ebook img

Beaton, Ainsley and Lood, Cédric and Cunningham-Oakes, Edward and MacFadyen, Alison and ... PDF

13 Pages·2017·2.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Beaton, Ainsley and Lood, Cédric and Cunningham-Oakes, Edward and MacFadyen, Alison and ...

FEMSMicrobiologyLetters,365,2018,fny069 doi:10.1093/femsle/fny069 AdvanceAccessPublicationDate:22March2018 ResearchLetter RESEARCH LETTER –FoodMicrobiology Community-led comparative genomic and phenotypic Pseudomonas analysis of the aquaculture pathogen baetica a390T sequenced by Ion semiconductor and Nanopore technologies Ainsley Beaton1,†, Ce´dric Lood2,3,†, Edward Cunningham-Oakes4,†, Alison MacFadyen5,†, Alex J. Mullins4,†, Walid El Bestawy1, Joa˜o Botelho6, Sylvie Chevalier7, Shannon Coleman8,‡, Chloe Dalzell1, Stephen K. Dolan9, Alberto Faccenda1, Maarten G. K. Ghequire2, Steven Higgins10, Alexander Kutschera11, Jordan Murray1, Martha Redway1, Talal Salih1, Ana C. da Silva12,#, Brian A. Smith13, Nathan Smits3, Ryan Thomson1, Stuart Woodcock14, Martin Welch9,§, Pierre Cornelis7, Rob Lavigne3, Vera van Noort2 and Nicholas P. Tucker1,∗,¶ 1StrathclydeInstituteofPharmacyandBiomedicalScience,UniversityofStrathclyde,161CathedralStreet, Glasgow,G40RE,UK,2CentreofMicrobialandPlantGenetics,KULeuven,KasteelparkArenberg20,bus2460, LeuvenB-3001,Belgium,3LaboratoryofGeneTechnology,KULeuven,KasteelparkArenberg20,bus2460, LeuvenB-3001,Belgium,4CardiffSchoolofBiosciences,CardiffUniversity,SirMartinEvansBuilding,Park Place,CardiffCF103AX,UK,5Royal(Dick)SchoolofVeterinaryStudies,UniversityofEdinburgh,EasterBush Campus,MidlothianEH259RG,Scotland,UK,6UCIBIO/REQUIMTE,Laborato´riodeMicrobiologia,Faculdadede Farma´cia,UniversidadedoPorto,RuadeJorgeViterboFerreirano.228Porto4050-313,Portugal,7Laboratoire MicrobiologieSignauxetMicroenvironnement(LMSM),Universite´ deRouen,55,rueStGermain,Evreux27000, France,8LowerMallResearchStation,UniversityofBritishColumbia,2259LowerMall,Vancouver,BCV6T1Z4, Canada,9DepartmentofBiochemistry,UniversityofCambridge,HopkinsBuilding,TennisCourtRoad, CambridgeCB21QW,UK,10DepartmentofPlantandMicrobialBiology,UniversityofZu¨rich,Zu¨rich8008, Switzerland,11DepartmentofPhytopathology,CenterofLifeandFoodSciences,TechnicalUniversityof Munich,WeihenstephanD-85354,Germany,12CentreforBiomolecularSciences,SchoolofLifeSciences, UniversityofNottingham,NottinghamNG72RD,UK,13SchoolofPlantSciences,TheUniversityofArizona, P.O.Box210036,ForbesBuilding,303Tucson,Arizona85721-0036,USAand14DepartmentofBiological Chemistry,JohnInnesCentre,ColneyLane,NorwichNR47UH,UK ∗Correspondingauthor:StrathclydeInstituteofPharmacyandBiomedicalScience,UniversityofStrathclyde,161CathedralStreet,GlasgowG40RE,UK. Tel:0141-548-2861;E-mail:[email protected] Received:5January2018;Accepted:21March2018 (cid:3)C FEMS 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the orig- inalworkisproperlycited. 1 Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 2 FEMSMicrobiologyLetters,2018,Vol.365,No.9 †TheseauthorscontributedequallytothesequencingortointensivewholegenomedataanalysisofP.baetica.ABgeneratedsemiconductorshortreads whilstCLproducedNanoporelongreads.ECOandAMperformedthephylogeneticanalysiswhilstAMacperformedwholegenomeBLASTanalysisand editing. Onesentencesummary:Here,wepresentthehigh-qualitydraftgenomeofPseudomonasbaetica,abacterialpathogenthathasbeendemonstratedto causediseaseinfishcultivatedinaquaculturefacilities. Editor:RobertJackson ‡ShannonColeman,http://orcid.org/0000-0001-9495-6772 #AnaC.daSilva,http://orcid.org/0000-0002-2967-0986 §MartinWelch,http://orcid.org/0000-0003-3646-1733 ¶NicholasP.Tucker,https://orcid.org/0000-0002-6331-3704 ABSTRACT Pseudomonasbaeticastraina390Tisthetypestrainofthisrecentlydescribedspeciesandherewepresentitshigh-contiguity draftgenome.Tocelebratethe16thInternationalConferenceonPseudomonas,thegenomeofP.baeticastraina390Twas sequencedusingauniquecombinationofIonTorrentsemiconductorandOxfordNanoporemethodsaspartofa collaborativecommunity-ledproject.Theuseofhigh-qualityIonTorrentsequenceswithlongNanoporereadsgaverapid, high-contiguityand-quality,16-contiggenomesequence.WholegenomephylogeneticanalysisplacesP.baeticawithinthe P.koreensiscladeoftheP.fluorescensgroup.ComparisonofthemaingenomicfeaturesofP.baeticawithavarietyofother Pseudomonasspp.suggeststhatitisahighlyadaptableorganism,typicalofthegenus.Thisstrainwasoriginallyisolated fromtheliverofadiseasedwedgesolefish,andgenotypicandphenotypicanalysesshowthatitistoleranttoosmotic stressandtooxytetracycline. Keywords:Pseudomonas;aquaculture;wholegenomesequencing;OxfordNanoporeMinIon;IonTorrent;Pseudomonasbaetica INTRODUCTION ThisanalysisrevealedthatP.baeticaisamemberoftheP.fluo- InSeptember2017,thebiannualconferenceonthebiologyof rescensgroupandisparticularlycloselyrelatedtoP.koreensis.Al- Pseudomonas was held in Liverpool, UK. All aspects of Pseu- thoughinfectedwedgesoleshowednoobviousvisualsignsofP. domonas biology were reported at the meeting from clinical baeticainfection,intraperitonealinjectionandimmersioninfec- toenvironmentalmicrobiology.ThevastmajorityofthePseu- tionassaysyielded100%and10%mortalityrates,respectively domonasliteraturefocusesonjustafeworganisms,mostnotably (Lo´pezetal.2012).Subsequentinfectionassayswithavariety Pseudomonasaeruginosa,P.fluorescens,P.putidaandP.syringae,al- ofotherfishspeciesdemonstratedthatP.baeticacausedhigher thoughthegenusisfarmorediversethanthis.Inordertocon- mortalityinwedgesolethanotherspeciesincludingseabass tributetoaddressingthisimbalance,thegenomeofP.baetica, andseabream,andthatthereisatemperature-dependentef- arecentlydescribedmemberofthegenus,wassequencedfor fectonvirulence(Lo´pezetal.2017).Inordertorapidlyidentify thePseudomonas2017genomicsforum.Theresultinggenome P.baeticacontaminationinanaquaculturesetting,Lo´pezetal. sequencehasbeenanalysedbymembersofthePseudomonas (2017)havedevelopedimmunologicalandmoleculardetection 2017communityfromacrosstheglobeusingSlackasacollabo- assays. rationtool(Perkel2016). AlthoughP.baeticawasoriginallydescribedfromanaquacul- Pseudomonasbaeticastraina390isoneoffiveGram-negative tureinfectionscenario,anumberofrecentstudieshaveidenti- organismsthatwereisolatedfromafishdiseaseoutbreakinan fiedthisspeciesandcloserelativessuchasthenewlydescribed aquaculturefacilityinHuelva,Spain,in2006(Lo´pezetal.2012). P. helmanticensis and P. granadensis in diverse environments in Theinfectedfishwerewedgesole(Dicologlossacuneata),aflatfish therhizosphereincludingbeanrootsinIran,andforestsoilsin thatiswidelyconsumedinAndaluc´ıaandpartsofFrancewhere Spain(Ram´ırez-Bahenaetal.2014;Pascualetal.2015;Keshavarz- there is increasing interest in sustainable aquaculture of this Tohidetal.2017).ThissuggeststhatP.baeticaismorelikelyto species.Aquaculturenotonlyprovidesasustainablesourceof beanopportunisticpathogenoffishasopposedtoagenuine protein,butitisalsoaneconomicallyimportantindustryaround marinepathogen.Wehypothesisedthatthedraftgenomese- theworld.Europeancommissiondatarevealsthat1.25million quenceofP.baeticawouldrevealthegeneticbasisforthetraits tonnesoffoodareproducedbyaquacultureintheEUeveryyear requiredtocausediseaseinwedgesole.Theaimofthisstudy andthatover85000peoplearedirectlyemployedintheindus- istoprovidegenomicinsightsintothebiologyofP.baeticaand try.Adisadvantagetoaquaculturesystemsisthattheunusually tousethisgenomeasareflectiononthediverseinterestsofthe highpopulationdensityofthefarmedfishleadstoanelevated Pseudomonascommunity. riskofinfectiousdiseaseoutbreaks.Forthisreason,antibiotics suchasoxytetracycline(OT)areroutinelyusedasgrowthpro- MATERIALSANDMETHODS motersinaquaculturefishfoodpellets(Lealetal.2017).Other membersofthePseudomonadaceaearewellknowntocausedis- Bacterialstrainsandgenomesequenceaccessions easeinaquaculturescenarios,mostnotablyP.anguillisepticaisa pathogenofbothfarmedandwildeels(Johetal.2013). Pseudomonas baetica a390T originally isolated from the liver of Pseudomonasbaeticawasformallydescribedin2012usinga wedgesolefish,D.cuneate,anddescribedbyLopezetal.(2012), combinationof16SrRNAsequencingandphenotypicanalyses, was obtained from DSMZ (DSM no. 26532) and is considered allowingabiochemicalprofiletobegenerated(Lo´pezetal.2012). to be the type strain. Unless stated otherwise, all phenotypic Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 Beatonetal. 3 comparisonswereperformedagainstP.fluorescensPF01,P.putida searchedforprophagesusingPHASTER(Arndtetal.2016),and KT2440 and P. aeruginosa PA14. This Whole Genome Shotgun genomicislandsusingtheIslandViewerandantiSMASH(Bertelli project has been deposited at DDBJ/ENA/GenBank under the etal.2017;Blinetal.2017).Forthelatter,thereferencegenome accession PKLC00000000. The version described in this paper used for the alignment was that of P. koreensis strain D26 as isversionPKLC01000000.Rawsequencingreadswerealsode- it was deemed phylogenetically close to P. baetica. CCT maps positedandcanbefoundwithaccessionnumbersSRR6792524 werecreatedusingCCTversion1.0usingdefaultsettingswith andSRR6792523fortheNanoporeandIonTorrentreads,respec- the exception of the following commands; -t –cct –custom tively. scaleblast=F cctblastthickness=60 backboneThickness=10 tickThickness=15 rulerFontSize=100 featureThickness=150 DNAextraction,librarypreparationandIonTorrent tickLength=30legend=Fdetails=F.Afeaturesfilewasusedfor the‘beigeblocks’,anda‘labelstoshow’filewasusedtolabel PGMSequencing theCCTmap(Grant,ArantesandStothard2012). DNAextractionwascarriedoutusingISOLATEIIgenomicDNA kit(BIOLINE)usingthestandardprotocolforbacterialcells.Frag- Phylogeneticanalysis mentation was carried out using the standard protocol from NEBNextFastDNAFragmentation&LibraryPrepSetforIonTor- TreeswereassembledusingMashv1.1.1(Ondovetal.2016)fast rentandadapter-ligatedDNAwaspreparedusingbarcodeset6. genomeandmetagenomedistanceestimationusingtheMin- SizeselectionwascarriedoutusingtheE-gelibase(Invitrogen), Hashalgorithm,andvisualisedinFigTreev1.4.3(Rambaut2012, andanalysedusingthe2100Bioanalyzer(AgilentGenomics).A also available via GitHub). Reference genomes were obtained fragmentsizeof424bpwascarriedforward.Templateampli- fromNCBI.Averagenucleotideidentity(ANI)wasperformedus- fication and enrichment were carried out using the standard ingPyANI(Guptaetal.2016).DatawereprocessedusingCLIMB IonTorrentprotocolusingtheIonOneTouch2system(Thermo- (Connoretal.2016). Fischer).ThestandardsequencingprotocolforIonTorrentwas usedandDNAlibrarywasloadedontoanIon316chipv2withan Azocaseinassay ISPloadingpercentageof87%. OvernightculturesofP.aeruginosaUCBPP-PA14,P.baeticaa390T, Nanoporesequencing P. fluorescens Pf0-1 and P. putida KT2440 were centrifuged at 12000×gfor5minand100μlofsupernatantwaspipettedinto LongreadsbyNanoporesequencingwereobtainedusingaMin- centrifugetubescontaining400μlofreactionmixture;200μlof ION sequencer from Oxford Nanopore Technology (ONT) with 2%azocaseinin0.5%bicarbonatesodiumbufferand200μlof thegoaltoimprovethegenomeassemblyofP.baetica.Thestrain 0.5%sodiumbicarbonatebuffer.Thereactionmixturewasthen wasgrowninLBmediumandgrownat30◦CtoanOD600of0.850 incubatedat30◦Cfor10,70and140min. anditsgenomicDNAwasisolatedusingtheMoBioDNAeasy Followingincubation,0.5mlof10%trichloroaceticacidwas UltraCleanMicrobialkit.QualityofthegDNAwascheckedus- addedtoterminatethereaction.Tubeswerethenvortexedfor5 ingaNanoDropandanagarosegelforintegrity.ThegDNAwas minfollowedbycentrifugingfor5minat4◦Cand10000×g.Five shearedmechanicallytoanaveragefragmentsizeof10kbpus- hundredmicrolitreofsupernatantwasthenaddedtocuvettes ingaCovarisgTube.Thesequencinglibrarywaspreparedusing containing500μlof0.5MNaOH,andabsorbancewasmeasured the1DligationprotocolfromONTwithnativebarcodingofthe at440nminanUltrospec3100prospectrophotometer.Allsam- sample.TheresultwassequencedonaR9.4flowcellforaperiod pleswererunintriplicate. of8h. Skimmilkassay CombinedGenomeAssemblyofIonPGMand NanoporeReads FivemicrolitreofovernightculturesofP.aeruginosaUCBPP-PA14, P.baeticaa390T,P.fluorescensPf0-1andP.putidaKT2440werein- TheIonPGMreadswerecheckedforqualityusingFastQCand oculatedontoMOPSminimalmediaagarplates,supplemented processedwithBBDukinordertoremovepotentialadaptercon- tamination,sizeexclusion(50>readlength<250),andfortrim- withdehydratedskimmedmilkandincubatedfor72hat30◦C. ming (phred score < 28) (Andrews 2014). Basecalling of the Photographsweretakenat24-htimeintervals.Ironsupplement, NanoporereadswasperformedwiththesoftwareAlbacorev2.1.3 FeCl2,wasnotincludedinthe10×stock,and5g/Lofagarand skimmilkwereaddedinordertoobserveclearhaloformation. fromONT,andthebarcodeswereremovedusingPorechop.Read lengthdistributionandqualityoftheNanoporereadswasas- sessedusingNanoPlot. OTresistanceassay ThegenomewasfirstassembledwithSPAdes,version3.11.1 usingdefaultparameters(Bankevichetal.2012)usingIonPGM Pseudomonasbaeticawastestedforantibioticsensitivitybyagar readsonly,thenwithUnicycler,versionv0.4.3(Wicketal.2017) dilutionaccordingtotheEuropeanCommitteeforAntimicrobial alsousingdefaultparameterswithbothIonPGMandNanopore SusceptibilityTestingguidelines(EuropeanCommitteeforAn- reads.Forthelatter,thegenomewaspolishedwithRacon(Vaser timicrobialSusceptibilityTesting(EUCAST)oftheEuropeanSo- etal.2017)andPilon(Walkeretal.2014).Thequalityofbothas- cietyofClinicalMicrobiologyandInfectiousDiseases(ESCMID) semblieswasassessedwithQUAST(Gurevichetal.2013). 2000).ResistancetoOTwastestedduetoitsfrequentuseasa growthpromoterinaquaculture(Lealetal.2017).Mueller-Hinton agar plates with final concentrations ranging from 0.125 to Genomicislandpredictionandgenomevisualisation 128μgmL−1wereinoculatedwithP.baeticaa390Tsuspensions The Ion PGM and the hybrid assemblies were annotated with dilutedin0.85%NaCltoaturbidityequivalentofa0.5McFarland Prokka (Seemann 2014) using a custom protein database built standard.Plateswereincubatedovernightat30oC.Pseudomonas from the Pseudomonas genus. The annotations were then aeruginosaPAO1wasusedasapositivecontrol. Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 4 FEMSMicrobiologyLetters,2018,Vol.365,No.9 Table 1. Assessment of genome assembly quality for both ap- (Bravo,LozanoandHandelsman2017).ANIwasusedtocompare proachesrevealsavastimprovementintheassemblydespitealow thewholegenomesequenceofP.baeticaagainstthesixavailable nanoporesequencingcoverage(9X). referencegenomesforP.koreensisaswellasstrainIrchel3E19, andconfirmsthatitismostcloselyrelatedtoIrchel3E19and Metric IonPGMonly Hybrid CI12, with an ANI of 98.02% and 89.6% similarity,respectively Assemblylength 6602908 6773804 (Fig.1A)(Arahal2014).WealsousedJSpeciesWSasanindepen- No.ofcontigs(>1000bp) 338 16 dentANImethodandthisanalysisagreedwiththosedescribed N50 36090 973739 above(seesupplementaryANItables)(Richteretal.2016).Finally, N75 19947 745006 BLASTwasusedtocomparethegyrBandrpoDgenessequences Longestcontig 122046 1654292 ofP.baeticaa390TandCI12againstavailablepartialrpoDandgyrB sequencesavailableforP.baetica(Lo´pezetal.2012).Thisshowed a93.6%similarityinrpoDand95.0%similarityingyrBbetween CI12andthewholegenome-sequencedP.baeticaa390T. RESULTS Sequencingresultsandassembly Genomicislands,biosyntheticgeneclustersand prophagesdetectedintheP.baeticagenome TheinitialIonTorrentsequencingproducedover3.5millionbar- codedreadswithameanreadlengthof299bp.SPAdesassembly Genomic islands can be readily detected when long contigu- resultedinfinalcontignumberof338.TheNanoporesequenc- ous regions are assembled. As such, searching for prophages ingrunyieldedaround22000reads,ofwhich7771passedqual- inthehighlyfragmented,ionPGM-onlyassemblydidnotyield ity control during the basecalling process. The average phred anyresults,whereasinspectionofthehybridassemblyshowed quality score of the reads is 11 and their length distribution four intact prophages in the genome of P. baetica, as well as wasaround9kbp(seeFigureS1,SupportingInformation).With five incomplete ones (Table 2a). Two integrative conjugative agenomesizeofabout6.6Mbp,estimatedfromaninitialIon elements were also detected. A combination of IslandViewer PGMassembly,weinferagenomecoverageofabout9×forthe andantiSMASHwerealsousedtopredictgenomicislandsand Nanoporesequencingdata(60Mbp),and80×withIonPGMdata the secondary metabolite biosynthetic potential of P. baetica (540MbpafterQC). (Bertelli et al. 2017; Blin et al. 2017). These results are sum- Thehybridapproachthatcombinesboththedatasetofshort marisedontheCGViewComparisonToolmapinFig.2,anda IonPGMreadswiththelongNanoporereadssignificantlyim- moredetailedsummaryoftheantiSMASHresultsisprovidedin provedthegenomeassemblyoverthatusingIonPGMreadsonly Table2b(Grant,ArantesandStothard2012).Manyofthelocire- giving16contigsover1000 bp(Table1).Quastanalysisofthe ferred to throughout this manuscript are labelled around the combinedassemblygivesanN50valueof973739whichishigher CCT map in Fig. 2 as well as the results of IslandViewer. The than 96% of all draft genomes in The Pseudomonas Genome CCT BLAST analysis confirms the close phylogenetic relation- database. shipbetweenP.baeticaa390andIrchel3E19(Fig.2).Ofthenine TheIonPGM-onlyandthehybridassemblygraphswerealso biosyntheticgeneclusters(BGCs)predictedbyantiSMASH,four inspectedvisuallyusingBandage(Wicketal.2015)inordertoas- areNrps(non-ribosomalpeptidesynthetases)biosyntheticgene sessthefragmentationofthegenomeassembliesandthege- clusters.Clusters3and8hadrelativelylowsimilaritiestothe nomic organisation, including the presence of potential plas- nearestknownclusters;however,cluster6sharedahighsim- mids(seeFiguresS2andS3,SupportingInformation).Aftergene ilaritywithanorfamideBGCwith80%ofgenesinthiscluster annotationwithProkka,plasmid-associatedgeneslikerecombi- sharinghomologywiththeputisolvinbiosurfactantBGC.Puti- nases,transposasesandintegrasesweresearchedforandwere solvin has been implicated in motility (Ca´rcamo-Oyarce et al. notpresentorwerenotindicativeofbeingplasmidassociated. 2015)andourpreliminaryexperimentshavedemonstratedthat Thehighcontinuityassemblyprovidedbythecombinatorialap- P.baeticaiscapableofbothswimmingandswarming(seeFig- proachofIonTorrentandNanoporetechnologiesallowedfora ureS4,SupportingInformation).Sinceputisolvinbiosynthesisin comprehensiveanalysisofthegenome. certainstrainsofP.putidaisknowntobeaquorumsensing(QS)- regulatedphenotype,wesearchedforhomologuesofknownQS PhylogeneticplacementandANIofP.baeticaa390T systemsintheP.baeticagenome(Dubernetal.2008).Nocon- vincinghomologuesoftheLasRorRhlRregulatedsystemsfrom We have produced a phylogeny to place the sequenced P. P.aeruginosa,orthePpuI,PpuR,PpuA,RsaLsystemfromP.putida baetica a390T genome against reference genomes from 19 werefound. speciesclades,comprisingtheentiregenusPseudomonas(Fig.1B) (Gomilaetal.2015).ThiswasdoneusingMash,apipelinethat Bacteriocins,tailocinsandmodularbacteriocinsofP. convertsagenomeintoasketch(orgroupsofk-mers).Sketches baetica arethencomparedtoproduceaJaccardindex,whichisgener- atedbaseduponsharedk-mersbetweengenomes(Ondovetal. Pseudomonads are capable of producing a variety of 2016). Our phylogeny places P. baetica amongst the P. koreensis antagonism-mediating peptides and proteins. A subset of subclade,aspreviouslyshowninphylogeniesconstructedusing thesemoleculesarebacteriocins,andassistintheelimination partial23SrRNAP.koreensisgenesequences.AP.koreensisphy- of phylogenetically related competitors (Ghequire and de logenyconstructedinthesamemannerplacesP.baeticaclos- Mot 2014). Historically, these compounds have been mainly esttoPseudomonassp.Irchel3E19,astrainisolatedfromapond studied in P. aeruginosa, there termed pyocins (Michel-Briand inZurich,Switzerland,suggestingthatthisisolateisinfacta and Baysse 2002), but they have been equally detected and strainofP.baetica(Butaite˙ etal.2017).Thenextmostcloselyre- characterizedinanumberofotherPseudomonasspecies.Evolu- latedorganismisP.koreensisstrainCI12,whichwasrecentlyco- tionarilyrelatedtobacteriophagetails,tailocinsarefunctional isolated with Bacillus cereus from a soybean plant rhizosphere standaloneunits—ratherthandefectiveprophages—lackingan Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 Beatonetal. 5 Figure1.PlacementofnovelbaeticagenomeinthegenusPseudomonasbaseduponANI,andsharedk-mersA)ANIheatmapgeneratedthePython3modulepyani. Thesequencedbaeticagenome,Pseudomonassp.Irchel3E19andreferencegenomesfromthecloselyrelatedkoreensissubcladeweresubjecttoANIanalysis.B)A Mash-basedtreegeneratedfromreferencegenomes(n=86)from19speciesclades,comprisingtheentiregenusPseudomonas.Thistreewasgeneratedbasedupon theJaccardindex,calculatedfromsharedk-mers.CellvibriojaponicumUeda107wasusedasoutgroup. Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 6 FEMSMicrobiologyLetters,2018,Vol.365,No.9 Table2a.Listofprophageregionsdetectedinthehybridassembly. Contigno. Length Completeness Score No.ofproteins Regionposition Mostcommonphage GC% 1 6.7Kbp Questionable 70 6 681684–688458 PHAGEStx2c1717NC011357(3) 53.77% 2 6.5Kbp Incomplete 40 10 512098–518615 PHAGEEnterophi92NC023693(2) 60.11% 2 10.2Kbp Incomplete 30 8 742363–752628 PHAGEClostrphiCT453ANC028991(3) 56.63% 2 5.5Kbp Incomplete 60 6 925750–931322 PHAGEStx2c1717NC011357(3) 54.15% 3 40.7Kbp Intact 150 48 383269–424017 PHAGEVibrioVP882NC009016(12) 58.74% 3 57.2Kbp Intact 150 49 430072–487323 PHAGEVibriovBVpaMMARNC019722(8) 58.69% 4 35.1Kbp Intact 150 42 357957–393153 PHAGEPseudophiCTXNC003278(18) 57.32% 4 50.1Kbp Intact 150 70 564492–614686 PHAGEEnteroAryaNC031048(10) 56.98% 5 21.3Kbp Incomplete 40 11 26364–47679 PHAGEPseudovBPsyMKIL1NC030934(6) 49.79% 5 8.7Kbp Incomplete 50 13 540790–549505 PHAGEBacillBMBtpLANC028748(1) 57.37% accompanying phage head (Ghequire and de Mot 2015). Pseu- and2(cid:5)arepossibleduetosequencehomologyofputativeLpxD domonas phage tail-like bacteriocins are typically recruited to and the presents of possible HtrB1 and HtrB2 homologs (Lam trpE-trpG and mutS-cinA intergenic regions (Ghequire and de etal.2011;Hittleetal.2015).Ingeneral,itislikelythatP.baetica Mot2015).InspectionofthecorrespondingregionsinP.baetica possessesalipidAstructuresimilartoknownstructuresfrom revealsthepresenceoftwoadjacentR-typegeneclustersatthe P.aeruginosawhenpossiblepost-synthesismodificationsarenot mutS-cinAlocus.Phylogeneticassessmentandgenesyntenyis takenintoaccount(Knireletal.2006). indicative of an Rp3-Rp4 organisation, and a similar tailocin Furthergenomeanalysisresultedintheidentificationofa configuration was recently described in P. chlororaphis 30-84 geneclusterhomologoustothecoreoligosaccharidegeneclus- (Dorosky et al. 2017). An interesting observation is that four terwhichwasdescribedandstudiedinP.aeruginosa.Directcom- putative tail fibres are likely present in the Rp4 cassette of parisonoftheclusterrevealedthatP.baeticalackshomologues P. baetica, whereas usually only one or two of these can be oftheP.aeruginosagenesPA4998(putativekinase)andPA5008 detectedintailocins. (heptosekinase),whichpossiblysuggestsalessphosphorylated ReferredtoasS-typepyocinsinP.aeruginosa,modularbac- coreoligosaccharide(Lametal.2011).ReciprocalBLASTsearch- teriocinsrepresentaheterogeneousgroupofpolymorphictox- ing of different Pseudomonas proteomes resulted in sequence ins (Zhang et al. 2012; Jamet and Nassif 2015), comprising a identities between the wide range of 14% and 98%. The high- receptor-bindingdomain,asegmentenablingmembranetrans- estoverallsequencesimilaritywasobservedtoP.fluorescensPf0- ferandatoxindomainatthecarboxy-terminus(Ghequireand 1coreoligosaccharidebiosynthesisproteins,rangingfrom85% de Mot 2014). To protect from self-inhibition, bacteriocin pro- to98%whichisconsistentwiththephylogeny.Ingeneral,the ducerstrainsco-expressanimmunitygene,typicallyencoded clusterstructureandpresenceofputativeglycosyltransferases adjacent to the bacteriocin killer gene. Pseudomonas nuclease (WapR, WapH, WaaG, WaaC, WaaF) indicates the presence of bacteriocins(DNase,tRNase,rRNase)areconsistentlyequipped aninnercoreoligosaccharidestructuresimilartoP.aeruginosa withacentralpyocinSdomain(Pfam06958),andsuggestedto (Knireletal.2006). playapivotalroleintranslocationofthetoxintothecytoplasm (GhequireanddeMot2014;Sharpetal.2017).Searchingforthis ExtracellularproteaseandeffectorsecretionbyP. domainrevealedanarrayofputativemodularbacteriocinsinP. baetica baetica,sevenofwhichhostanHNH-DNaseandthreeanrRNase domain.Inonebacteriocin,aputative(non-HNH-type)DNase Extracellular protease secretion is an important virulence de- homologoustothekillerdomainfoundincarocinD—butdis- terminant of P. aeruginosa. In order to determine if P. baetica tinctfromthenon-HNH-typeinpyocinS3—wasidentified. has a similar phenotype, azocasein and skimmed milk pro- TwootherpredictedP.baeticabacteriocinswithhomologyto teaseassayswereperformedwithP.aeruginosaUCBPP-PA14,P. atoxinmoduleofacontact-dependentinhibitioncassette(type baetica, P. fluorescens Pf01, and P. putida KT2440. As expected, IV)inBurkholderiapseudomalleiwerealsodetected.Nobacteri- P.aeruginosaUCBPP-PA14secretedprodigiousamountsofpro- ocinsactingattheperiplasmiclevel(colicinM-like,Pfam14859; tease(seeFigures5and6,SupportingInformation).Pseudomonas pesticins,Pfam16754;orporeformers(ColIa/ColN),Pfam01024) baeticaa390TsecretedsignificantlylessproteasethanP.aerugi- couldberetrieved. nosabutmarginallymorethantheotherstrains.Thisphenotype wasmostevidentonMOPSminimalmilkagarafter72h(see FigureS6b,SupportingInformation). LipidAandcoreoligosaccharidebiosynthesisgene AmajorvirulencedeterminantinGram-negativepathogens clusters istheabilitytoinjecteffectorproteinsintohostcellsusingatype Putative homologues of the confirmed lipid A biosynthesis IIIsecretionsystem(T3SS)(Hauser2009).BLASTanalysisusing (Raetzpathway)enzymesinP.aeruginosaPAO1couldbeiden- theP.aeruginosaPscT3SSproteinsrevealedaT3SStobepresent tifiedinthesequencedgenome.ComparisontodifferentPseu- intheP.baeticagenome,providingapossibleexplanationforthe domonasproteomesrevealedsequenceidentitiesoftheputative virulenceofthisstrainashypothesisedabove. proteinsrangingfrom59%to97%.Thosehigh-sequenceidenti- tiesandthehydrocarbonrulermotiveinputativeLpxA(UDP-N- OTresistanceinP.baetica acetylglucosamineacyltransferase)hinttowardsalipidAwitha C10acylchainatposition3and3(cid:5)(Smithetal.2015).Besides,C12 Followingovernightincubation,antibioticplateswereexamined secondaryacylchainsorC12primaryacylchainsatposition2 for bacterial growth, and the minimum inhibitory concentra- Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 Beatonetal. 7 Figure2.OverviewofthegenomicarchitectureofP.baeticaa390T.CGViewComparisonToolwasusedtoplotthepercentagesequenceidentityofcloselyrelatedstrains. Theouterlabelsandbeigeblocksrefertolocithatarementionedthroughoutthepaper.TheP.baeticaa390Tgenomeissplitintotheforwardandreversestrandsand thecodingsequencesarerepresentedbybluearrows.Thenext6ringsrepresentthepercentageBLASTidentityofthegenomesofthefollowingcloselyrelatedstrains; fromtheoutsideringtoinsidetheorderisP.spIrchel3E19,P.koreensisCI12,P.koreensisD26,P.fluorescensSBW25,P.putidaKT2440,P.aeruginosaUCBPP-PA14.Thepercentage identityisindicatedbythecolourofthe6BLASTringsasindicatedbythekeyonthebottomlefthandsideofthefigure.Movinginwards,thenexttworingsindicate thechangesin%GCcontentandtheGCskewrespectively.Finally,thecentraldiagramindicatesthegenomicislandspredictedbytheIslandViewerpackagewhere Red=predictedbymultiplemethods,blue=IslandPath-DIMOB,orange=SIGI-HMMandgreen=IslandPick. Table2b.SecondarymetabolitebiosyntheticclusterspredictedbyantiSMASH. Cluster Type Clustersize(bp) Mostsimilarknownbiosyntheticgenecluster Percentagesimilarity 1 Unknown 43395 Mangotoxin 71 2 Arylpolyene 43613 APEVf 40 3 Nrps 63804 Nataxazole 11 4 Bacteriocin/Ripp 10887 – – 5 Transatpks-Nrps 94211 Sorangicin 13 6 Nrps 77485 Orfamide/Putisolvin 70 7 Terpene-Nrps 73119 Pyoverdine 16 8 Nrps 52998 Pyoverdine 22 9 Bacteriocin/Ripp 10845 – – Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 8 FEMSMicrobiologyLetters,2018,Vol.365,No.9 tion(MIC)ofOTforP.aeruginosaPAO1wasdeterminedas1μg OrthologsofMexAB-OprMandMexEF-OprN mL−1,aquarterthatofP.baeticaa390T.OTisaproteinsynthesis- resistance-nodulationcelldivisioneffluxsystemsinP. inhibitingantibioticbelongingtothetetracyclineclass,andis baetica oneofthemostcommonlyusedantibioticsinaquaculture(Leal etal.2017). TheMexAB-OprMandMexEF-OprNsystemsaremembersofthe WhenP.baeticawasculturedonmediacontainingOT,itwas resistance-nodulationcelldivisionmultidrugeffluxpumpfam- able to grow in the presence of higher concentrations than P. ily(Poole 2011). BLASTp was used to compare the amino acid aeruginosaPAO1.TheminimuminhibitoryconcentrationofOT sequencesencodedbythemexEF-oprNandmexAB-oprMoperons required to inhibit the growth of P. baetica was determined as inP.aeruginosastrainPAO1withhomologuesinP.baetica. 4μgmL−1.TheabilityofP.baeticatotoleratehigherconcentra- MexAB-OprMisknowntoplayakeyroleinefflux-mediated tionsofOTthanalabstrainofPseudomonasmaybeduetotheuse resistance to a wide variety of compounds such as antibi- oftheantibioticinaquaculture,especiallyasanadditiveinfish otics and solvents in P. aeruginosa (Li, Zhang and Poole 1998; food.OTresistance(OTR)hasbeenobservedpreviouslyinbac- Poole2011).Similarly,theMexEF-OprNeffluxsubstratesinclude terialspeciescolonisingpelletisedfishfoodinChile,andalsoin antibiotics and the QS precursor 4-hydroxy-2-heptylquinoline halfofcommercialfishfoodsamplesanalysedina1995studyof (LamarcheandDe´ziel2011;Llanesetal.2011).Pseudomonasbaet- OTRinfishfarmsediments(Kerryetal.1995;Mirandaetal.2003). icasequencesproducingsignificantalignmenttoMexAB-OprM and MexEF-OprN were identified with between 69%–79% and 72%–88%identitytoP.aeruginosastrainPAO1,respectively.Inter- Glycerol-3-phosphateutilisationinP.baetica estingly,thearrangementofthemexAB-oprMoperoninP.baetica bearsmoresimilaritytoP.fluorescens,wheretheadjacentreg- A notable characteristic which differentiates P. baetica from ulatory gene encodes a member of the TetR regulator family, closely related Pseudomonas species is an inability to grow on unlike P. aeruginosa which encodes the MarR family regulator glycerol-3-phosphate(G3P)asasolecarbonsource(Lo´pezetal. MexRinthisposition.However,itshouldbenotedthatP.baet- 2012). Several other pseudomonads, such as P. fluorescens and icadoeshaveaMexRhomologuelocatedadjacenttoathirdef- P. aeruginosa can use G3P as sole carbon sources. However, P. fluxoperonwhichhassignificantlylesshomology(8%–31%)to baeticacanuseglycerolasasolecarbonsource.Thissuggested mexAB-oprM. thatP.baeticasuffersfromaspecificdeficitinG3Puptake,not metabolism.UptakeofG3Pisknowntooccurusingthespecific MFStransporterGlpT(Fann,BuschandMaloney2003). OutermembraneporinsinP.baetica ThenewlysequencedgenomeallowedustoexaminetheP. baeticagrowthdeficiencyonG3Pingreaterdetail.Remarkably,P. InadditiontotheMex-associatedporins,theP.baeticagenome baeticaappearstoharbouraglpThomologue,whichisquitesim- wassearchedforgenescodingforotheroutermembraneporins. ilartoGlpTfromotherpseudomonads(seeFigureS7,Support- There are 26 porin genes in P. aeruginosa involved in different ingInformation).ThestructureofGlpThasbeenelucidatedfor importantbiologicalfunctions:outermembranestability(OprF, Escherichiacoli,allowingustounderstandwhichresiduesareim- OprH) and nutrient uptake (OprB, OprP, and the porins of the portantforsubstraterecognition(Huangetal.2003).Allresidues OprDfamily),whichhaverecentlybeenreviewed(Chevalieretal. whichhavebeenidentifiedasimportantforfunctionalityinpre- 2017).TheP.baeticagenomerevealedonly17poringenes,but viousstudiesareunchangedinP.baetica.MutationofK80toala- themajorporinsdescribedinP.aeruginosaareconserved.The ninekilledheterologousG3P-Pitransportoftheproteinreconsti- oprFgenecodingforthemajorPseudomonasporinispresentinP. tutedintoproteoliposomes,andmutationofH165resultedina baeticaandthegenomiccontextaswell:estX-menG-cmaX-cfrX- transportratethatwasonly∼6%ofthatcatalysedbywild-type cmpX-sigX-oprF where EstX is an esterase, MenG a RNAse in- protein(Lawetal.2008).Thesedatasuggestthatthepresence hibitor,CmaXaCorA-likemagnesiumtransporter,CfrXaputa- ofa glpThomologdoesnotnecessarilyequate toG3Puptake, tiveanti-sigmafactor,CmpXamechano-sensitivechannel,and highlightingthenecessityofexperimentalvalidation.Thisre- SigX an ECH-sigma factor. OprF has a C-terminal periplasmic sultmaybeduetoalackofinductionoftheP.baeticaglpTgene domaininteractingwithpeptidoglycanandabarrelN-terminal uponexposuretoG3P. domainanditisamajorcontributortotheenvelopestability. The broad-spectrum bactericidal antibiotic, fosfomycin, is OtherconservedporingenesareoprGandoprH,whichcodefor takenupactivelyintobacterialcellsviaGlpTandtheglucose- smallporinswithonlyeightstrands.OprGbelongstotheOmpW 6-phosphate transporter UhpT, and inhibits the initial step in familyandhasbeenproposedtobeinvolvedinFe2+diffusionto cellwallsynthesis(Kahanetal.1974).InactivationofglpTwas theperiplasm(Catel-Ferreiraetal.2016).OprHisinducedbylow shown to confer increased fosfomycin resistance in P. aerugi- Mg2+andcontributestotheoutermembranestabilityviaitsin- nosa,withanapparentlackoffitnesscost.Theseauthorsiso- teractionwithLPS(Kucharskaetal.2015).AsinP.aeruginosa,P. lated 10 independent spontaneous mutants, obtained on LB- baeticaalsohasthreegenesfortheglucoseporinOprB,including fosfomycin,whichharbouredmutationsintheglpTgene.These oneintheconservedgltBFGKoprBoperon(Chevalieretal.2017). mutantsincludedseveraldeletions,frameshiftsandthreesingle Surprisingly,the P. baetica genome does not contain genes for aminoacidchanges,Gly137toAsp,Thr336toProandMet366toIle theOprOandOprPphosphateuptakeporinsofP.aeruginosa.The (Castan˜eda-Garc´ıaetal.2009).Indeed,mutationsintheStaphy- OprDfamilycomprises19membersinP.aeruginosasub-divided lococcusaureusglpTgenewererecentlyshowntobethemajor into two sub-families, the OccD being involved in the uptake determinantoffosfomycinresistanceinthisorganism(Xuetal. ofbasicaminoacidsandtheOccKfortheuptakeofnegatively 2017).Thehighfosfomycinresistanceandlowbiologicalfitness chargedcyclicmolecules(Erenetal.2012).Thecomparisonwith costresultingfromthelossofG3PuptakesuggeststhatP.baetica P.aeruginosaporinsviaBLASTPiscomplicatedbythefactthat mayhaveanevolutionaryadvantageinafosfomycin-richenvi- manymembersoftheOprDfamilyshowsignificantrelatedness. ronment.Futureworkwillbenecessarytoconfirmpreciselyhow Nevertheless,thesurveyoftheP.baeticagenomerevealedfive G3PuptakehasbeenlostinP.baetica. membersoftheOccDandsixoftheOccKfamily. Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 Beatonetal. 9 OsmoticstressresistanceofP.baetica SinceP.baeticaa390Twasoriginallyisolatedfromamarineaqua- culture scenario, we have investigated its genotypic and phe- notypic ability to overcome salt stress. Trehalose is a stress- relievingdisaccharidewhichaccumulateswithinthebacterial cellinresponsetostress.Ithasbeenwidelystudiedforitsrole asacompatiblesolutethatconfersprotectionagainstosmotic stress.Itisthoughtthattrehaloserehydratesthecellfollowing water loss, preventing the loss of cellular functions (De Smet et al. 2000). It has also been reported that trehalose is impor- tantforpathogenicityofPseudomonasspp.(Freeman,Chenand Beattie2010;Djonovic´ etal.2013).Bacteriapossessthreemain pathwaysfortrehalosebiosynthesis:OtsAB,TreYZandTreS. TheOtsABpathwayisthemostcommonrouteoftrehalose biosynthesis in bacteria. OtsA catalyses the synthesis of tre- halose6-phosphatefromUDP-glucoseorADP-glucoseandglu- cose6-phosphate.ThephosphategroupisthenremovedbyOtsB togivetrehalose(DeSmetetal.2000).TheTreYZandTreSpath- waysproducetrehaloseusingdifferentsubstrates.TreYconverts reducingmaltosylunitsofmaltooligosaccharidestogiveα-1,1 terminal moieties which are then cleaved by TreZ to produce Figure3.StresstoleranceandgrowthcharacteristicsofP.baeticaa390T.Graph trehalose.TheTreSpathwayisomerisesmaltoseintotrehalose, ofendpointgrowthmeasuredasOD600after24hincubationat30◦CinPseu- catalysedbythetrehalosesynthaseTreS,butitsutilityinvivois domonasminimalmedia(L-glutamine5%,K2HPO41.5%,MgSO40.2%,20mMglyc- erolorothercarbonsourceasindicated)withpHorsaltconcentrationadjusted context-dependent(Miahetal.2013). asindicated.Datarepresentedmean±SD.∗P<0.05,∗∗P<0.01(determinedby Comparative genomics have shown that in common with two-wayt-test). other Pseudomonas spp., P. baetica lacks the genes for the OtsA/OtsBpathway.However,P.baeticapossessestheenzymes oftheTreYZandTreSpathways. ofbothgenomesusingSEEDviewershowedthatP.baeticahasa AlthoughTreSisknowntobecapableofgeneratingtrehalose homologueoftheOsmYgenewhichhasaproteinmodification insomebacteria,itispredictedthatthefunctionofTreSinP. function during osmotic stress whereas P. fluorescens does not baeticaistocatabolisetrehalose.Phenotypicobservationssug- (Me´tris,GeorgeandRopers2017). gestthattheabilityofP.baeticatoutilisetrehaloseasasolecar- bonsourceisdependentonotherconditions.InastudybyLo´pez IronuptakegenesinP.baetica et al., it was reported that P. baetica was unable to utilise tre- halose.Becauseofitsimportancetoosmoticstress,werepeated The P. baetica genome was searched for genes coding for theOmniloganalysisfortrehaloseandobservedanintermedi- siderophorebiosynthesisanduptakeproteinsaswellasthose atephenotypeandfurtheranalysisondefinedmediashowsthat involved in Fe2+ uptake. As expected, genes for the biosyn- P.baeticaiscapableofutilisingtrehalose. thesis and uptake of the fluorescent siderophore pyoverdine ThetreSgeneisfusedwiththemaltokinase-encodingpep2 arepresent(34intotal)andarescatteredinfourgenomicloci gene(Chandra,ChaterandBornemann2011),consistentwitha as it is usually the case for fluorescent pseudomonads (Ravel TreS/Pep2fusionproteinconvertingtrehaloseintoα-maltose1- andCornelis2003).Pseudomonasbaeticaalsoproducesasecond phosphate(M1P)(Miahetal.2013).M1Pisexpectedtobeacted siderophore/metallophore,yersiniabactin,whichwasdescribed uponbyGlgEandGlgBtoproduceaglycogen-likeα-glucan,given in Yersinia pestis and in other Enterobacteriaceae (Chaturvedi thatthetreS/pep2,glgEandglgBgenesareclustered. etal.2012).Yersiniabactinsharessomebiosynthesisstepswith OtherPseudomonasspp.suchasP.fluorescensandP.syringae pyochelin,thesecondsiderophoreofP.aeruginosaandisableto possessanadditionalhomologueofanunfusedtreSgeneem- bindcopperwithhighaffinity.Ithasbeenalsodescribedinsome phasisingtheimportanceoftrehaloseproductionintheseor- P.syringaeandP.avellanaestrains(JonesandWildermuth2011; ganisms.Interestingly,thisadditionalhomologueisabsentinP. MarcellettiandScortichini2015).Interestingly,whilemostpy- baetica.P.fluorescensandP.syringaelikelybenefitfrombeingable overdinegeneshavetheirclosesthomologsinP.koreensis,all, tocontrolthesynthesisoftrehaloseundermorevariedcondi- butone,yersiniabactingenesofP.baeticashowacloseidentity tions. withtheyersiniabactingenesfromP.azotoformans,whichcould WehypothesisedthatP.baeticawascapableofcausingdis- beindicativeofhorizontalgenetransfer.Thegenomecontains easeinmarinefishbecauseithadgreatersalttolerancethan 27 genes coding for a TonB-dependent receptor, including the otherpseudomonads;however,thisprovedtobeincorrect.Our fpvAgenefortheferripyoverdineuptake,andtwofyuAgenesfor datashowthatallofthepseudomonadstestedherearecapable theuptakeofferri-yersiniabactin.However,twoofthesegenes ofgrowthinNaClconcentrationsrelevanttothemarineenvi- aretruncatedandaprobableframeshiftisevidentforonerecep- ronment(seeFiguresS8andS9,SupportingInformation). torgene.Noteworthyisthepresenceofsixgenesannotatedas Inadditiontosalttoleranceexperiments,P.baeticaandP.flu- codingforaTonBprotein.Asamatterofcomparison,onlythree orescenswerealsotestedfortheirabilitytogrowinminimalme- arepresentinP.aeruginosa(Cornelis,MatthijsandvanOeffelen dia with the addition of Instant Ocean which has similar lev- 2009). Another surprising discovery is the absence of feoABC elsofmosttraceelements,nutrientsandalkalinitytoseawater genesfortheuptakeofFe2+inP.baetica.Thisfunctionisprobably samples(Fig.3).PseudomonasbaeticagrowswellinInstantOcean securedbytheproductsoftheefeUOABoperon,firstdescribedin whileP.fluorescenshasminimalgrowthsuggestingthatP.baetica E.coliO157:H7,whichisinvolvedintheuptakeofferrousironin mayhavesomeadaptationtothemarineenvironment.Analysis theperiplasmwhereitgetsre-oxidized(Caoetal.2007). Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018 10 FEMSMicrobiologyLetters,2018,Vol.365,No.9 DISCUSSION Arndt D, Grant JR, Marcu A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res Whole-genomesequencinghasbecomeubiquitousinmicrobi- 2016;44:W16–21. ology and access to the technology is now widespread. Here, BankevichA,NurkS,AntipovDetal.SPAdes:anewgenomeas- weshowthatcombiningtworelativelycheapanduser-friendly semblyalgorithmanditsapplicationstosingle-cellsequenc- methods(IonTorrentSemiconductorandOxfordNanoporeMin- ing.JComputBiol2012;19:455–77. IONsequencing)enablesgenomeassemblyofarelativelylarge BertelliC,LairdMR,WilliamsKPetal.IslandViewer4:expanded bacterialgenometoafinishablestate.Ourphylogeneticanaly- predictionofgenomicislandsforlarger-scaledatasets.Nu- sesshowthatP.baeticaiscloselyrelatedtoP.koreensisintheP. cleicAcidsRes2017;45:W30–5. fluorescensgroup.However,ourdatashowthattheP.fluorescens Blin K, Wolf T, Chevrette MG et al. antiSMASH 4.0— grouptaxonomyisinneedofreview.Giventhecloserelation- improvements in chemistry prediction and gene cluster shipofP.baeticaa390TtoP.irchel3e19,weproposethat3e19is boundaryidentification.NucleicAcidsRes2017;45:W36–41. astrainofP.baetica.Althoughbothareaquaticisolates,Irchel BravoJI,LozanoGL,HandelsmanJ.DraftGenomesequenceof 3e19wasisolatedfromfreshwaterandP.baeticaa390Tisma- FlavobacteriumjohnsoniaeCI04,anisolatefromthesoybean rine(Lo´pezetal.2012;Butaite˙ etal.2017).Ourdatashowthat rhizosphere.GenomeAnnounc2017;5:e01535–16. theabilitytogrowinmarinesaltconcentrationsiscommonin Butaite˙ E, Baumgartner M, Wyder S et al. Siderophore cheat- thegenusPseudomonas.This,combinedwiththeoriginofIrchel ing and cheating resistance shape competition for iron in 3e19suggeststhatP.baeticaa390Tisnotamarine-restrictedor- soilandfreshwaterPseudomonascommunities.NatCommun ganismandislikelytobeanopportunistpathogenofmarine 2017;8:414. fish,possiblyassociatedwithhighfishdensitiesinaquaculture CaoJ,WoodhallMR,AlvarezJetal.EfeUOB(YcdNOB)isatripar- facilities.Ontheotherhand,thepresenceofaT3SSINBOTH tite,acid-inducedandCpxAR-regulated,low-pHFe2+trans- P.baeticaA390TandIrchel3E19(Prof.RolfKummerli,personal porterthatiscrypticinEscherichiacoliK-12butfunctional communication)suggeststhattheseorganismsarenotmerely inE.?coliO157:H7.MolMicrobiol2007;65:857–75. benignenvironmentalstrains.TheP.baeticagenomeshowsev- Castan˜eda-Garc´ıa A, Rodr´ıguez-Rojas A, Guelfo JR et al. The idenceofgenomeplasticityandcontainsavarietyofgenomic glycerol-3-phosphate permease GlpT is the only fos- islandsandprophagesasisthecasewithotherpseudomonads fomycin transporter in Pseudomonas aeruginosa. J Bacteriol includingP.aeruginosa(Klockgetheretal.2011).Thediverseiron 2009;191:6968–74. acquisitionandmembranetransportsystemsencodedintheP. Catel-FerreiraM,MartiS,GuillonLetal.Theoutermembrane baeticagenomeareconsistentwithanorganismthatishighly porinOmpWofAcinetobacterbaumanniiisinvolvediniron adaptabletoarangeofenvironments.Wefindnogenomicevi- uptakeandcolistinbinding.FEBSLett2016;590:224–31. denceofknownQSsystemsfoundinotherpseudomonads,but Ca´rcamo-Oyarce G, Lumjiaktase P, Ku¨mmerli R et al. Quorum ourobservationsthatP.baeticaiscapableofproteasesecretion sensing triggers the stochastic escape of individual cells andswarmingsuggestthatitmayengageinsocialbehaviour. fromPseudomonasputidabiofilms.NatCommun2015;6:5945. Chandra G, Chater KF, Bornemann S. Unexpected and SUPPLEMENTARYDATA widespread connections between bacterial glycogen and trehalosemetabolism.Microbiology2011;157:1565–72. SupplementarydataareavailableatFEMSLEonline. Chaturvedi KS, Hung CS, Crowley JR et al. The siderophore yersiniabactinbindscoppertoprotectpathogensduringin- FUNDING fection.NatChemBiol2012;8:731–6. Chevalier S, Bouffartigues E, Bodilis J et al. Structure, function WorkinNPT’slabhasbeenfundedbyBiotechnologyandBio- andregulationofPseudomonasaeruginosaporins.FEMSMicro- logicalSciencesResearchCouncilgrant BB/K019600/1andChief biolRev2017;41:698–722. Scientists Office grant TCS/16/24. AB is supported by a PhD Connor TR, Loman NJ, Thompson S et al. CLIMB (the Cloud StudentshipfundedbytheIndustrialBiotechnologyInnovation Infrastructure for Microbial Bioinformatics): an online re- CentreandtheUniversityofStrathclyde.TSwassupportedby source for the medical microbiology community. Microb a PhD studentship funded by the Iraqi Government. MG was Genom2016;2:e000086. supportedbyapostdoctoralfellowshipfromFWOVlaanderen CornelisP,MatthijsS,vanOeffelenL.Ironuptakeregulationin (12M4618N). CL was supported by an SB PhD fellowship from Pseudomonasaeruginosa.Biometals2009;22:15–22. FWOVlaanderen (1S64718N).JBwassupportedbyagrantfrom De Smet KA, Weston A, Brown IN et al. Three pathways Fundac¸a˜oparaaCieˆnciaeaTecnologia (SFRH/BD/104095/2014). for trehalose biosynthesis in mycobacteria. Microbiology NPTwouldliketopersonallythankallofthecontributorstothis 2000;146:199–208. paperwhohavemadethisnovelcollaborationanopenandplea- Djonovic´ S, Urbach JM, Drenkard E et al. Trehalose biosynthe- surableexperience.AMandEDweresupportedbytheBiotech- sispromotesPseudomonasaeruginosapathogenicityinplants. nologyandBiologicalSciencesResearchCouncil-fundedSouth PLoSPathog2013;9:e1003217. WestBiosciencesDoctoralTrainingPartnership (BB/M009122/1). DoroskyRJ,YuJM,PiersonLS,IIIetal.Pseudomonaschlororaphis produces two distinct R-tailocins that contribute to bacte- Conflictofinterest.Nonedeclared. rialcompetitioninbiofilmsandonroots.ApplEnvironMicrob 2017;83:AEM.00706–17. REFERENCES DubernJ-F,CoppoolseER,StiekemaWJetal.Geneticandfunc- tional characterization of the gene cluster directing the Andrews S. FastQC A Quality Control tool for High Throughput biosynthesis of putisolvin I and II in Pseudomonas putida Sequence Data. 2014. https://www.bioinformatics.babraham. strainPCL1445.Microbiology2008;154:2070–83. ac.uk/projects/fastqc/. ErenE,VijayaraghavanJ,LiuJetal.Substratespecificitywithin Arahal DR. Whole-genome analyses: average nucleotide iden- afamilyofoutermembranecarboxylatechannels.PLoSBiol tity.MethodMicrobiol2014;41:103–22. 2012;10:e1001242. Downloaded from https://academic.oup.com/femsle/article-abstract/365/9/fny069/4951603 by University of Strathclyde user on 25 April 2018

Description:
Smith, Brian A and Smits, Nathan and Thomson, Ryan and Woodcock, The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research Place, Cardiff CF10 3AX, UK, 5Royal (Dick) School of Veterinary Studies, University of Edinburg
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.