INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY RESEARCHARTICLE Bipolar single valued neutrosophic detour distance (cid:3) GUpenderReddy1 ,TSivaNageswaraRao2,NSrinivasaRao3, VVenkateswaraRao4 OPENACCESS 1AssistantProfessor,DepartmentofMathematics,NizamCollege(A),OsmaniaUniversity, Received:22.12.2020 Hyderabad,500001,TS,India Accepted:02.02.2021 2AssociateProfessor,DivisionofMathematics,DepartmentofS&H,V.F.S.T.R(Deemedto beUniversity),Vadlamudi,522207,Guntur(Dt.),A.P,India Published:16.02.2021 3AssistantProfessor,DivisionofMathematics,DepartmentofS&H,V.F.S.T.R(Deemedtobe University),Vadlamudi,522207,Guntur(Dt.),A.P,India 4ResearchScholar,DivisionofMathematics,DepartmentofS&H,V.F.S.T.R(Deemedtobe University),Vadlamudi,522207,Guntur(Dt.),A.P,India Citation:ReddyGU,RaoTSN, RaoNS,RaoVV(2021)Bipolarsingle valuedneutrosophicdetour Abstract distance. IndianJournalofScience andTechnology14(5):427-431.http s://doi.org/10.17485/IJST/v14i5.2102 Objectives: In the present article, we deduced a characterization of Bipolar (cid:3) Single Valued Neutrosophic (BSVN) radius and eccentricity of the vertex Correspondingauthor. based on Bipolar Single Valued Neutrosophic set(BSVNS) detour. Method: [email protected] We obtained some definitions BSVN on a vertex like BSVN detour eccentric Funding:None vertex, BSVN detour radius, BSVN detour diameter, BSVN detour centered CompetingInterests:None and BSVN detour periphery. Findings: We derived some important results basedontheseBSVNdetourradius,diameter,centerandperiphery.Novelty: Copyright:©2021Reddyetal.This isanopenaccessarticledistributed The detour distance of the BSVNS model is proposed and generalized by underthetermsoftheCreative this. An important and suitable condition for the graphs of the Single Valued CommonsAttributionLicense,which permitsunrestricteduse, NeutrosophicSet(SVNS)modeltoBSVNSdetourdistanceshasbeenidentified. distribution,andreproductionin Keywords:Detourdistance;BSVNdetoureccentric;BSVNdetourdistance; anymedium,providedtheoriginal BSVNdetourperipheralnode;BSVNdetourpath authorandsourcearecredited. PublishedByIndianSocietyfor EducationandEnvironment(iSee) 1 Introduction ISSN TheNeutrosophicsets(1)isagreatexactimplementforthesituationuncertaintyinthe Print:0974-6846 Electronic:0974-5645 realworld.Theseuncertaintyideascomefromthetheoriesoffuzzysets(2),intuitionistic fuzzysets(3) andinterval-valuedintuitionisticfuzzysets(4).Therepresentationofthe neutrosophicsetsistruth,indeterminacyandfalsityvalue.TheseT,I,Fvaluesbelong tostandardornonstandardunitintervaldenotedby]-0,1+[. TheideaofasubclassoftheNSandSVNSbyintuitionisticfuzzysets(5),inthisthe functionsTruth,Indeterminacy,Falsityarenotdependentandthesevaluesarepresent within[0,1].NeutrosophictheoryiswidelyexpandedinallfieldsespeciallyinGraph theoryandTopology. Inagraphtheory,thenewgraphmodelwasinvitedbyusingBSVNsetisknownas BSVNGraph(BSVNG)(6,7).TheideaofBSVNgraphsfromthefuzzy,bipolarfuzzyand single-valuedneutrosophicgraphs.Theuncertaintyonthegraphofverticesandedges orbothrepresentationstobeafuzzygraph. https://www.indjst.org/ 427 Reddyetal. /IndianJournalofScienceandTechnology2021;14(5):427–431 Inthismanuscript,wediscussaboutBSVNgraphsandneutrosophicdetourdistancebetweentwoverticesofthegraphbased onBSVNeccentricity,radius,diameter,andtheperipherywithrespecttodetourdistance. 2 Preliminaries Explanation2.1: BSVNsets { A BSVN set is explained as}the membership functions represented as an object in W is denoted by <w;TP;IP;FP;TN;IN;FN >:weW the functions TP; IP; FPare mapping from W to [0; 1] and TN; IN; FNare mappingfromW to[(cid:0)1; 0]. Example.LetW=fw1; w2; w3gandA=f<w1;0:4;0:2;0:6;(cid:0)0:03;(cid:0)0:2;(cid:0)0:01>;<w2; 0:6;0:4;0:2;(cid:0)0:5;(cid:0)0:3;(cid:0)0:03>; <w3;0:7;0:04;0:3;(cid:0)0:8;(cid:0)0:4;(cid:0)0:05>gisaBSVNsetinW. Explanation2.2: SVNrelationonW:- LetW beanon-emptyset.ThenwecallmappingZ=(W; Tp; Ip; FP; TN; IN; FN);FN(w):W XW ![(cid:0)1; 0]X [0; 1] isaBSVNrelationonW suchthat TZP(w1;w2)e[0;1];IZP(w1;w2)e[0;1];FZP(w1;w2)e[0;1]andTZN(w1;w2)e[(cid:0)1;0];IZN(w1;w2)e[(cid:0)1;0];FZN(w1;w2)e[(cid:0)1;0] Explanation2.3:LetZ1=(TzP1; IzP1; FzP1; TzN1; IzN1; FzN1)andZ2=(TzP2; IzP2; FzP2; TzN2; IzN2; FzN2)beaBSVNgraphsona setW.IfZ2isaBSVNrelationonZ1,then TZP2(w1; w2)(cid:20)min(TZP1(w1); TZP1(w2)),IZP2(w1; w2)(cid:21)max(IZP1(w1); IZP1(w2));FZP2(w1; w2)(cid:21)max(FZP1(w1); FZP1(w2)) aanlldw1T;NZ2w(w221;Ww2)(cid:21)max(TZN1(w1); TZN1(w2));IZP2(w1;w2)(cid:20)min(IZN1(w1); IZN1(w2));FZN2(w1;w2)(cid:20)min(FZN1(w1); FZN1(w2))for Explanation2.4: ThesymmetricpropertydefinedonBSVNrelationZonW isexplainedby TZP(w1; w2)=TZP(w2; w1), IZP(w1; w2)=IZP(w2; w1), FZP(w1; w2)=FZP(w2; w1) and TZN(w1; w2)=TZN(w2; w1), IZN(w1; w2)=IZN(w2; w1),FZN(w1; w2)=FZN(w2; w1)forallw1; w22W Explanation2.5:BSVNgraph The new graph in SVN is denoted by for all w1; w2 2 W , G(cid:3) = (V; E) is a pair G = (Z1; Z2), where Z1 = (TzP1; IzP1; FzP1; TzN1; IzN1; FzN1)isaBSVNSinV andZ2=(TzP2; IzP2; FzP2; TzN2; IzN2; FzN2)isBSVNSinV2definedas TZP2(w1; w2)(cid:20)min(TZP1(w1); TZP1(w2)),IZP2(w1; w2)(cid:21)max(IZP1(w1); IZP1(w2)); FZP2(w1; w2)(cid:21)max(FZP1(w1); FZP1(w2)) aanlldw1T;NZ2w(w221;Ww2)(cid:21)max(TZN1(w1); TZN1(w2));IZP2(w1;w2)(cid:20)min(IZN1(w1); IZN1(w2));FZN2(w1;w2)(cid:20)min(FZN1(w1); FZN1(w2))for TheBSVNSGofanedgedenotedbyw1w22V2 Explanation 2.6 Let G = (Z1; Z2) be a BSVNSG anda; b 2V. A path P : a = w0; w1; w2; :::;wk(cid:0)1; wk = b in G is a sequence of distinct vertices such that TZP2(wi(cid:0)1; wi)>0, IZP2(wi(cid:0)1; wi)>0, FZP2(wi(cid:0)1; wi)>0,TZN2(wi(cid:0)1; wi)>0, IZN2(wi(cid:0)1; wi)>0,FZN2(wi(cid:0)1; wi)>0wherei=1; 2; 3; :::; kandlengthofthepathisk2N(a positiveinteger);whereais calledinitialvertexandbiscalledterminalvertexinthepath. Explanation 2.7. A BSVN graph G = (Z1; Z2) of G(cid:3) = (V; E) is called a strong BSVN graph if TZP2(w1; w2) = min(TZP1(w1); TZP1(w2)),IZP2(w1; w2)=max(IZP1(w1); IZP1(w2)); FZP2(w1; w2) = max(FZP1(w1); FZP1(w2)) and TNZ2(w1; w2) = max(TZN1(w1); TZN1(w2));IZP2(w1; w2) = min(IZN1(w1); IZN1(w2));FZN2(w1; w2)=min(FZN1(w1); FZN1(w2))forallw1; w22W https://www.indjst.org/ 428 Reddyetal. /IndianJournalofScienceandTechnology2021;14(5):427–431 IfP:a=w0; w1; w2; :::;wk(cid:0)1; wk=bbeapathoflengthkbetweenaandbthen(TZP2(a; b);IZP2(a; b);FZP2(a; b))kand (TN(a; b);IN (a; b);FN(a; b))kisdefinedas Z2 Z2 Z2 8 { ( ) >>>< sup{TZP2(a;w1)^TZP2(w1;;w2)^:::^TZP2(wk(cid:0)1; bg TZP2(a;b);IZP2(a;b);FZP2(a;b) k=>>>: iinnff{IFZPZP22((aa;;ww11))__IFZPZ2P2(w(w1;1;;w;w22))__::::::__IZPF2ZP(2w(wk(cid:0)k1(cid:0);1; bbgg 8 { ( ) >>>< sup{TZN2(a;w1)_TZN2(w1;;w2)_:::_TZN2(wk(cid:0)1; bg TZN2(a;b);IZN2(a;b);FZN2(a;b) k=>>>: iinnff{IFZNZN22((aa;;ww11))^^IFZNZ2N2(w(w1;1;;w;w22))^^::::::^^IZNF2ZN(2w(wk(cid:0)k1(cid:0);1; bbgg ¥ ¥ (TP(a; b);IP (a; b);FP(a; b)) and(TN(a; b);IN (a; b);FN(a; b)) issaidtobethestrengthofconnectednessbetween Z2 Z2 Z2 Z2 Z2 Z2 twoverticesxandyinG,where ( ) ( { } { } { }) ¥ TP(a;b);IP(a;b);FP(a;b) = sup TP(a;b) ; inf TP(a;b) ; inf FP(a;b) Z2 Z2 Z2 Z2 Z2 z2 ( ) ( { } { } { }) ¥ TN(a;b);IN(a;b); FN(a;b) = inf TN(a;b) ;sup TN(a;b) ;sup FN(a;b) Z2 Z2 Z2 Z2 Z2 z2 ( ( ) ( ) ( ) ) ¥ ¥ ¥ If TP(a; b)(cid:21) TP(a; b) ; IP (a; b)(cid:20) IP (a; b) ; FP(a; b)(cid:20) FP(a; b) and (Z2 (Z2 ) Z2 (Z2 ) Z2 (Z2 ) ) ¥ ¥ ¥ TN(a; b)(cid:21) TN(a; b) ; IN (a; b)(cid:20) IN (a; b) ; FN(a; b)(cid:20) FN(a; b) then the arc ab in G is called a Z2 Z2 Z2 Z2 Z2 Z2 strongarc.Apatha-bisastrongpathifallarcsonthepatharestrong. 3 BSVN detour distance Explanation3.1 BSVNdetourdistanceisdefinedasthelengthofa(cid:0)b.Thestrongpathbetweenaandbisifthereisnootherpathlonger than P between a and b and we denote this by BSND(a; b). Any a-b strong path whose length is BSND (a; b) is called ana(cid:0)bBSVNdetourpath.Theeccentricity(EccBND(G))ofanodeisthedistancefromanodetothefurthestnodeinthe bipolarsingle-valuedneutrosophicgraphG.Theradius(radBNG(G))ofabipolarsingle-valuedneutrosophicgraphGisthe minimumamongalleccentricityofnodes.Theperipheryofthegraphistheeccentricityequaltothediameterofthepath.The diameter(diamBND(G))ofabipolarsinglevaluedneutrosophicgraphGisthemaximumamongalleccentricityofnodes. 4 BSVN detour periphery (Per (G)) and BSVN detour eccentric graph (Ecc (G)) BND BND Theorem4.1ABSVNgraphGisaBSVNdetourself-centeredifandonlyifeverynodeofGisaBSVNdetoureccentric. Proof.SupposeGisaBSVNdetourself-centeredBSVNgraphandletbbeanodeinG. Let a 2 b(cid:3)BND. So EccBND(b) = BNDG(a; b): Since G is a BSVN detour self-centered BSVN graph, EccBND(a) = EccBND(b)=BNDG(a; b)andthisimpliesthatb2a(cid:3)BND.HencebisaBSVNdetoureccentricnodeofG. Conversely,leteverynodeofGisaBSVNdetoureccentricnode.Ifpossible,letGbenotBSVNdetourselfcentradBSVN graph.ThenradBND(G)̸=diamBND(G)andthereexistnoder2GsuchthatEccBND(r)=diamBND(G).Also,letP2rB(cid:3)ND. LetU ber(cid:0)pBSVNdetourinG.SotheremusthaveanodeqonUforwhichthenodeqisnotaBSVNdetoureccentric node ofU. Also, q cannot be a BSVN detour eccentric node of every other node. Again if q be a BSVN detour eccentric nodeofanodea(say),thismeansq2a(cid:3) .Thenthereexistsanextensionofa (cid:0) qBSVNdetouruptororupto p.But BND thiscontradictsthefactsthatq2a(cid:3)BND.Hence,radBND(G) = diamBND(G)andGisaBSVNdetourself-centeredBSVNgraph. Theorem4.2. IfGisaBSVNdetourself-centeredBSVNgraph,thenradBND (G)= diamBND (G)=n(cid:0)1,wherenisthe numberofnodesofG. https://www.indjst.org/ 429 Reddyetal. /IndianJournalofScienceandTechnology2021;14(5):427–431 Proof.LetGbeaBSVNdetourself-centeredBSVNgraph. Ifpossible,let diamBND(G) = l < n (cid:0) 1.LetU1andU2betwodistinctBSVNdetourperipheralpath.Letp2U1; q2U2. Sothereexistastrongpathbetween pandq,becauseoftheconnectednessofG.ThenthereexistnodesonU1andU2,whose eccentricity > l, but this is impossible, because diamBND(G) = l. HenceU1 andU2 are not distinct. SinceU1 andU2 are arbitrary,sothereexistnoderinGsuchthatriscommoninallBSVNdetourperipheralpaths.SoEccBND(r)<l,whichis impossible,becauseGisaBSVNdetourself-centered.Hence,diamBND(G) = n (cid:0) 1 = radBND(G): Theorem4.3. ForaconnectedBSVNgraphG,PerBND(G)=GifandonlyiftheBSVNdetoureccentricityofeachnodeofG isn(cid:0)1,n=numberofnodesinG. Proof.LetPerBND(G)=G.ThenEccBND(p) =diamBND(G),8p2G.SoeverynodeofGisaBSVNdetourperipherynode ofG.ThereforeGisaself-centeredBSVNgraphandradBND (G)= diamBND (G)= n(cid:0)1.SotheBSVNdetoureccentricity ofeachnodeofGis n(cid:0)1. Conversely,lettheBSVNdetoureccentricityofeachnodeofGisn(cid:0)1.So,radBND (G)= diamBND (G)= n(cid:0)1.Allnodes ofGareBSVNdetourperipheralnodesandhencePerBND(G) = G: Theorem4.4. ForaconnectedBSVNgraphG,EccBND(G)=GifandonlyiftheBSVNdetoureccentricityofeachnodeofG isn(cid:0)1,n=numberofnodesinG. Proof.Let,EccBND(G)=G,SoallnodesofGareBSVNdetoureccentricnode.Therefore,Gisaself-centeredBSVNgraph anddiamBND(G) = n (cid:0) 1.Hence,theBSVNdetoureccentricityofeachnodeofGisn (cid:0) 1: Conversely,lettheBSVNdetoureccentricityofeachnodeofGisn(cid:0)1.SoradBND(G)=diamBND(G)=n(cid:0)1.Soallnodes ofGareBSVNdetourperipheralnodesaswellasBSVNdetoureccentricnodes.Hence,EccBND(G) =G. Theorem4.5.In a connected BSVN graph G, a node b is a BSVN detour eccentric node if and only if b is a BSVN detour peripheralnode. Proof.LetbbeaBSVNdetoureccentricnodeofGandletb2a(cid:3) .LetxandybetwoBSVNdetourperipheralnodes, BND thenBND(x; y)=diamBND(G)=k(say).LetP1andP2beanyx (cid:0) yanda (cid:0) bBSVNdetourinGrespectively.Therearise twocases. Case1:When b is not an internal node in G i.e, there is only one node, say c w∩hich is adjacent to b. Soc2P2. Since G is connected, c is connected to a node of P1, say c′. So either c′ 2P2 or c′ 2(P1 P2). Thus, in any case the path from a ′ to x or a to y through c and c is longer thanP2. But it is impossible since b is a BSVN detour eccentric node of a: Hence EccBND(a)=diamBND(G)i.e,bisaBSVNdetourperipheralnodeofG. Case2:WhenbisaninternalnodeinG,thenthereexistsaconnectionbetweenbtoxandbtoy;becauseoftheconnectedness ofG.Thena (cid:0) bBSVNdetourcanbeextendedtoxory.ThisisimpossiblebecausebisaBSVNdetoureccentricnodeofa. HenceEccBND(a)=diamBND(G)i.e,bisaBSVNdetourperipheralnodeofG. Conversely, we assume that b be a BSVN detour peripheral node G. So there exists a BSVN detour peripheral node say a(distinctfromb).ThereforebisaBSVNdetoureccentricnodeofa. 5 Conclusions Inthisstudy,weextendedthepartofBSVNsetstoBSVNgraphs.ByTheorem4.1,ifradBND(G)isequaltodiamBND(G)and alsoBSVNgraphisaBSVNdetourisself-centeredBSVNgraph.Theorem4.2indicatesradBNDofGanddiamBNDofGisequal toonelessthanthenumberofnodesofG.Fromtheorem4.3andtheorem4.4BSVNdetoureccentricityisn(cid:0)1;wherenisa numberofnodes.Finally,Theorem4.5provesthatanynodeisBSVNdetoureccentricnodebasedonBSVNdetourperipheral node. References 1) BroumiS,SmarandacheF,TaleaM,BakaliA. AnIntroductiontoBSVNGraphTheory. AppliedMechanicsandMaterials.2016;841:184–191. Available from:https://doi.org/10.4028/www.scientific.net/AMM.841.184. 2) ZadehLA.Fuzzysets.InformationandControl.1965;8(3):338–353.Availablefrom:https://dx.doi.org/10.1016/s0019-9958(65)90241-x. 3) AtanassovKT.Intuitionisticfuzzysets.FuzzySetsandSystems.1986;20:87–96.Availablefrom:https://dx.doi.org/10.1016/s0165-0114(86)80034-3. 4) AtanassovK,GargovG. Intervalvaluedintuitionisticfuzzysets. FuzzySetsandSystems.1989;31:343–349. Availablefrom:https://dx.doi.org/10.1016/ 0165-0114(89)90205-4. https://www.indjst.org/ 430 Reddyetal. /IndianJournalofScienceandTechnology2021;14(5):427–431 5) AtanassovK.Intuitionisticfuzzysets:TheoryandApplications.NewYork.Physica.1999.Availablefrom:https://doi.org/10.1007/978-3-7908-1870-3_1. 6) BroumiS,TaleaM,BakaliA,SmarandacheF. OnBipolarSingleValuedNeutrosphicGraphs. JournalofNewTheory.2016;11:84–102. Availablefrom: https://doi.org/10.13140/RG.2.1.3354.0886. 7) RaoTSN,KumarCS,RaoYS,RaoVV. DetourInteriorandBoundaryverticesofBSVNeutrosophicGraphs. InternationalJournalofAdvancedScience andTechnology.2020;29(8):2382–2394.Availablefrom:http://sersc.org/journals/index.php/IJAST/article/view/23407. 8) RaoVV,RaoYS.NeutrosophicPre-openSetsandPre-closedSetsinNeutrosophicTopology.InternationalJournalofChemTechResearch.2017;10(10):449– 458. 9) ReddyGU,RaoTSN,RaoVV,RaoYS. MinimalSpanningtreeAlgorithmsw.r.t.BipolarNeutrosophicGraphs. LondonJournalofResearchinScience NaturalandFormal.2020;20(8):13–24. Availablefrom:https://journalspress.com/LJRS_Volume20/1264_Minimal-Spanning-Tree-Algorithms-w-r-t- Bipolar-Neutrosophic-Graphs.pdf. 10) KumarCS,RaoTSN,RaoYS,RaoVV.InteriorandBoundaryverticesofBSVNeutrosophicGraphs.JournalofAdvancedResearchinDynamicalControl Systems.2020;12(6):1510–1515.Availablefrom:https://doi.org/10.5373/JARDCS/V12I2/S20201348. 11) RaoYS,KumarCS,RaoTSN,RaoVV,Rao.SingleValuedNeutrosophicdetourdistance.JournalofCriticalReviews.2020;7(8):810–812.Availablefrom: https://doi.org/10.31838/jcr.07.08.173. https://www.indjst.org/ 431