinghand ν withintheparameterspacedefinedinFig.2a. (Wealsoaddedthetinyexperimentalerrorinquadrature, which is however hardly visible.) Concerning panel a, we note that for some low m values in the NLO b band and the associated values for h and ν the ultrasoft coupling α (µ ) reaches 0.65 causing numerical S U instabilities. leading power correction still appears to be small as long as n (cid:46) 20. We therefore regard the error bars for n>10 shown in Fig. 2 b as a confirmation of the perturbative stability of the RGI vNRQCDcalculation,butdonotusethemforquotingourfinalerrors. Ontheotherhandtheerror bars for n<10 increase for smaller n because the sensitivity of the theoretical moments on the massdecreases[25],cf. Eq.(3.1). Usingtherespective(fixed-order)relationstothepolemass,seeRefs.[18,19]fordetails,we cantranslatethe1SmassresultinEq.(4.1)totheMS-massandobtain m (m ) = 4.235±0.055 ±0.003 GeV, (4.2) b b pert exp wherewehaveaddedanadditionalconversionerrorof15MeVtotheperturbativeuncertainty[25]. Interestingly the α dependence of the original 1S mass result in Eq. (4.1) and the intrinsic α s s dependence of the 1S-MS conversion formula almost cancel exactly. The remaining α induced s erroristhereforenegligibleandnotquotedinEq.(4.2). 5. Summary We have presented the determination of the 1S bottom mass from (single) large-n moment fits with RGI at NNLL order as carried out in Ref. [25]. The main result is given in Eq. (4.1). ConvertedtotheMSschemeourresult(Eq.(4.2))isconsistentwiththeNLLRGIlarge-nresultof Ref.[12],butnotquitecompatiblewiththelatestresultsfromlow-nsumruledeterminations[3,5]. We however note that our calculation (like Ref. [12]) treats the charm quark as massless, while previousfixed-order analyses[39,19]have shownthatfinite charmmasseffects areenhancedfor largenandcauseasizablemassshiftbetween−20and−30MeV.Asimilareffectisexpectedin theRGIanalysisandmighthelptoreconcilethediscrepancy. 7 BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen Acknowledgments IwouldliketothankAndréHoangforcommentsonthemanuscript. Thisworkwassupported bytheDFGunderEmmy-NoetherGrantNo. TA867/1-1. References [1] J.Beringeret.al.(ParticleDataGroup)Phys.Rev.D86(2012)010001. [2] V.Novikov,L.Okun,M.A.Shifman,A.Vainshtein,M.Voloshinet.al.Phys.Rept.41(1978)1–133. [3] K.Chetyrkin,J.Kuhn,A.Maier,P.Maierhofer,P.Marquardet.al.Phys.Rev.D80(2009)074010 [0907.2110]. [4] K.Chetyrkin,J.Kuhn,A.Maier,P.Maierhofer,P.Marquardet.al.Theor.Math.Phys.170(2012) 217–228[1010.6157]. [5] S.Bodenstein,J.Bordes,C.Dominguez,J.PenarrochaandK.SchilcherPhys.Rev.D85(2012) 034003[1111.5742]. [6] G.CorcellaandA.HoangPhys.Lett.B554(2003)133–140[hep-ph/0212297]. [7] W.CaswellandG.LepagePhys.Lett.B167(1986)437. [8] G.T.Bodwin,E.BraatenandG.P.LepagePhys.Rev.D46(1992)1914–1918 [hep-lat/9205006]. [9] A.PinedaandJ.SotoNucl.Phys.Proc.Suppl.64(1998)428–432[hep-ph/9707481]. [10] N.Brambilla,A.Pineda,J.SotoandA.VairoNucl.Phys.B566(2000)275[hep-ph/9907240]. [11] M.E.Luke,A.V.ManoharandI.Z.RothsteinPhys.Rev.D61(2000)074025[hep-ph/9910209]. [12] A.PinedaandA.SignerPhys.Rev.D73(2006)111501[hep-ph/0601185]. [13] A.PinedaandA.SignerNucl.Phys.B762(2007)67–94[hep-ph/0607239]. [14] M.VoloshinInt.J.Mod.Phys.A10(1995)2865–2880[hep-ph/9502224]. [15] A.HoangPhys.Rev.D59(1999)014039[hep-ph/9803454]. [16] K.MelnikovandA.YelkhovskyPhys.Rev.D59(1999)114009[hep-ph/9805270]. [17] M.BenekeandA.SignerPhys.Lett.B471(1999)233–243[hep-ph/9906475]. [18] A.HoangPhys.Rev.D61(2000)034005[hep-ph/9905550]. [19] A.Hoanghep-ph/0008102. [20] M.Battaglia,A.Buras,P.Gambino,A.Stocchi,D.Abbaneoet.al.hep-ph/0304132. [21] M.BenekePhys.Lett.B434(1998)115–125[hep-ph/9804241]. [22] A.HoangandT.TeubnerPhys.Rev.D60(1999)114027[hep-ph/9904468]. [23] A.Hoang,M.Beneke,K.Melnikov,T.Nagano,A.Otaet.al.Eur.Phys.J.directC2(2000)1 [hep-ph/0001286]. [24] A.PinedaJHEP0106(2001)022[hep-ph/0105008]. [25] A.Hoang,P.Ruiz-FemeniaandM.StahlhofenJHEP1210(2012)188[1209.0450]. 8 BottomMassfromNonrelativisticSumRulesatNNLL MaximilianStahlhofen [26] B.Aubertet.al.(BABARCollaboration)Phys.Rev.Lett.102(2009)012001[0809.4120]. [27] B.Dehnadi,A.H.Hoang,V.MateuandS.M.Zebarjad1102.2264. [28] K.Chetyrkin,A.Hoang,J.H.Kuhn,M.SteinhauserandT.TeubnerEur.Phys.J.C2(1998)137–150 [hep-ph/9711327]. [29] A.Hoang,A.Manohar,I.W.StewartandT.TeubnerPhys.Rev.Lett.86(2001)1951–1954 [hep-ph/0011254]. [30] A.Hoang,A.Manohar,I.W.StewartandT.TeubnerPhys.Rev.D65(2002)014014 [hep-ph/0107144]. [31] A.H.HoangandI.W.StewartPhys.Rev.D67(2003)114020[hep-ph/0209340]. [32] A.H.HoangPhys.Rev.D69(2004)034009[hep-ph/0307376]. [33] A.PinedaPhys.Rev.D84(2011)014012[1101.3269]. [34] A.H.HoangandM.StahlhofenJHEP1106(2011)088[1102.0269]. [35] A.H.HoangandM.StahlhofenPhys.Rev.D75(2007)054025[hep-ph/0611292]. [36] A.HoangandM.Stahlhofen1111.4486. [37] A.A.Penin,A.Pineda,V.A.SmirnovandM.SteinhauserNucl.Phys.B699(2004)183–206 [hep-ph/0406175]. [38] S.Bethke,A.H.Hoang,S.Kluth,J.Schieck,I.W.Stewartet.al.1110.0016. [39] A.HoangandA.ManoharPhys.Lett.B483(2000)94–98[hep-ph/9911461]. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.