ebook img

Behaviors of Policy Analysts in Public Investment Decisions: How Policy Analysts Make Judgments PDF

263 Pages·2006·1.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Behaviors of Policy Analysts in Public Investment Decisions: How Policy Analysts Make Judgments

BEHAVIORS OF POLICY ANALYSTS IN PUBLIC INVESTMENT DECISIONS: HOW POLICY ANALYSTS MAKE JUDGMENTS by Kilkon Ko BS, Yonsei University, 1997 MA, Seoul National University, 2000 Submitted to the Graduate Faculty of Graduate School of Public and International Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2006 UNIVERSITY OF PITTSBURGH FACULTY OF GRADUATE SCHOOL OF PUBLIC AND INTERNATIONAL AFFAIRS This dissertation was presented by Kilkon Ko It was defended on March 27, 2006 and approved by John Mendeloff, PhD Stephen C. Farber, PhD Sebastian M. Saiegh, PhD Aaron M. Swoboda, PhD Dissertation Director: John Mendeloff, PhD ii Copyright by Kilkon Ko 2006 iii BEHAVIORS OF POLICY ANALYSTS IN PUBLIC INVESTMENT DECISIONS: HOW POLICY ANALYSTS MAKE JUDGMENTS Kilkon Ko, PhD University of Pittsburgh, 2006 Policy analysis emphasizes analytical methods to get better information. Better information, however, plays a limited role in improving the quality of policy making if it is not appropriately interpreted. Analytical information measures the different aspects of a policy problem using different methods: analyses result in information that is created different forms with varying qualities and relative importance. In order to be more appropriate for policy making, analysts have to integrate and to interpret the information using contextual and expert knowledge. However, few studies have paid attention to analysts’ judgment behaviors. This study examined the judgment structures of analysts who perform actual investment analysis. I analyzed why politicians and bureaucrats rely on policy analysis, and how a growing demand for policy analysis leads to an increase in analysts being more actively involved in investment decision process. Especially, I note that it is not realistic or desirable to restrict the role of policy analysts as a technical information provider. As analysts are required to consider multi-dimensional aspects of investment problems, they have to do more integrative analysis with high level of judgment to respond to the needs of their clients. Analyses of policy analysts’ judgments show that policy analysts are not obsessed with economic efficiency when evaluating investment projects. The analysts gave a similar weight to economic efficiency (51%) as they did to policy factors. Also, the large variation of judgments in weighting and scoring that was observed can be explained by several factors: the project fields, iv analysts’ role in analysis, and their affiliation. Most importantly, we can find strong evidence that analysts’ judgments are highly related to their self-interests. I showed that analysts’ self- interests are more problematic in the judgments than the cost underestimation. With the judgment analyses, I suggest developing management techniques using the statistical distribution, which allows us to infer the possible range of variation of weighting and scoring. v TABLE OF CONTENTS PREFACE.....................................................................................................................................XI 1.0 INTRODUCTION..............................................................................................................1 1.1 BACKGROUND............................................................................................................1 1.2 SIGNIFICANCE OF RESEARCH.................................................................................8 2.0 LITERATURE REVIEW AND RESEARCH QUESTIONS...........................................13 2.1 POLICY ANALYSIS AND PUBLIC INVESTMENT................................................15 2.1.1 Politicians and Policy Analysis.............................................................................16 2.1.2 Bureaucrats and Policy Analysis..........................................................................21 2.1.3 Policy Analysts in Public Investment...................................................................26 2.2 POLITICS AND THE IMPACT OF ANALYSTS’ JUDGMENTS IN KOREA........32 2.2.1 Accuracy of Analysis............................................................................................33 2.2.2 Ministry of Plan and Budgeting and Pre-Feasibility Study.................................36 2.2.3 Responses from the National Assembly and the Oversight Agency....................39 2.2.4 Potential Problems of the Pre-feasibility Study....................................................43 2.3 HOW POLICY ANALYSTS MAKE JUDGMENTS?................................................45 3.0 RESEARCH DESIGNS....................................................................................................54 3.1 RESEARCH SCOPE....................................................................................................54 3.2 RESEARCH HYPOTHESES.......................................................................................55 3.2.1 Descriptive Analyses............................................................................................56 3.2.2 Test of Self-Interest Hypothesis............................................................................60 4.0 EXPLANATION OF DATA............................................................................................66 4.1 ANALYTIC HIERARCHY PROCESS AND DECISION-MAKING........................67 4.1.1 Background of KDI’s AHP model........................................................................67 4.1.2 Theoretical Background of AHP..........................................................................68 4.1.3 Example of AHP Application...............................................................................73 4.2 CHARACTERISTICS OF ANALYSTS IN KDI AHP DECISION............................81 4.3 DATABASE CONSTRUCTION.................................................................................84 5.0 DESCRIPTIVE ANALYSES: VARIATION OF ANALYSTS’ JUDGMENT...............87 5.1 DESCRIPTIVE ANALYSES OF WEIGHTING ECONOMIC EFFICIENCY...........88 5.1.1 Weighting of Economic Efficiency and Level of Specification...........................90 5.1.2 Weighting of Economic Efficiency and Analysts’ Role in Analysis....................96 5.1.3 Weighting on Economic Efficiency and Affiliation of Analysts..........................98 5.1.4 Linear Model of Economic Efficiency Weighting..............................................101 5.2 DESCRIPTIVE ANALYSIS OF WEIGHTING ON POLICY FACTORS...............104 5.3 WEIGHTS AMONG BASIC POLICY FACTORS...................................................110 5.4 DESCRIPTIVE ANALYSIS OF SCORING..............................................................115 5.5 SUMMARY OF FINDINGS AND IMPLICATIONS...............................................123 6.0 SELF-INTERESTS AND ANALYSTS’ JUDGMENTS...............................................127 6.1 INTENTIONAL BIAS IN COST ESTIMATION......................................................128 vi 6.1.1 The problem of cost underestimation.................................................................128 6.1.2 Research Hypotheses..........................................................................................133 6.1.3 Analyses and Results..........................................................................................136 6.2 INTENTIONAL SCORING.......................................................................................145 6.2.1 Optimistic or Pessimistic Scoring.......................................................................147 6.2.2 Degree of bias and Probability of Acceptance....................................................151 6.2.2.1 The Degree of Bias in Scoring and Project Acceptability (Economic Efficiency) 151 6.2.2.2 The Degree of Bias in Scoring and Project Acceptability (Other Criteria)....154 6.3 ASSOCIATION BETWEEN WEIGHTING AND SCORING..................................161 6.4 RELIABILITY OF JUDGMENT...............................................................................167 6.4.1 Reliability of Weighting.....................................................................................168 6.4.2 Reliability of Scoring..........................................................................................169 6.5 SUMMARY OF FINDINGS AND IMPLICATIONS...............................................171 7.0 STRUCTURE OF JUDGMENT AND ANALYST GROUPS......................................175 7.1 DATA AND METHODS...........................................................................................176 7.2 ROAD PROJECTS.....................................................................................................179 7.2.1 Rail projects........................................................................................................184 7.2.2 “Others” Projects................................................................................................189 7.2.3 Dam and Harbor projects....................................................................................192 7.3 SUMMARY OF FINDINGS AND DISCUSSION....................................................194 8.0 CONCLUSIONS.............................................................................................................196 APPENDIX A.............................................................................................................................204 APPORTIONMENT FORMULAS OF FEDERAL-AID HIGHWAY PROGRAM (TEA-21) .................................................................................................................................................204 APPENDIX B.............................................................................................................................205 THE CHRONOLOGY OF THE U.S. TRANSPORTATION INVESTMENT.....................205 APPENDIX C.............................................................................................................................211 CRITERIA USED IN PUBLIC INVESTMENT DECISIONS..............................................211 APPENDIX D.............................................................................................................................220 GAME THEORY MODEL UNDER STRATEGIC SITUATION BETWEEN ANALYSTS AND BUREAUCRATS.......................................................................................................................220 APPENDIX E.............................................................................................................................231 PSYCHOLOGICAL MODEL TOWARD NET BENEFIT AND NET COST..........................231 BIBLIOGRAPHY.......................................................................................................................236 vii LIST OF TABLES Table 1 9 Point Scale Used In AHP and Its Semantic Meaning..................................................71 Table 2 Contents and Information Used in Scoring......................................................................75 Table 3 Weighting Results of Four Decision Makers...................................................................77 Table 4 Pairwise comparison matrix of decision maker 1............................................................77 Table 5 Weight Vector of Decision Maker 1................................................................................78 Table 6 Scoring Example of Four Decision Makers.....................................................................79 Table 7 Final Judgment Result of Decision Maker 1...................................................................80 Table 8 Frequency Distribution of Projects by Year and Project Fields......................................84 Table 9 The Number of Analysts by Year, Project Fields, and Affiliation..................................85 Table 10 Weight on the Economic Efficiency..............................................................................92 Table 11 Weight of Economic Factor on Different Levels of Projects by Project Field..............93 Table 12 Result of MANOVA Test..............................................................................................95 Table 13 Weight on Economic Factor by Project Field and Role in Analysis (Specific Project)97 Table 14 Model Fit of Multiple Regression of the Weight on Economic Factor.......................102 Table 15 ANOVA Table of Multiple Regression of the Weight of Economic Factor...............102 Table 16 Estimated Regression Coefficients..............................................................................103 Table 17 Common Factors Used in Public Investment Decisions in KDI Pre-feasibility Studies .............................................................................................................................................106 Table 18 Project-specific Factors Considered in Pre-Feasibility Study.....................................107 Table 19 Weight on Basic Policy Factors Compared to Project-Specific Factors: All Investment Decisions.............................................................................................................................108 Table 20 Weight between Basic Policy Factors and Project-specific Policy Factor by Project Field....................................................................................................................................109 Table 21 Weights among Basic Policy Sub-factors....................................................................111 Table 22 Weights among Basic Policy Sub-factors by Project Field.........................................113 Table 23 Multiple Regression of Basic Policy Factors...............................................................114 Table 24 Multiple Measures for Variation of Scoring................................................................119 Table 25 Average Estimated Project Cost by Project Fields......................................................122 Table 26 Descriptive Statistics and 95% Confidence Limits of Cost Underestimate Rate........139 Table 27 Correlation between the Size of Project and Cost Underestimation............................140 Table 28 Model Fit of Hierarchical Linear Model......................................................................142 Table 29 Estimation of Random Components............................................................................142 Table 30 Coefficient Estimates of Hierarchical Linear Model on Cost Underestimation.........143 Table 31-1 Deviation of Scoring by Project Field, by Affiliation (Economic Efficiency).........148 Table 32 Impact of BC ratio on Optimistic and Pessimistic Bias...............................................153 Table 33 Impact of Underdevelopment Index (UI) on Positive and Negative Scoring..............155 Table 34 Impact of VA_GRDP to Optimistic and Pessimistic Scoring.....................................157 Table 35 Deviation of Judgment and Project Acceptability.......................................................159 Table 36 Inconsistency Ratio by Affiliation and Project Field...................................................169 viii Table 37 DPF (Deviance index of Policy Feasibility) by Affiliation and Project field..............170 Table 38 Generalized Squared Distance among Analyst Groups (Road Projects).....................180 Table 39 Canonical Discriminant Analysis (Road Projects)......................................................180 Table 40 Coefficients of Canonical Discriminant Functions (Road Projects)............................181 Table 41 The Centroid of Each Group (Road Projects)..............................................................182 Table 42 Univariate R-Square and Discriminant Loading (Road Projects)...............................183 Table 43 Partial R-Square of Stepwise Variable Selection (Road Projects)..............................183 Table 44 Classification Accuracy (Road Projects).....................................................................184 Table 45 Generalized Squared Distance among Analyst Group (Rail Projects)........................185 Table 46 Canonical Discriminant Analysis (Rail Projects)........................................................186 Table 47 Coefficients of Canonical Discriminant Functions (Rail Projects).............................186 Table 48 The Centroid of Each Group (Rail Projects)...............................................................187 Table 49 Univariate R-Square and Discriminant Loading (Rail Projects).................................188 Table 50 Partial R-Square of Stepwise Variable Selection (Rail Projects)................................188 Table 51 Classification Accuracy (Rail Projects).......................................................................189 Table 52 Generalized Squared Distance among Analyst Group (Others Projects)....................190 Table 53 Canonical Discriminant Analysis (Others Projects)....................................................191 Table 54 Coefficients of Canonical Discriminant Functions (Others Projects).........................191 Table 55 Centroid of Each Group (Others Projects)...................................................................192 Table 56 Generalized Squared Distance among Analyst Group (Dam and Harbor Projects)....193 Table 57 Number of Urban Transportation Decision Cases in which Each Factor Was Considered or Important.....................................................................................................213 Table 58 Factors Used in Transportation Decisions (Considered in Current Literatures).........214 Table 59 Factors Used in Transportation Decisions (Considered by State Government: Washington State Case)......................................................................................................215 Table 60 Key Factors to be considered in Transportation Investment (Identified by U.S. GAO) .............................................................................................................................................217 Table 61 Factor Used in Transportation Decisions (the Korean Government Case).................218 ix LIST OF FIGURES Figure 1 The Proportion of Korean Legislators Who Were Newly Elected.................................21 Figure 2 Increasing Roles of Policy Analysts in Public Investment.............................................31 Figure 3 Numbers of Articles Referring the Pre-feasibility Study (2000-2005)..........................38 Figure 4 Integrative Policy Analysis Process...............................................................................48 Figure 5 Framework of Analysis..................................................................................................65 Figure 6 Basic Decision Hierarchy of Pre-Feasibility Study........................................................75 Figure 7 Weight on Economic Factor by Project Field and Role in Analysis (General Public Investment)...........................................................................................................................98 Figure 8 Weight on Economic Factor by Project Field and Affiliation of Analysts..................100 Figure 9 Weight on Basic Policy Factors over Project-specific Factors, by Project Field, by Role of Analysts..........................................................................................................................109 Figure 10 Estimated Average Standard Deviation of Scoring by Project Fields (Criteria Using Quantitative Measures).......................................................................................................121 Figure 11 Estimated Average Standard Deviation of Scoring by Project Fields (Criteria Using Qualitative Measures).........................................................................................................121 Figure 12 Cost Underestimation Rate by Year (2001 to 2004)..................................................138 Figure 13 Deviation of Scoring in Three Different Levels of BC ratios....................................152 Figure 14 Response Lines of Deviation to BC ratio...................................................................154 Figure 15 Response Lines of Deviation of Scoring on BW According to UI............................156 Figure 16 Deviation of Judgment and Project Acceptability (25% and 75% Quartiles as Threshold Values for Low, Medium and High Project Acceptability)...............................160 Figure 17 Choice of Weighting and Scoring, by Criteria (KDI Analysts).................................164 Figure 18 Choice of Weighting and Scoring, by Criteria (Private Analysts).............................166 Figure 19 Equilibrium under Imperfect Information..................................................................228 Figure 20 Equilibrium under Perfect Information......................................................................229 Figure 21 Hypothetical Patterns of Attitude Toward Net Costs and Benefits in Scoring Project’s Acceptability.......................................................................................................................234 Figure 22 Estimated Scoring on Economic efficiency of KDI and Private Analysts.................235 x

Description:
with high level of judgment to respond to the needs of their clients. I also thank to my other dissertation committee members, Stephen C. Faber, . critical moments and are coupled to open policy windows (Kingdon. 1984 . such as: scientific management, war on waste, watchful eyes, and liberation
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.