ebook img

Birth, growth and computation of pi to ten trillion digits PDF

59 Pages·2013·0.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Birth, growth and computation of pi to ten trillion digits

Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 http://www.advancesindifferenceequations.com/content/2013/1/100 RESEARCH OpenAccess Birth, growth and computation of pi to ten trillion digits RaviPAgarwal1*,HansAgarwal2andSyamalKSen3 *Correspondence: [email protected] Abstract 1DepartmentofMathematics,Texas Theuniversalrealconstantpi,theratioofthecircumferenceofanycircleandits A&MUniversity-Kingsville,Kingsville, TX,78363,USA diameter,hasnoexactnumericalrepresentationinafinitenumberofdigitsinany Fulllistofauthorinformationis number/radixsystem.Ithasconjureduptremendousinterestinmathematiciansand availableattheendofthearticle non-mathematiciansalike,whospentcountlesshoursovermillenniatoexploreits beautyandvariedapplicationsinscienceandengineering.Thearticleattemptsto recordthepiexplorationovercenturiesincludingitssuccessivecomputationtoever increasingnumberofdigitsanditsremarkableusages,thelistofwhichisnotyet closed. Keywords: circle;error-free;historyofpi;Matlab;randomsequence;stabilityofa computer;trilliondigits Allcircleshavethesameshape,andtraditionallyrepresenttheinfinite,immeasurableand evenspiritualworld.Somecirclesmaybelargeandsomesmall,buttheir‘circleness’,their perfectroundness,isimmediatelyevident.Mathematicianssaythatallcirclesaresimilar. Beforedismissingthisasanutterlytrivialobservation,wenotebywayofcontrastthatnot alltriangleshavethesameshape,norallrectangles,norallpeople.Wecaneasilyimag- inetallnarrowrectanglesortallnarrowpeople,butatallnarrowcircleisnotacircleat all.Behindthisunexcitingobservation,however,liesaprofoundfactofmathematics:that theratioofcircumferencetodiameteristhesameforonecircleasforanother.Whether the circle is gigantic, with large circumference and large diameter, or minute, with tiny circumferenceandtinydiameter,therelativesizeofcircumferencetodiameterwillbeex- actlythesame.Infact,theratioofthecircumferencetothediameterofacircleproduces, the most famous/studied/unlimited praised/intriguing/ubiquitous/external/mysterious mathematicalnumberknowntothehumanrace.Itiswrittenaspiorasπ [–],sym- bolically,anddefinedas distancearoundacircle C pi= = =π. distanceacrossandthroughthecenterofthecircle D Sincetheexactdateofbirthof π isunknown, onecouldimagine that π existedbefore theuniversecameintobeingandwillexistaftertheuniverseisgone.Itsappearancein thedisksoftheMoonandtheSun,makesitasoneofthemostancientnumbersknown tohumanity.Itkeepsonpoppingupinsideaswellasoutsidethescientificcommunity, forexample,inmanyformulasingeometryandtrigonometry,physics,complexanalysis, cosmology,numbertheory,generalrelativity,navigation,geneticengineering,statistics, ©2013Agarwaletal.;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproduction inanymedium,providedtheoriginalworkisproperlycited. Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page2of59 http://www.advancesindifferenceequations.com/content/2013/1/100 fractals,thermodynamics,mechanics,andelectromagnetism.Pihidesintherainbow,and sitsinthepupiloftheeye,andwhenaraindropfallsintowaterπemergesinthespreading rings.Picanbefoundinwavesandripplesandspectraofallkindsand,therefore,πoccurs incolorsandmusic.ThedoublehelixofDNArevolvesaroundπ.Pihaslatelyturnedupin super-strings,thehypotheticalloopsofenergyvibratinginsidesubatomicparticles.Pihas beenusedasasymbolformathematicalsocietiesandmathematicsingeneral,andbuilt intocalculatorsandprogramminglanguages.Piisrepresentedinthemosaicoutsidethe mathematicsbuildingattheTechnischeUniversitätBerlin.Piisalsoengravedonamosaic atDelftUniversity.Evenamoviehasbeennamedafterit.PiisthesecretcodeinAlfred Hitchcock’s‘TornCurtain’andin‘TheNet’starringSandraBullock.Pidayiscelebrated onMarch(whichwaschosenbecauseitresembles.).Theofficialcelebrationbe- ginsat:p.m.,tomakeanappropriate.whencombinedwiththedate.In, theUnitedStatesHouseofRepresentativessupportedthedesignationofPiDay.Albert EinsteinwasbornonPiDay(March). Throughoutthehistoryofπ,whichaccordingtoBeckmann()‘isaquaintlittlemir- rorofthehistoryofman’,andJamesGlaisher(-)‘hasengagedtheattentionof many mathematicians and calculators from the time of Archimedes to the present day, andhasbeencomputedfromsomanydifferentformula,thatacompleteaccountofits calculationwouldalmostamounttoahistoryofmathematics’,oneoftheenduringchal- lenges for mathematicians has been to understand the nature of the number π (ratio- nal/irrational/transcendental),andtofinditsexact/approximatevalue.Thequest,infact, startedduringthepre-historiceraandcontinuestothepresentdayofsupercomputers. Theconstantsearchbymanyincludingthegreatestmathematicalthinkersthattheworld produced, continues for new formulas/bounds based on geometry/algebra/analysis, re- lationship among them, relationship with other numbers such as π =cos–(φ/), π (cid:2) √ / φ, where φ is the Golden section (ratio), and eiπ +=, which is due to Euler and contains  of the most important mathematical constants, and their merit in terms of computationofdigitsofπ.Rightfromthebeginninguntilmoderntimes,attemptswere madetoexactlyfixthevalueofπ,butalwaysfailed,althoughhundredsconstructedcir- clesquaresandclaimedthesuccess.Theseamateurmathematicianshavebeencalledthe sufferersofmorbuscyclometricus,thecircle-squaringdisease.Storiesofthesecontribu- torsareamusingandattimesalmostunbelievable.Manycameclose,somewenttotens, hundreds,thousands,millions,billions,andnowuptotentrillion()decimalplaces, butthereisnoexactsolution.TheAmericanphilosopherandpsychologistWilliamJames (-)wrotein‘thethousandthdecimalofPisleepstherethoughnoonemay evertrytocomputeit’.Thankstothetwentiethandtwenty-firstcentury,mathematicians and computer scientists, it sleeps no more. In , Hermann Schubert (-), a Hamburgmathematicsprofessor,said‘thereisnopracticalorscientificvalueinknowing morethanthedecimalplacesusedintheforegoing,alreadysomewhatartificial,appli- cation’,andaccordingtoArndtandHaenel(),justdecimalplaceswouldbeenough tocomputethecircumferenceofacirclesurroundingtheknownuniversetowithinthe radiusofahydrogenatom.Further,anexpansionof π toonlydecimalplaceswould besufficientlyprecisetoinscribeacirclearoundthevisibleuniversethatdoesnotdeviate fromperfectcircularitybymorethanthedistanceacrossasingleproton.Thequestion hasbeenrepeatedlyaskedwhysomanydigits?Perhapstheprimarymotivationforthese computations is the human desire to break records; the extensive calculations involved Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page3of59 http://www.advancesindifferenceequations.com/content/2013/1/100 havebeenusedtotest supercomputersandhigh-precisionmultiplicationalgorithms(a stresstestforacomputer,akindof‘digitalcardiogram’),thestatisticaldistributionofthe digits,whichisexpectedtobeuniform,thatis,thefrequencywithwhichthedigits(to )appearintheresultwilltendtothesamelimit(/)asthenumberofdecimalplaces increases beyond all bounds, and in recent years these digits are being used in applied problemsasarandomsequence.Itappearsexpertsinthefieldofπ arelookingforsur- prisesinthedigitsofπ.Infact,theChudnovskybrothersoncesaid:‘Wearelookingforthe appearanceofsomerulesthatwilldistinguishthedigitsofπ fromothernumbers.Ifyou seeaRussiansentencethatextendsforawholepage,withhardlyacomma,itisdefinitely Tolstoy.Ifsomeonegaveyouamilliondigitsfromsomewhereinπ,couldyoutellitwas fromπ’?Someinterestingobservationsare:Thefirstdigitsofπ addupto(which manyscholarssayis‘themarkoftheBeast’);Sincetherearedegreesinacircle,some mathematiciansweredelightedtodiscoverthatthenumberisatthethdigitposi- tionofπ.AmysteriouscropcircleinBritainshowsacodedimagerepresentingthe firstdigitsofπ.TheWebsite‘ThePi-SearchPage’findsaperson’sbirthdayandother well-knownnumbersinthedigitsofπ.Severalpeoplehaveendeavoredtomemorizethe valueofπ withincreasingprecision,leadingtorecordsofover,digits. Webelievethatthestudyanddiscoveriesofπ willneverend;therewillbebooks,re- searcharticles,newrecord-settingcalculationsofthedigits,clubsandcomputerprograms dedicated to π. In what follows, we shall discuss the growth and the computation of π chronologically.Forourreadyreference,wealsogivesomedigitsofπ, π =. . AboutBC.Themeaningofthewordsulvistomeasure,andgeometryinancient Indiacametobeknownbythenamesulbaorsulva.Sulbasutrasmeans‘ruleofchords’, whichisanothernameforgeometry.TheSulbasutrasarepartofthelargercorpusoftexts calledtheShrautasutras,consideredtobeappendicestotheVedas,whichgiverulesfor constructingaltars.Iftheritualsacrificewastobesuccessful,thenthealtarhadtoconform to very precise measurements, so mathematical accuracy was seen to be of the utmost importance.Thesulbascontainalargenumberofgeometricconstructionsforsquares, rectangles,parallelogramsandtrapezia.Sulbasalsocontainremarkableapproximations √    (cid:2)+ + – ,  · ·· √ whichgives =....,and (cid:2) (cid:3) √   π (cid:2)(– )= √ , +  whichgivesπ =..... AboutBC.AryabhattawasborninBCinPatliputrainMagadha,modern PatnainBihar(India).Hewasteachingastronomyandmathematicswhenhewasyears ofageinBC.Hisastronomicalknowledgewassoadvancedthathecouldclaimthat theEarthrotatedonitsownaxis,theEarthmovesroundtheSunandtheMoonrotates Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page4of59 http://www.advancesindifferenceequations.com/content/2013/1/100 roundtheEarth;incrediblyhebelievedthattheorbitsoftheplanetsareellipses.Hetalks aboutthepositionoftheplanetsinrelationtoitsmovementaroundtheSun.Herefersto thelightoftheplanetsandtheMoonasreflectionfromtheSun.Heexplainstheeclipse oftheMoonandtheSun,dayandnight,thelengthoftheyearexactlyasdays.He calculatedthecircumferenceoftheEarthas,miles,whichisclosetomodernday calculationof,miles.InhisAryabhattiyam,whichconsistsoftheversesand  introductory verses, and is divided into four padas or chapters (written in the very terse styletypicalofsutraliterature,inwhicheachlineisanaidtomemoryforacom- plexsystem),Aryabhattaincludedversesgivingmathematicalrulesganitaonpure mathematics.Hedescribedvariousoriginalwaystoperformdifferentmathematicalop- erations,includingsquareandcuberootsandsolvingquadraticequations.Heprovided elegant results for the summation of series of squares and cubes. He made use of dec- imals, the zero (sunya) and the place value system. To find an approximate value of π, Aryabhattagivesthefollowingprescription:Addto,multiplybyandaddto,. Thisis‘approximately’thecircumferenceofacirclewhosediameteris,.Thismeans π =,/,=..ItisimportanttonotethatAryabhattausedthewordasanna (approaching),tomeanthatnotonlyisthisanapproximationofπ,butthatthevalueis incommensurableorirrational,i.e.,itcannotbeexpressedasaratiooftwointegers. AboutBC.GreatpyramidatGizehwasbuiltaroundBCinEgypt.Itisone ofthemostmassivebuildingsevererected.Ithasatleasttwicethevolumeandthirtytimes themass(theresistanceanobjectofferstoachangeinitsspeedordirectionofmotion) oftheEmpireSateBuildinginNewYork,andbuiltfromindividualstonesweighingupto tonseach.FromthedimensionsoftheGreatPyramid,itispossibletoderivethevalue ofπ,namely,π =halftheperimeterofthebaseofthepyramid,dividedbyitsheight=+ /(cid:2)..... AboutBC.InatabletfoundininSusa(Iraq),Babyloniansusedthevalue    = + , π  () whichyieldsπ =/=..Theywerealsosatisfiedwithπ =. About  BC. Ahmes (around - BC) (more accurately Ahmose) was an Egyptianscribe.AsurvivingworkofAhmesispartoftheRhindMathematicalPapyrus,  BC (named after the Scottish Egyptologist Alexander Henry Rhind who went to Thebes for health reasons, became interested in excavating and purchased the papyrus inEgyptin)locatedintheBritishMuseumsince.Whennew,thispapyruswas aboutfeetlongandincheshigh.Ahmesstatesthathecopiedthepapyrusfromanow- lostMiddleKingdomoriginal,datingaroundBC.Thiscuriousdocumententitled directionsforknowingalldarkthings,decipheredbyEisenlohrin,isacollectionof problemsingeometryandarithmetic,algebra,weightsandmeasures,businessandrecre- ationaldiversions.Theproblemsarepresentedwithsolutions,butoftenwithnohintas tohowthesolutionwasobtained.Inproblemno.,Ahmesstatesthatacircularfieldwith adiameterofunitsinareaisthesameasasquarewithsidesofunits,i.e.,π(/)=, andhencetheEgyptianvalueofπ is (cid:2) (cid:3)   π =× =....,  Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page5of59 http://www.advancesindifferenceequations.com/content/2013/1/100 whichisonlyveryslightlyworsethantheBabyloniansvalue,andincontrasttothelatter,an overestimation.Wehavenoideahowthisverysatisfactoryresultwasobtained(probably empirically),althoughvariousjustificationsareavailable.Mayavalueofπ wasasgoodas thatoftheEgyptians. About BC. The earliest Chinese mathematicians, from the time of Chou-Kong usedtheapproximationπ =.Someofthosewhousedthisapproximationweremathe- maticiansofconsiderableattainmentsinotherrespects.AccordingtotheChinesemythol- ogy,isusedbecauseitisthenumberoftheHeavensandthecircle. About  BC. In the Old Testament (I Kings vii., and  Chronicles iv.), we find thefollowingverse:‘Also,hemadeamoltenseaoftencubitsfrombrimtobrim,roundin compass,andfivecubitstheheightthereof;andalineofthirtycubitsdidcompassitround about’.Hencethebiblicalvalueofπis/=.TheJewishTalmud,whichisessentiallya commentaryontheOldTestament,waspublishedaboutAD.ThisshowsthattheJews did not pay much attention to geometry. However, debates have raged on for centuries aboutthisverse.Accordingtosome,itwasjustasimpleapproximation,whileotherssay that ‘...the diameter perhaps was measured from outside, while the circumference was measuredfrominside’. AboutBC.ShatapathaBrahmana(Priestmanualofpaths)isoneoftheprose textsdescribingtheVedicritual.Itsurvivesintworecensions,MadhyandinaandKanva, with the former having the eponymous  brahmanas in  books, and the latter  brahmanasinbooks.Inthesebooks,π isapproximatedby/=..... AboutBC.AnaxagorasofClazomanae(-BC)cametoAthensfromnear Smyrna,wherehetaughttheresultsoftheIonianphilosophy.Heneglectedhispossessions inordertodevotehimselftoscience,andinreplytothequestion,whatwastheobjectof being born, he remarked: ‘The investigation of the Sun, Moon and heaven’. He was the firsttoexplainthattheMoonshinesduetoreflectedlightfromtheSun,whichexplains theMoon’sphases.HealsosaidthattheMoonhadmountainsandhebelievedthatitwas inhabited.Anaxagorasgavesomescientificaccountsofeclipses,meteors,rainbows,and theSun,whichheassertedwaslargerthanthePeloponnesus:thisopinion,andvarious otherphysicalphenomena,whichhetriedtoexplainwhichweresupposedtohavebeen directactionoftheGods,ledhimtoaprosecutionforimpiety.Whileinprisonhewrotea treatiseonthequadratureofthecircle.(Thegeneralproblemofsquaringafigurecameto beknownasthequadratureproblem.)Sincethattime,hundredsofmathematicianstried tofindawaytodrawasquarewithequalareatoagivencircle;somemaintainedthatthey havefoundmethodstosolvetheproblem,whileothersarguedthatitisimpossible.We willseethattheproblemwasfinallylaidtorestinthenineteenthcentury. AboutBC.HippocratesofChioswasbornaboutBC,andbeganlifeasamer- chant.AboutBChecametoAthensfromChiosandopenedaschoolofgeometry, andbeganteaching,thusbecameoneofthefewindividualsevertoentertheteachingpro- fessionforitsfinancialrewards.Heestablishedtheformulaπrfortheareaofacirclein termsofitsradius.Itmeansthatacertainnumberπ exists,andisthesameforallcircles, althoughhismethoddoes not give theactualnumericalvalue of π. In trying to square thecircle(unsuccessfully),Hippocratesdiscoveredthattwomoon-shapedfigures(lunes, boundedbypairofcirculararcs)couldbedrawnwhoseareasweretogetherequaltothat ofaright-angledtriangle.Hippocratesgavethefirstexampleofconstructingarectilinear areaequaltoanareaboundedbyoneormorecurves. Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page6of59 http://www.advancesindifferenceequations.com/content/2013/1/100 About  BC. Antiphon of Rhamnos (around - BC) was a sophist who at- tempted to find the area of a circle by considering it as the limit of an inscribed regu- larpolygonwithaninfinitenumberofsides. Thus,heprovidedpreliminaryconceptof infinitesimalcalculus. About  BC. Bryson of Heraclea was born around  BC. He was a student of Socrates.Brysonconsideredthecirclesquaringproblembycomparingthecircletopoly- gonsinscribedwithinit.Hewronglyassumedthattheareaofacirclewasthearithmetical meanbetweencircumscribedandinscribedpolygons. About  BC. Hippias of Elis was born about  BC. He was a Greek Sophist, a youngercontemporaryofSocrates.Heisdescribedasanexpertarithmetician,butheis bestknowntousthroughhisinventionofacurvecalledthequadratrix(x=ycot(πy/)), bymeansofwhichananglecanbetrisected,orindeeddividedinanygivenratio.Itisnot knownwhetherHippiasrealizedthatbymeansofhiscurvethecirclecouldbesquared; perhaps he realized but could not prove it. He lectured widely on mathematics and as wellonpoetry,grammar,history,politics,archeologyandastronomy.Hippiaswasalsoa prolificwriter,producingelegies,tragediesandtechnicaltreatisesinprose.Hisworkon Homerwasconsideredexcellent. BC.Aristophanes(-BC)inhisplayTheBirdsmakesfunofcirclesquarers. AroundBC.PlatoofAthens(around-BC)wasoneofthegreatestGreek philosophers, mathematicians, mechanician, a pupil of Socrates for eight years, and teacher of Aristotle. He is famous for ‘Plato’s Academy’. ‘Let no man ignorant of math- ematicsenterhere’issupposedtohavebeeninscribedoverthedoorsoftheAcademy.He √ √ issupposedlyobtainedforhisdayafairlyaccuratevalueforπ= + =..... AboutBC.EudoxusofCnidus(around-BC)wasthemostcelebratedmath- ematician. He developed the theory of proportion, partly to place the doctrine of in- commensurables(irrationals)uponathoroughlysoundbasis.Specially,heshowedthat theareaofacircleisproportionaltoitsdiametersquared.Eudoxusestablishedfullythe methodofexhaustionsofAntiphonbyconsideringboththeinscribedandcircumscribed polygons.Healsoconsideredcertaincurvesotherthanthecircle.Heexplainedtheap- parent motions of the planets as seen from the earth. Eudoxus also wrote a treatise on practicalastronomy,inwhichhesupposedanumberofmovingspherestowhichtheSun, Moonandstarswereattached,andwhichbytheirrotationproducedtheeffectsobserved. Inall,herequiredspheres. AboutBC.Dinostratus(around-BC)wasaGreekmathematician.Heused Hippiasquadratrixtosquarethecircle.Forthis,heprovedDinostratus’theorem.Hippias quadratrixlaterbecameknownastheDinostratusquadratrixalso.However,hisdemon- strationwasnotacceptedbytheGreeksasitviolatedthefoundationalprinciplesoftheir mathematics,namely,usingonlyrulerandcompass. AboutBC.ArchimedesofSyracuse(-BC)rankswithNewtonandGauss as one of the three greatest mathematicians who ever lived, and he is certainly the greatest mathematician of antiquity. Galileo called him ‘divine Archimedes, superhu- man Archimedes’; Sir William Rowan Hamilton (-) remarked ‘who would not ratherhavethefameofArchimedesthanthatofhisconquerorMarcellus’?;AlfredNorth Whitehead(-)commented‘noRomaneverdiedincontemplationoverageomet- ricaldiagram’;GodfreyHaroldHardy(-)said‘Archimedeswillberemembered whenAeschylusisforgotten,becauselanguagesdieandmathematicalideasdonot’;and Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page7of59 http://www.advancesindifferenceequations.com/content/2013/1/100 Figure1 Circlewithdiameter1. Voltaireremarked‘therewasmoreimaginationintheheadofArchimedesthaninthatof Homer’.Hismathematicalworkissomoderninspiritandtechniquethatitisbarelydis- tinguishablefromthatofaseventeenth-centurymathematician.Amonghismathemati- calachievements,Archimedesdevelopedageneralmethodofexhaustionforfindingar- easboundedbyparabolasandspirals,andvolumesofcylinders,parabolas,segmentsof spheres,andspeciallytoapproximateπ,whichhecalledastheparametertodiameter.His approachtoapproximateπisbasedonthefollowingfact:thecircumferenceofacirclelies betweentheperimetersoftheinscribedandcircumscribedregularpolygons(equilateral andequiangular)ofnsides,andasnincreases,thedeviationofthecircumferencefrom thetwoperimetersbecomessmaller.Becauseofthisfact,manymathematiciansclaimthat itismorecorrecttosaythatacirclehasaninfinitenumberofcornersthantoviewacircle asbeingcornerless.Ifa andb denotetheperimetersoftheinscribedandcircumscribed n n regularpolygonsofnsides,andCthecircumferenceofthecircle,thenitisclearthat{a } n isanincreasingsequenceboundedabovebyC,and{b }isadecreasingsequencebounded n belowbyC.BothofthesesequencesconvergetothesamelimitC.Tosimplifymatters, supposewechooseacirclewiththediameter,thenfromFigureitimmediatelyfollows that π π a =nsin and b =ntan . () n n n n Itisclearthatlimn→∞an=π =limn→∞bn.Further,bn istheharmonicmeanofan and b ,anda isthegeometricmeanofa andb ,i.e., n n n n (cid:4) a b n n b = and a = a b . () n n n n a +b n n √ From () for the hexagon, i.e., n= it follows that a =, b = . Then Archimedes   successivelytookpolygonsofsides,,and,usedtherecursiverelations(),and theinequality √  , < < ,   whichheprobablyfoundbywhatisnowcalledHeron’smethod,toobtainthebounds   ....= <π < =..... ()   Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page8of59 http://www.advancesindifferenceequations.com/content/2013/1/100 It is interesting to note that during Archimedes time algebraic and trigonometric no- tations, and our present decimal system were not available, and hence he had to de- riverecurrencerelations()geometrically,andcertainlyforhimthecomputationofa  and b must have been a formidable task. The approximation / is often called the  Archimedeanvalueofπ,anditisgoodformostpurposes.Ifwetaketheaverageofthe bounds given in (), we obtain π =..... The above method of computing π by usingregularinscribedandcircumscribedpolygonsisknownastheclassicalmethodof computingπ.Itfollowsthataninscribedregularpolygonofn sidestakesupmorethan –/n–oftheareaofacircle.HeronofAlexandria(aboutAD)inhisMetrica,which hadbeenlostforcenturiesuntilafragmentwasdiscoveredin,followedbyacomplete copyin,referstoanArchimedeswork,wherehegivesthebounds , , ....= <π < =..... , , Clearly,intheaboverightinequality,thereisamistakeasitisworsethantheupperbound / found by Archimedes earlier. Heron adds ‘Since these numbers are inconvenient for measurements, they are reduced to the ratio of the smaller numbers, namely, /’. Archimedes’polygonalmethodremainedunsurpassedforcenturies.Archimedesalso showedthatacurvediscoveredbyCononofSamos(around-BC)could,likeHip- pias’quadratrix,beusedtosquarethecircle.ThecurveistodaycalledtheArchimedean Spiral. About  BC. Daivajna Varahamihira (working  BC) was an astronomer, math- ematician and astrologer. His picture may be found in the Indian Parliament along with Aryabhata. He was one of the nine jewels (Navaratnas) of the court of legendary king Vikramaditya I (- BC). In  BC, Varahamihira wrote Pancha-Siddhanta (The Five Astronomical Canons), in which he codified the five existing Siddhantas, namely,PaulisaSiddhanta,RomakaSiddhanta,VasishthaSiddhanta,SuryaSiddhantaand PaitamahaSiddhanta. He also made some important mathematical discoveries such as givingcertaintrigonometricformulae;developingnewinterpolationmethodstoproduce sinetables;constructingatableforthebinomialcoefficients;andexaminingthepandiag- √ onalmagicsquareoforderfour.Inhiswork,heapproximatedπ as . BC.MarcusVitruviusPollio(about-BC),aRomanwriter,architectandengineer, inhismulti-volumeworkDeArchitectura(OnArchitecture)usedthevalueπ =/= .,whichisthesameasBabylonianshadused,yearsearlier.Hewasthefirstto describedirectmeasurementofdistancesbytherevolutionofawheel. AboutBC.LiuXin(LiuHsin)(aboutBC-AD)wasanastronomer,historianand editorduringtheXinDynasty(-AD).Liucreatedanewastronomicalsystem,called TripleConcordance.Hewasthefirsttogiveamoreaccuratecalculationofπ as., theexactmethodheusedtoreachthisfigureisunknown.Thiswasfirstmentionedinthe Suishu(-).Healsofoundtheapproximations.,.and.. AroundAD.LiuXin(BC-AD)wasaChineseastronomer,historianandeditor duringtheXinDynasty(-AD).HewasthesonofConfucianscholarLiuXiang(- BC).Liucreatedacatalogof,stars,whereheusedthescaleofmagnitudes.Hewas thefirstinChinatogiveamoreaccuratecalculationofπ as..Themethodheused toreachthisfigureisunknown. Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page9of59 http://www.advancesindifferenceequations.com/content/2013/1/100  AD. Brahmagupta (born  BC) wrote two treatises on mathematics and astron- omy:theBrahmasphutasiddhanta(TheCorrectlyEstablishedDoctrineofBrahma)but oftentranslatedas(TheOpeningoftheUniverse),andtheKhandakhadyaka(EdibleBite) which mostly expands the work of Aryabhata. As a mathematician he is considered as thefatherofarithmetic,algebra,andnumericalanalysis.Mostimportantly,inBrahmas- phutasiddhantahetreatedzeroasanumberinitsownright,statedrulesforarithmetic onnegativenumbersandzero,andattemptedtodefinedivisionbyzero,particularlyhe wronglybelievedthat/wasequalto.Heusedageometricconstructionforsquaring √ thecircle,whichamountstoπ = . . Zhang Heng (- AD) was an astronomer, mathematician, inventor, geogra- pher,cartographer,artist,poet,statesmanandliteraryscholar.Heproposedatheoryof theuniversethatcomparedittoanegg.‘Theskyislikeahen’seggandisasroundasa crossbowpellet.TheEarthisliketheyolkoftheegg,lyingaloneatthecenter.Theskyis largeandtheEarthissmall’.Accordingtohimtheuniverseoriginatedfromchaos.Hesaid thattheSun,Moonandplanetswereontheinsideofthesphereandmovedatdifferent rates.HedemonstratedthattheMoondidnothaveindependentlight,butthatitmerely reflectedthelightfromthesun.HeismostfamousintheWestforhisrotatingcelestial globe,andinventinginthefirstseismographformeasuringearthquakes.Heproposed √ (about.)forπ.Healsocomparedthecelestialcircletothewidth(i.e.,diameter) oftheearthintheproportionofto,whichgivesπ as.. . Claudius Ptolemaeus (around - AD) known in English as Ptolemy, was a mathematician,geographer,astrologer,poetofasingleepigramintheGreekAnthology, andmostimportantlyastronomer.Hemadeamapoftheancientworldinwhichheem- ployedacoordinatesystemverysimilartothelatitudeandlongitudeoftoday.Oneofhis mostimportantachievementswashisgeometriccalculationsofsemichords.Ptolemyin hisfamousSyntaxismathematica(morepopularlyknownbyitsArabiantitleoftheAl- magest),thegreatestancientGreekworkonastronomy,obtained,usingchordsofacircle andaninscribed-gon,anapproximatevalueofπ insexagesimalnotation,as(cid:6)(cid:6)(cid:6), whichisthesameas/=.....EutociusofAscalon(about-)refers toabookQuickdeliverybyApolloniusofPerga(around-BC),whoearnedthe title‘TheGreatGeometer’,inwhichApolloniusobtainedanapproximationforπ,which wasbetterthanknowntoArchimedes,perhapsthesameas/. .WangFan(-)wasamathematicianandastronomer.Hecalculatedthedis- tancefromtheSuntotheEarth,buthisgeometricmodelwasnotcorrect.Hehasbeen creditedwiththerationalapproximation/forπ,yieldingπ =.. .LiuHui(around-)wrotetwoworks.Thefirstonewasanextremelyim- portantcommentaryontheJiuzhangsuanshu,morecommonlycalledNineChapterson theMathematicalArt,whichcameintobeingintheEasternHanDynasty,andbelievedto havebeenoriginallywrittenaroundBC.(Itshouldbenotedthatverylittleisknown aboutthemathematicsofancientChina.InBC,theemperorShiHuangoftheChin dynastyhadallofthemanuscriptofthekingdomburned.)Theotherwasamuchshorter workcalledHaidaosuanjing orSeaIslandMathematicalManual.InJiuzhangsuanshu, LiuHuiusedavariationoftheArchimedeaninscribedregularpolygonwithsidesto approximateπ as.andsuggested/=.asapracticalapproximation. About.PappusofAlexandria(around-)wasborninAlexandria,Egypt,and eitherhewasaGreekoraHellenizedEgyptian.Thewrittenrecordssuggestthat,Pappus Agarwaletal.AdvancesinDifferenceEquations2013,2013:100 Page10of59 http://www.advancesindifferenceequations.com/content/2013/1/100 livedinAlexandriaduringthereignofDiocletian(-).HismajorworkisSynagoge ortheMathematicalCollection,whichisacompendiumofmathematicsofwhicheight volumeshavesurvived.Pappus’BookIVcontainsvarioustheoremsoncircles,studyof variouscurves,andanaccountofthethreeclassicalproblemsofantiquity(thesquaring ofthecircle,theduplicationofacube,andthetrisectionofanangle).Forsquaringthe circle,heusedDinostratusquadratrixandhisproofisareductioadabsurdum.Pappusis rememberedforPappus’scentroidtheorem,Pappus’schain,Pappus’sharmonictheorem, Pappus’shexagontheorem,Pappus’strisectionmethod,andforthefocusanddirectrixof anellipse. . He Chengtian (-) gave the approximate value of π as ,/,= ..... . Tsu Ch’ung-chih (Zu Chongzhi) (-) created various formulas that have beenusedthroughouthistory.WithhissonheusedavariationofArchimedesmethod tofind.<π <..Healsoobtainedaremarkablerationalapproximation /,whichyieldsπ correcttosixdecimaldigits.InChinesethisfractionisknownas Milü.Tocomputethisaccuracyforπ,hemusthavetakenaninscribedregular×- gonandperformedlengthycalculations.Notethatπ =/canbeobtainedfromthe valuesofPtolemyandArchimedes:  – = .  – Hedeclaredthat/isaninaccuratevaluewhereas/istheaccuratevalueofπ. Wealsonotethatπ=/canbeobtainedfromthevaluesofLiuHuiandArchimedes. Infact,byusingthemethodofaveraging,wehave +(×)  = . +(×)  .BhaskaraIIorBhaskaracharya(working)wroteSiddhantaSiromani(crown oftreatises),whichconsistsoffourparts,namely,LeelavatiBijaganitam,Grahaganitam andGoladhyaya.The firsttwoexclusivelydealwithmathematicsandthelasttwowith astronomy.HispopulartextLeelavatiwaswritteninADinthenameofhisdaugh- ter.Hiscontributionstomathematicsinclude:aproofofthePythagoreantheorem,solu- tionsofquadratic,cubic,andquarticindeterminateequations,solutionsofindeterminate quadratic equations, integer solutions of linear and quadratic indeterminate equations, a cyclic Chakravala method for solving indeterminate equations, solutions of the Pell’s equationandsolutionsofDiophantineequationsofthesecondorder.Hesolvedquadratic equationswithmorethanoneunknown,andfoundnegativeandirrationalsolutions,pro- videdpreliminaryconceptofinfinitesimalcalculus,alongwithnotablecontributionsto- wardintegralcalculus,conceiveddifferentialcalculus,afterdiscoveringthederivativeand differentialcoefficient,statedRolle’stheorem,calculatedthederivativesoftrigonometric functionsandformulaeanddevelopedsphericaltrigonometry.Heconceivedthemodern mathematical convention that when a finite number is divided by zero, the result is in- finity. He speculatedthe nature of the number / by stating that it is ‘like the Infinite, Invariable Godwhosuffersnochangewhen oldworldsaredestroyedornew onescre- ated,wheninnumerablespeciesofcreaturesarebornorasmanyperish’.Hegaveseveral

Description:
lationship among them, relationship with other numbers such as π φ, where φ is the Golden section (ratio), and eiπ + = , which is due to Euler .. when Aeschylus is forgotten, because languages die and mathematical .. the introduction of the Fibonacci sequence for which he is best remembered
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.