Asymmetry of short-term control of spatio-temporal gait parameters during treadmill walking Klaudia Kozlowska1,+, Miroslaw Latka1,+*, and Bruce J. West2,+ 1WroclawUniversityofScienceandTechnology,FacultyofFundamentalProblemsofTechnology,Departmentof BiomedicalEngineering, Wroclaw,50-370,Poland 7 2ArmyResearchOffice,InformationSciencesDirectorate,ResearchTrianglePark,27709,USA 1 *[email protected] 0 2 +eachauthorcontributedequally tothiswork n a ABSTRACT J 1 3 Optimizationofenergycostdeterminesaveragevaluesofspatio-temporalgaitparameterssuchasstepduration,steplength ] or step speed. However, during walking, humans need to adaptthese parametersat every step to respond to exogenous h and/orendogenicperturbations. Whilesome neurologicalmechanismsthat triggertheseresponsesare known, our under- p - standingofthefundamentalprinciplesgoverningstep-by-stepadaptationremainselusive.Wedeterminedthegaitparameters o of 20 healthysubjectswith right-footpreferenceduringtreadmillwalking at speeds of 1.1, 1.4 and 1.7 m/s. We foundthat bi whenthevalueofthegaitparameterwasconspicuouslygreater(smaller)thanthemeanvalue,itwaseitherfollowedimme- . diatelybyasmaller(greater)valueofthecontralateralleg(interlegcontrol),orthedeviationfromthemeanvaluedecreased s duringthenextmovementofipsilateralleg(intralegcontrol). Theselectionofstepdurationandtheselectionofsteplength c i during such transient control events were performedin unique ways. We quantifiedthe symmetry of short-term control of s gaitparametersandobservedthesignificantdominanceoftherightleginshort-termcontrolofallthreeparametersathigher y speeds(1.4and1.7m/s). h p [ 1 Introduction v 3 Ithasbeenknownforoveracenturythatthestrideintervalofhumangaitisremarkablystable. Smallfluctuationsofapproxi- 7 mately3–4%wereattributedtothecomplexityofthelocomotorsystemandtreatedasanuncorrelatedrandomprocess.1 From 1 this viewpoint,the discoveryof long-time,fractalcorrelationsin stride-intervaltime series wasunexpected.2,3 Those early 9 papersnotonlyspurredinterestintheemergingconceptoffractalphysiology,4butalsoshiftedthefocusofquantitativegait 0 analysisfromaveragevaluesoftypicalparameters(e.g. strideintervals)totheirtemporalvariability. Thatprofoundchange . 1 ofperspectivebroughtnewinsightsintolocomotormanifestationsofHuntington’sandParkinson’sdiseases, aging,andthe 0 connectionbetweengaitdynamicsandfallrisk,see5 andreferencestherein. 7 From a plethora of physiologically accessible gait patterns, humans employ only walking and running. Walking feels 1 : easiestatlowspeeds,andrunningfeelseasiestwhenmovingfaster. Optimizationofenergycostunderliesnotonlythechoice v ofgait,6–8 butalsodeterminesaveragevaluesofgaitparameters,suchassteplengthandduration.10 Duringwalking,humans i X need to adapt their spatio-temporalgait parameters at every step to be able to respond to exogenous(e.g. irregularities of r walkingsurface)and/orendogenic(neuromuscularnoise)perturbations.11 Whilesomeneurologicalmechanismsthattrigger a theseresponsesareknown,12–15 thefundamentalprinciplesgoverningstep-by-stepadaptationremainelusive.16 Treadmillwalking,especiallyathighspeeds,presentschallengesthatcanbemetonlythrougheffectiveshort-termcontrol of spatio-temporalgait parameters. In orderto stay on a treadmill, the subject’s step durationand length must yield a step speedwhichcanfluctuateoveranarrowrangecenteredonthetreadmillbelt’sspeed.Theresultsofpreviousexperimentswith walkingonasplit-belttreadmillunderscoretheintricaciesofsuchaggregation.Inparticular,spatialandtemporalcontrolsof locomotionareaccessiblethroughdistinctneuralcircuits17andneuralcontrolofintra-versusinterlimbparameters(calculated using values from both legs, e.g., step length, double support) during walking is to a large extent independent.18 Herein, we investigate the dynamics of time series of gait parameters (step duration, length and speed) following a sudden, large deviationfromthemeanvalue. Inparticular,wetestthehypothesisthatwheneverthevalueofagaitparameterismarkedly greater (smaller) than the mean value, it is either immediately followed by a smaller (greater) value of the contralateral leg (interleg control), or the deviation from the mean value decreases during the next movementof ipsilateral leg (intraleg control). Said differently, during treadmill walking errors are not gradually attenuated via long-term corrections, but are correctedimmediatelybythesameoroppositeleg.Takingintoaccountdifferencesintherelativecontributionoflowerlimbs Table1. Thestatisticsoftheoccurrenceofintraleg(columnsL-LandR-R)andinterleg(columnsR-LandL-R)control mechanismsthatareevokedinresponsetoerrorsinstepduration,lengthandvelocity.Statisticsarepresentedforthree valuesoftreadmillspeedv. Thenumberoferrors,definedasabruptdeviationsfromthemovingaveragevalue,ispresented intheTotalcolumn.ThecolumnlabeledNCgivesthenumberoferrorsthatpersistedformorethantwosuccessivesteps. TheLeftandRightcolumnsshowthenumberofcontroleventsperformedbyeachleg. Probabilitiesofoccurrenceofintra- andinterlegcontrolmechanismsarelistedinthelastfourcolumns. v[m/s] Total NC L-L R-L R-R L-R Left[%] Right[%] p p p p LL RL RR LR stepduration 1.1 180 4 42 51 32 51 53 47 0.23 0.28 0.18 0.28 1.4 121 11 29 21 18 42 45 55 0.24 0.17 0.15 0.35 1.7 103 5 22 18 26 32 41 59 0.21 0.17 0.25 0.31 steplength 1.1 380 14 125 71 122 48 54 46 0.33 0.19 0.32 0.13 1.4 257 12 73 30 93 49 42 58 0.28 0.12 0.36 0.19 1.7 186 18 42 17 87 22 35 65 0.23 0.09 0.47 0.12 stepspeed 1.1 393 5 83 115 84 106 51 49 0.21 0.29 0.21 0.27 1.4 275 14 63 61 61 76 48 52 0.23 0.22 0.22 0.28 1.7 189 8 34 45 66 36 44 56 0.18 0.24 0.35 0.19 tocontrolandpropulsion–theeffectknownasfunctionalgaitasymmetry,19wefurtherhypothesizethatinsubjectswithright footpreferencetheshort-termcontrolofgaitspatio-temporalparametersisstrongerfortherightleg. Results InTable1werecordeddatawhicharecrucialfortestingthemainhypothesisofthepaper: thaterrorsingaitparametersare ecorrectedimmediatelybythesameoroppositeleg. Letusfocusonthefirstrowofthistablewhichconcernsstepduration controlata treadmillspeedof1.1m/s. Therewere180”errors”definedasabruptchangesinstep duration(equations2-4). Fortheleftleg,in42cases(columnL-L),thedeviationofstepdurationfromthemeanvaluedidnottriggeracompensating change in the step duration of the right leg. The value of the control parameter DLR, defined by equation 5, greater than 1 indicates the absence of such adjustment. However, the deviation decreased during the next left step as indicated by the valueofintralegcontrolparameterDLL,definedbyequation7,smallerthan1(thestatisticsofbothinter-andintralegcontrol parametersarepresentedinTable2). Inotherwords,fortheleftleg,weobservedintralegcontrolofstepdurationin42cases. In 51 cases (columnR-L), the changein the step durationof the left leg compensatedthe deviationof step durationof the previousrightstep(interlegcontrol). ByaddingcolumnsL-LandR-L,weobtain93controleventsperformedbytheleftleg. Thisnumberexpressedasthepercentageofall180controleventsisgiveninthecolumnofTable1labeledasLeft. Please notethatonlyin4(columnNC)outof180cases(2.2%),theappearanceofastepdurationerrordidnotevokeeitherofthe controlmechanisms. For all three gait parameters, the number of errors decreases with speed. For example, there were 180 errors in step duration at v=1.1 m/s but only 103 at v=1.7 m/s (a 43% reduction). A comparable drop in the number of errors was observedforstep length(51%)andvelocity(52%). Lessthanhalfofthesechangescanbeexplainedbythe22%reduction ofthenumberofstepstakenbyallthesubjectsatv=1.7m/sincomparisonwithv=1.1m/s. Pleasenotethatthenumber ofstepsdecreaseswithtreadmillspeedsinceateachspeed,thesubjectswereaskedtocoverthesamedistanceof400m. It isworthemphasizingthattherewereapproximatelytwiceasmanyerrorsinsteplengthandspeedthaninstepduration. For allthreeparameters: stepduration,length,andspeed,inatleast90%ofcases,thedeviationsfromthemeanvaluedecreased duringthesubsequenttwostepsviaeitherintra-orinterlegcontrol. Regardless of treadmill belt speed, the control of step length is predominatelyintraleg (Table 1). For example, for the leftlegatthelowestspeed,theprobabilityofevokingintralegcontrol p =0.33is42%greaterthanthatofinterlegcontrol LL p =0.19).Inthesamecondition,fortherightlegsuchdifferenceisequalto59%( p =0.32vs p =0.13).Thereisno RL RR LR suchpatternfortheothertwogaitparameters. 2/11 Table2. Thevaluesofintra-andinterlegcontrolparametersfortreadmillwalking.Dataarepresentedasmean(standard deviation). v[m/s] DLL DRL DRR DLR DBE DBE D DBE [%] L R stepduration 1.1 0.34(0.22) 0.55(0.26) 0.43(0.25) 0.58(0.21) 1.20 0.91 28 1.4 0.45(0.26) 0.55(0.25) 0.31(0.22) 0.54(0.24) 0.85 1.12 -28 1.7 0.31(0.25) 0.63(0.20) 0.36(0.28) 0.49(0.26) 0.97 1.34 -32 steplength 1.1 0.46(0.26) 0.72(0.23) 0.48(0.25) 0.62(0.30) 0.98 0.88 11 1.4 0.46(0.27) 0.79(0.16) 0.45(0.26) 0.61(0.30) 0.76 1.12 -38 1.7 0.44(0.26) 0.79(0.15) 0.44(0.27) 0.68(0.23) 0.63 1.24 -65 stepspeed 1.1 0.44(0.26) 0.65(0.26) 0.40(0.27) 0.56(0.28) 0.92 1.01 -9 1.4 0.39(0.25) 0.68(0.24) 0.33(0.23) 0.56(0.29) 0.91 1.15 -23 1.7 0.51(0.26) 0.73(0.20) 0.41(0.24) 0.58(0.27) 0.68 1.19 -55 For step duration, length, and speed, the control parameter D was independent of speed (Table 2). For all three gait parameters, bothforthe rightandleftleg, themeanvalueofD forinterlegcontrolwasgreaterthanthatof intralegcontrol. Forexample,forstepdurationatv=1.1m/sD =0.55andD =0.34. RL LL Thedifferencebetweenthevaluesofintra-andinterlegcontrolparametersforagivenlegwasstatisticallysignificantfor allthreetreadmillspeedsforsteplength: • at1.1m/s: p <1×10−4, p =6×10−3; left right • at1.4m/s: p <1×10−4, p =3×10−2; left right • at1.7m/s: p =1×10−4, p =2×10−3; left right aswellasthestepspeed: • at1.1m/s: p <1×10−4, p =6×10−4; left right • at1.4m/s: p <1×10−4, p <1×10−4; left right • at1.7m/s: p =2×10−3, p =9×10−3. left right Forstepdurationsuchdifferenceswerenotsostronglypronounced: • at1.1m/s: p =5×10−4, p =5×10−2; left right • at1.7m/s: p =2×10−3. left Withtheexceptionofstepdurationandsteplengthatthelowestspeed(v=1.1m/s),theasymmetryparameterD DBEwas smallerthanzeroindicatingadominantroleoftherightleginshort-termcontrolofgaitparametersduringtreadmillwalking. Table 3 shows the probabilityof compensatoryresponse to errorsin gait spatio-temporalparametersfor intra- (L-L, R- R) and interleg(L-R, R-L) control. Such response correspondsto negativevaluesof variablesSinter (equation6) and Sintra (equation8). Forallspeedsandparameters,theprobabilityofinterlegcompensationiscloseto1,roughlytwotimeshigher thanthatofintralegresponse. 3/11 Table3. Probabilityofcompensationoferrorsingaitspatio-temporalparametersforintra-(L-L,R-R)andinterleg(L-R, R-L)control.Statisticsarepresentedforthreevaluesoftreadmillspeedv. v[m/s] L-L R-R L-R R-L L-L R-R L-R R-L L-L R-R L-R R-L stepduration steplength stepspeed 1.1 0.50 0.42 0.98 0.94 0.40 0.38 0.83 0.83 0.52 0.55 0.92 0.92 1.4 0.28 0.39 0.95 0.95 0.42 0.34 0.82 0.80 0.52 0.46 0.93 0.92 1.7 0.50 0.54 0.97 0.94 0.40 0.43 0.95 0.76 0.32 0.44 0.95 0.89 Discussion In overgroundwalking with self-selected speed, fluctuations of stride interval, length, and speed exhibit persistent fractal scaling characterized by a Hurst exponent a >0.5.2,3,20 Auditory metronomic cueing changes fractal statistics of stride intervals from persistent to antipersistent (a <0.5).21 The super central pattern generator model, introduced by West and Scafeta,22 elucidatesthedynamicoriginofsuchtransitions. Inparticular,thetransitionsresultfromthedrivingofa fractal clock,whichretainsitspropertiesunderperturbation.Intreadmillwalking,fluctuationsofinterstrideintervalandstridelength arealsopersistent.However,thetimeseriesofstridespeedisantipersistent,whichisamanifestionofincreasedcentralcontrol ofthisgaitparameter.16,23 Terrierhasrecentlydemonstratedthatvisualcueing(alignmentofsteplengthswithmarksonthe floor)alsoinducedanti-correlatedpatterningaitparameters.30 Toalargeextent,fluctuationsofspatio-temporalgaitparametersresultfromtheintrinsicfractalpropertiesofpatterngen- erators. Hiddeninthesefluctuationsaresporadiccontrolevents,triggeredtoaccomplishalocomotortasksuchasremaining ona movingtreadmillbelt. Thisiswhywe studythedynamicsoftime seriesofgaitparametersthatfollowasuddenlarge deviationfromameanvalue. Forlackofabetterword,wedubbedsucheventserrors,butemphasizethattheymayoriginate eitherfromthefailureofthemotorcontrolsystem,orfromthenecessaryadjustmentofthesubject’spositiononatreadmill. Whilethedefinitionofsucheventsisarbitrary(equations2-4),itsatisfiestheresearchobjective. We foundthatwhenthevalueofthegaitparameter(stepduration,lengthorspeed)wasconspicuouslygreater(smaller) thanthemeanvalue,itwaseitherfollowedimmediatelybyasmaller(greater)valueofthecontralateralleg(interlegcontrol), orthedeviationfromthemeanvaluedecreasedduringthenextmovementofipsilateralleg(intralegcontrol). Theexistence of distinct short-term control of step frequency (the inverse of step duration) was demonstrated by Snaterse et al.24 The timeevolutionofstepfrequencytriggeredbysuddenstepwiseincrementsintreadmillspeedwasmodeledbythesumoftwo exponentiallydecayingterms. Thetime constantof thefirst termwas 1.44±1.14s andits amplitudewas two timeslarger than that of the second term, whose time constant was 27.56±16.18s. For those values of time constants, step frequency adjustmentsweretwo-thirdscompleteinlessthantwoseconds.Snaterseetal. arguedthatthefirsttermrepresentsarapidpre- programmedresponse,whilethesloweronemodelsfine-tuningofstepfrequencydrivenbyenergyexpenditureoptimization. Hereinweextendedthislineofreasoningbydemonstratingthatshort-termcontrolofgaitparametersmayberealizedusing intra- andinterlegadjustments. The betterunderstandingof short-termcontrolmechanismsdoesnotbringusanycloser to understandinghow, duringtreadmillwalking, persistentstochastic variables: step durationandstep lengthare combinedto yieldantipersistentstepspeed. Webelievethatadifferentmechanismoperatingatalongertimescaleunderliesthiseffect. Therearefundamentaldifferencesbetweenthecontrolofstepdurationandsteplength.Theprobabilityofevokingintraleg controlofstep lengthatthehighesttreadmillspeed(v=1.7m/s)isapproximatelythreetimesgreaterthanthatofevoking interlegcontrol.Thereisnosuchdistinctpatternforstepduration.Moreover,thenumberoferrorsinstepdurationishalfthat ofsteplength,regardlessoftreadmillbeltspeed. Thisisastrongindicationthatspatialandtemporalcontrolsoflocomotion areaccessiblethroughdistinctneuralcircuits. ThisinterpretationiscorroboratedbytheearlierstudyofMaloneandBastian, whoinvestigatedadaptationofspatialandtemporalaspectsofwalkingtoasustainedperturbation,generatedbyasplit-belt treadmill.18 Theydemonstratedthatconsciouscorrectionfacilitatesadaptation,whereasdistractionslowsit. Theunexpected findingoftheirstudywasthatthosemanipulationsaffectedtheadaptationrateofthespatialelementsofwalking,butnotof the temporalones. Inthefollow-upstudyMaloneetal25 demonstratedthattemporalandspatialcontrolsofsymmetricgait can be adaptedindependently. Please note that continuous, consciousassessment of distance to surroundingobjects lies at theheartofthecontrolproblemofremainingstationaryonamovingtreadmillbelt. Thus,thelargenumberoferrorsinstep lengthascomparedtostepdurationmayreflectboththedominantroleofspatialcontrolanditssusceptibilitytodistraction.It isworthmentioningthatincasualwalking,thecoefficientofvariationofstridetimeismuchsmallerthanthatofstridelength andofwalkingspeed.10 Step speed may be interpreted as the output of the intricate neuromuscular control system, which integrates different 4/11 sensory-motorprocesses. The ratio of average values of step length and frequency, or walk ratio, is constant over a broad rangeofwalkingspeeds. Inotherwords,thereisalinearrelationbetweenthesegaitparameters(thestridelength–cadence relationship),apre-programmedpatternwhichpresumablysimplifiesgaitcontrolinsteadystatewalking.26 Letusanalyzethe interplayofstepdurationandsteplengthduringtransientchangesfollowingtheoccurrenceoferrors. Wepreviouslypointed outthatthesetwoparametersarecontrolledindistinctways. Inparticular,theprobabilityofevokingtheinterlegcontrolof steplengthisatleasttwotimessmallerthanthatofevokingtheintralegcontrol(Table1). Insharpcontrast,theprobability ofeitherinter-orintralegcontrolofstepspeedsiscomparable.Thus,wemayhypothesizethatnegative-feedbackadjustment ofstepdurationofthecontralaterallegunderliestheinterlegcontrolofstepspeed. Itisworthemphasizingthattheintraleg controlofstepspeedisstrongerthantheinterlegcontrol. TherecentworkofDingwelletal.16 providesinsightintothemaintenanceofspeedduringtreadmillwalking. Asubject caninprinciplechooseanycombinationofstridelengthandtimethatyieldsstepspeedequaltothatofatreadmillbelt.These pairsofvaluesforminphase-spaceadiagonallinecalledagoalequivalentmanifold(GEM).27 Dingwelletal. decomposed deviation from this manifold into tangent and transverse components. Only the latter component was tightly controlled. Moreover,thetimeseriesoftransversedeviationsexhibitedstatisticalantipersistencecharacteristicofstridespeed.Thisstudy underscoresthesignificanceofinterlegcontrolofgaitparameters.WebelievethattheGEMdecompositionshouldbeapplied totimeseriesofstepvelocitiestoquantifytheinterlegcontrolinamoresophisticatedway. Inable-bodiedgait,asymmetryinspatio-temporalandkinematicparameters(suchasspeedprofiles,stepandstridelength, foot placement angle, maximum knee flexion) for the left and right leg has been frequently reported.28 To the best of our knowledge,thepresentstudyisthefirstobservationofasymmetryindynamicsofhumangaitparameters.Withtheexception ofstepdurationcontrolatthelowestspeed,forallthreegaitparametersD DBE <0,indicatingdominanceoftherightlegin short-termcontrol. Theoriginofthisasymmetrycanbetracedbacktodifferencesintherelativecontributionoflowerlimbs tocontrolandpropulsion–theeffectknownasfunctionalgaitasymmetry.19 Morespecifically,thelegwithgreatermuscle powergenerationdominatespropulsion,whilethesupportandcontrolfunctionsaremoreconspicuousforthelegwithgreater powerabsorption.Humansaretypicallyright-footedformobilizationandleft-footedforposturalstabilization. Specialconsiderationshouldbegiventostepdurationandsteplengthcontrolatthelowestspeedv=1.1m/s.Onlyinthis case,theasymmetryparameterD DBEwasgreaterthanzero,indicatingthedominanceofleftlowerlimb.Notethatthelowest asymmetry,|D DBE|,wasobservedforallthreeparametersatv=1.1m/s. Differencesinlow-speedgaithavebeenreported before. TerrierandSchutz29 demonstratedthatduringovergroundwalking,atlowspeedsthemajorityofsubjectsadopteda higherwalkratioandhadahighervariabilityofstridetime. However,inthisstudythelowesttreadmillspeedcoincideswith thepreferredwalkingspeed(PWS)ofyoungsubjects.23 TherearetwopossibleexplanationsforthepositivevalueofD DBE. It is likely that in the vicinity of PWS priority is given to balance maintenance and consequentlystride duration controlis shiftedtotheleftleg,whichisusedforposturalstabilization. Pleasenotethatourcohortincludedonlysubjectswithclearly pronounced right foot preference. Alternatively, reversed asymmetry for step duration and low values of |D DBE| for step lengthandstepspeedmayindicatethatthereexistsadifferentstrategyforcontrolofgaitparametersinovergroundwalking (treadmill walking at v=1.1m/s may not be challenging for young subjects and may resemble unconstrained overground walking). Thisargumentisplausiblebecauseinmotorcoordinationtasks,humanscorrectonlythosedeviationsthatinterfere withtaskgoalsandallowvariabilityinredundant(task-irrelevant)dimensions.31 Followingthelogicofthisminimuminter- ventionprinciple,intreadmillwalking,stepspeedmustbetightlyregulated.However,inovergroundwalking,higherpriority maybegiven,forexample,tobalancecontrol,whichwouldaffectthevalueoftheasymmetryparameterD DBE. Thesetwo qualitatively different strategies may also reflect other fundamentaldifferences between overgroundand treadmill walking. Therateatwhichtheenvironmentflowspasttheeyesseemstobeanimportantmechanismforregulatingwalkingspeed.32,33 Morespecifically,visionisusedcorrectivelytomaintainwalkingspeedatavaluethatisperceivedtobeoptimal.Fortreadmill walking, a discrepancybetween observedand expected visual flow leads to a significant reduction(about20%) of PWS,34 as well as the speeds of walk-run and run-walk transitions.32 It is worth pointing out that as far as kinetic and kinematic parametersareconcerned,treadmillandoutdoorgaitsaresimilar.35 Thediscoveryofdependenceoffunctionalasymmetryinshort-termcontrolofgaitspatio-temporalparametersontreadmill speedwasanunexpectedoutcomeofthisresearch. Theelucidationofthetransitionfromleft-legtoright-legdominancein short-termcontrolentailsdeterminationofthePWSforeachsubject. Furtherresearchisalsoneededtounderstandwhythe probabilityof compensatoryresponse for interleg controlis close to 1 and is almost two times greater than that of intraleg control (Table 3). Undoubtedly, such a strong difference indicates different roles these two mechanism play in control of gaitduringtreadmillwalking. Onemayhypothesizethatthe primarygoalofinterlegcontrolismaintenanceofbalancevia negative feedback from either leg while achieving specific goals such as matching the speed of the treadmill belt requires intralegadjustments. Duringhumanlocomotion,thelegsactastwocoupledoscillators.36 However,moststudiesdisregardbilateralcoordination andsynchronizationdynamics37–39 andfocusonsingle-legvariability(stridetime, length,speed). Hereinwedemonstrated 5/11 asymmetricshort-termintra-andinterlegcontrolofspatio-temporalgaitparameters. We believethatabetterunderstanding of these effects will not only pave the way for more realistic models of gait variability and control, but also help to refine proceduresusedinrehabilitationofgaitimpairments. Methods Werecruited20healthystudents(10M/10F,mean(SD):age22yr(2),height1.73m(0.1),weight71(15)kg,BMI23(4))of theWroclawUniversityofScienceandTechnology,whoallsignedaninformedconsent.Thestudywasperformedaccording totheDeclarationofHelsinkiandtheprotocolwasapprovedbytheEthicsCommitteeofWroclawMedicalUniversity. The subjects were screened to exclude those with a history of orthopedicproblems, recentlower extremityinjuries, any visible gaitanomalies,orwhoweretakingmedicationsthatmighthaveinfluencedtheirgait. Weonlyenrolledsubjectswhousedthe rightlegto:kickatennisball,manipulateatennisballaroundacircle,makeafirststep,makeastepafterbeingpushedfrom behind.Thesepurelybilateraltasksarefrequentlyincorporatedintofoot-preferenceinventories.40,41 Theprotocolbeganwith a5minfamiliarizationperiodofwalkingonalevelmotor-driventreadmill.Theneachsubjectwasaskedtowalk400mthree timesat1.1m/s,1.4m/si1.7m/s(4km/h,5km/hand6km/h).Theobjectivewastoinvestigatecontrolofgaitparametersat treadmillspeedsequaltoorgreaterthanthePWSofyoungsubjects. Therefore,thelowestspeedwasequaltothepreferred walkingspeedreportedbyTerrierandDeriaz23andslightlysmallerthanthevaluesdeterminedbyDaletal.34 (1.19m/s)and Dingwell11(1.22m/s). Thegaitparameterswereextractedfromthetrajectoriesofthe30mmopticalmarkersattachedto bothshoesbelowthe ankle. The movementsof those markerswere recordedusing an in-house motion capture system with a frame rate of 240 Hzand720presolution. TheopticaltrackingwasimplementedinC++(VisualStudio2013)usingOpenCVlibrary. Aheel strikewasdefinedasthepointwherethemarkeroftheforwardfootwasatitsmostforwardpointduringeachgaitcycle. A step lengthwas the distance betweenthe ipsilateralandcontralateralheelstrikes. A step durationwas equalto the elapsed timebetweentheipsilateralandcontralateralheelstrikes. Astepspeedwascalculatedasthequotientofsteplengthandstep duration. Thegroupaveragednumberofstepstakenpertrialwasequalto593(23)at1.1m/s, 508(59)at1.4m/s,and456 (56)at1.7m/s. InFig. 1wepresentatimeseriesofstepdurationfortreadmillwalkingat1.1m/s. Thecircleinthisfigureindicatesstep durationthatwaslongerthanthemeanvalue(representedinthisfigurebyhorizontal,thick,dottedline)bymorethan3/2of standarddeviation(theupper,horizontal,thindottedgridlinerepresentsthisthreshold). Itisapparentthatthedurationofthe step,whichimmediatelyfollowsthe”error”,suddenlydecreases(thisshorterintervalismarkedbythefilledrectangle). This examplehintsattheexistenceofaninterlegcontrolmechanismthatstabilizesthestrideinterval. 0.56 error 0.54 s] n [ o 0.52 ati r u d 0.5 p e st 0.48 left compensation right 0.46 60 65 70 75 80 85 90 time [s] Figure1. Timeseriesofstepdurationsfortreadmillwalkingat4km/h. Thecircleindicatesthestepdurationofleftleg whichwaslongerthanthemeanvalue(representedinthisfigurebyhorizontal,thick,dottedline)bymorethan3⁄2of standarddeviation(theupper,horizontal,thindottedgridlinerepresentsthisthreshold).Itisapparentthatthedurationofthe stepwhichimmediatelyfollowsthe“error”suddenlydecreases. LetN bethenumberofstepstakenbyeachleg. Letusintroduceanotationthatfacilitatestheanalysisofinterlegcontrol. Wewritethetimeseriesoflength2N ofoneofthegaitparameters(stepduration,lengthorspeed){S }2N inthefollowing n n=1 form: {S }={I ,C ,I ,C ...I ,C }, (1) n 1 1 2 2 N N 6/11 where subseries(cid:8)Ij(cid:9)Nj=1 and (cid:8)Cj(cid:9)Nj=1 correspond to the ipsilateral and the contralateral leg, respectively. s I and s C are standarddeviationsoftheseseries. Thesimplemovingaverages(theunweightedmeanofthepreviousmdata)of(cid:8)Ij(cid:9)and (cid:8)Cj(cid:9)aredenotedbyI¯(m)andC¯(m),respectively. WedefineaserrorsthesevaluesI whichsatisfyallofthefollowingcriteria: i |I −I¯(m)| > 1.5s (2) i I 100%(cid:12)(cid:12)Ii−Ii−1(cid:12)(cid:12) > 3% (3) (cid:12) I (cid:12) (cid:12) i−1 (cid:12) (cid:12)Ci−1−C¯(m)(cid:12) < 0.5s C (4) (cid:12) (cid:12) These undoubtedlyheuristic criteria are used to detect abruptchanges(equation (3)) which lead to conspicuousdeviations from the movingaverage value (equation(2)) and which are not broughtaboutby a deviation in the preceding step of the contralateralleg(equation(4)). Aspreviouslymentioned,wedubsucheventserrors,butbearinmindthattheymayoriginate eitherfromthe motorcontrolsystemfailure, orfromthenecessaryadjustmentofthesubject’spositionona treadmill. The rationaleforusingthemovingaverageintheabovedefinitionofanerrorstemsfromnon-stationarityofgaittimeseries. This modification ensures that during transient linear trends the large deviationfrom the global mean value does not invoke the detectionalgorithm.Pleasenotethatequation(3)byitselfisanothersafeguardforfalseerrordetectioncausedbythetransient driftoflocalmeanvalue.Herein,wereportthevaluesform=10. LetususeD todenoteadeviationofagivengaitparameterfromitsmovingaveragevalue,e.g.D I =I −I¯(m). Ininterleg i i controlthegaitparameterofcontralaterallegC changesinsuchawayastodecreasedeviationofI +C. Toquantifysuch i i i stabilization,weintroducethefollowingmetric: |D I +D C| Dinter = i i . (5) i |D I +D C | i i−1 ThestabilizationoccurswhenDinter <1. Thenumeratorintheaboveequationmaybecomesmallerthanthedenominatorin i twocases. InthefirstcasetheD C hastheoppositesigntoD I: i i Sinter=D ID C <0, (6) i i i in other words, the contralateral leg compensates for errors, as shown in Fig. 2a. The perfect compensation corresponds to Dinter =0. In the alternative scenario, only the magnitudeof the deviation of the contralateralleg from the mean value i decreases(Sinter>0)asillustratedbyFig. 2b. i Figure2. IninterlegcontrolthegaitparameterofcontralaterallegC changesinsuchawayastodecreasedeviationof i I +C fromthemeanvalue.a)TheerrorofipsilaterallegI isimmediatelycompensatedforbythecontralateralleg. b)Inthe i i i alternativescenario,onlythemagnitudeofthedeviationofthecontralaterallegfromthemeanvaluedecreases. It is possible that an error does not bring about a sudden change of gait parameter of contralateral leg. In this case, Dinter >=1. However, stabilization may occur during the next step of ipsilateral leg. The change of I may reduce the i i+1 deviationD I +D C. Werefertosuchascenarioasanintralegcontrolanddefineacorrespondingmetric: i+1 i |D I +D C| Dintra= i+1 i . (7) i |D I +D C| i i 7/11 Tobeabletodirectlycomparethepropertiesofbothtypesofcontrol(inter-andintraleg)wedistinguishwhethertheintraleg controlwasachievedviacompensation: Sintra=D ID I <0, (8) i i i+1 asshowninFig. 3a,orbythereductionofthemagnitudeofthedisplacementofgaitparameteroftheispislaterallegfromthe movingaveragevalue(Fig. 3b). Figure3. Theerrorinagaitspatio-temporalparametermaynotevokeasuddenchangeoftheparameterofcontralateral leg. However,thedeviationofthenextipsilateralgaitparameterI fromthemeanvalueI¯maydecreaseasaresultof:a) i+1 compensationorb)thereductionofthemagnitudeofthedisplacementofparameteroftheispislaterallegfromthemean value. TheflowchartinFig. 4elucidatestheanalysisofthedynamicsofgaitparametertimeserieswhichfollowstheoccurrence oferrors.UsingDinter andDintra,wedetecttheactivationofinter-andintralegcontrolmechanism,respectively. Figure4. Flowchartofanalysisofdynamicsofgaitparameterwhichfollowsanerror–gait-parameter’svaluewhichsatisfy thecriteriadescribedbyequations(2-4). Inouranalysisofthe experimentaldata, we usea morespecificnotationforthe interlegparameterDinter. Forexample, toindicatethatanerrorinagivengaitparameteroftheleftlegwasfollowedbyanadjustmentofthisparameterbytheright 8/11 leg, we write DLR. In the same vein, we use DLL , DRR to denote intraleg leg control parameter for the left and right leg, respectively. In mostcases D values, fora givengaitparameter,speed, and controltype, were notnormallydistributed (theShapiro- Wilktest). Foragivenspeedandgaitparameter,theLevene’stestshowedequalityofvariancesamongthecontroltypes(with the exception of step duration at 1.1 m/s and step length at all speeds). For a given gait parameter and control type (L-L, R-R,L-R,R-L),weinvestigatedthedependenceofDontreadmillspeed. Inthiscase,theLevene’stestshowedhomogeneity ofvariance. Consequently,theKruskal-WallistestwithTukey’sposthoccomparisonswasusedtodetectdifferencesacross speedandcontroltype.Thesignificancethresholdwassetto0.05. Toquantifyfunctionalasymmetryincontrolofgaitspatio-temporalparametersweneedtotakeintoaccountthestochastic aspectofmotorcontrolsystem. Letusemployananalogyofdetailedbalanceequationofstatisticalphysics42andcallitgait detailedbalanceequation(DBE).Initsoriginalformulation,detailedbalancingrelatestherelativepopulationoftwostatesby theprobabilityofatransitionbetweenthem.Theprincipleappliesequallywelltophysicalsystems,mathematicalprobability densities,orstatisticalprocessesinavarietyofforms. ThesmallerDthebetterstabilizationofstridegaitparameters.Consequently,theinfluenceofacontrolmechanism(inter orintra)ongaitparametersisproportionaltoitsprobabilityofoccurrenceandtheinverseofthecorrespondingmeanvalueof controlparameterD¯. Forexample,fortherightlowerlimb,wemaywrite: p p RR LR DBE = + , (9) R D¯RR D¯LR inthesamevein,fortheleftlowerlimb: p p LL RL DBE = + . (10) L D¯LL D¯RL Theperfectsymmetrycorrespondstothefollowingequality: DBE =DBE . (11) L R Wequantifytheasymmetryincontrolofgaitspatio-temporalparameterswiththerelativedifferenceexpression: DBE −DBE D DBE=2 L R. (12) DBE +DBE L R References 1. West,B.J.&Griffin,L.A. Biodynamics:WhytheWirewalkerDoesn’tFall(Wiley,2004). 2. Hausdorff,J.M.,Peng,C.K.,Ladin,Z.,Wei, J.Y.&Goldberger,A.L. Iswalkingarandomwalk? Evidenceforlong- range correlationsin stride interval of human gait. Journal of applied physiology (Bethesda, Md. : 1985) 78, 349–58 (1995). 3. Hausdorff,J.M.etal. Fractaldynamicsofhumangait: stabilityoflong-rangecorrelationsinstrideintervalfluctuations. Journalofappliedphysiology(Bethesda,Md.: 1985)80,1448–57(1996). 4. Bassingthwaighte,J.B.,West,B.J.&Liebovitch,L.S. FractalPhysiology(OxfordUniversityPress,1994). 5. Hausdorff,J.M. Gaitdynamics,fractalsandfalls: findingmeaninginthestride-to-stridefluctuationsofhumanwalking. Humanmovementscience26,555–89(2007). 6. Zarrugh,M.Y.,Todd,F.N.&Ralston,H.J. Optimizationofenergyexpenditureduringlevelwalking. Europeanjournal ofappliedphysiologyandoccupationalphysiology33,293–306(1974). 7. Srinivasan, M. & Ruina, A. Computeroptimizationofa minimalbiped modeldiscoverswalkingandrunning. Nature 439,72–75(2006). 8. Srinivasan, M. & Ruina, A. Idealizedwalking and runninggaits minimize work. Proceedingsof the Royal Society A: Mathematical,PhysicalandEngineeringSciences463,2429–2446(2007). 9. Diedrich, F. J. & Warren, W. H. Why change gaits? Dynamics of the walk-run transition. Journal of experimental psychology.Humanperceptionandperformance21,183–202(1995). 10. Kito,T.&Yoneda,T. Dominanceofgaitcycledurationincasualwalking. Humanmovementscience25,383–92(2006). 9/11 11. Dingwell,J.B.&Marin,L.C. Kinematicvariabilityandlocaldynamicstabilityofupperbodymotionswhenwalkingat differentspeeds. Journalofbiomechanics39,444–52(2006). 12. Zehr, E. P. & Stein, R. B. What functionsdo reflexes serve duringhuman locomotion? Progress in neurobiology58, 185–205(1999). 13. Warren,W.H.,Kay,B.A.,Zosh,W.D.,Duchon,A.P.&Sahuc,S. Opticflowisusedtocontrolhumanwalking. Nature neuroscience4,213–6(2001). 14. Bent,L.R.etal. Whenisvestibularinformationimportantduringwalking? Journalofneurophysiology92,1269–1275 (2004). 15. Rossignol,S.,Dubuc,R.,Gossard,J.-P.&Dubuc,J. DynamicSensorimotorInteractionsinLocomotion. Physiological Reviews86,89–154(2006). 16. Dingwell,J.B.,John,J.&Cusumano,J.P.Dohumansoptimallyexploitredundancytocontrolstepvariabilityinwalking? PLoScomputationalbiology6,e1000856(2010). 17. Reisman,D.S.,Block,H.J.&Bastian,A.J. Interlimbcoordinationduringlocomotion:whatcanbeadaptedandstored? Journalofneurophysiology94,2403–2415(2005). 18. Malone,L.a.&Bastian,A.J. Thinkingaboutwalking: effectsofconsciouscorrectionversusdistractiononlocomotor adaptation. Journalofneurophysiology103,1954–1962(2010). 19. Sadeghi,H., Allard,P. &Duhaime,M. Functionalgaitasymmetryin able-bodiedsubjects. HumanMovementScience 16,243–258(1997). 20. Terrier,P., Turner,V. &Schutz,Y. GPSanalysisofhumanlocomotion: furtherevidenceforlong-rangecorrelationsin stride-to-stridefluctuationsofgaitparameters. Humanmovementscience24,97–115(2005). 21. Delignie`res,D.&Torre,K. Fractaldynamicsofhumangait:areassessmentofthe1996dataofHausdorffetal. Journal ofappliedphysiology(Bethesda,Md.: 1985)106,1272–1279(2009). 22. West,B.J.&Scafetta,N. Nonlineardynamicalmodelofhumangait. Phys.Rev.E67,051917(2003). 23. Terrier,P.&De´riaz,O. Persistentandanti-persistentpatterninstride-to-stridevariabilityoftreadmillwalking:influence ofrhythmicauditorycueing. Humanmovementscience31,1585–97(2012). 24. Snaterse,M.,Ton,R.,Kuo,A.D.&Donelan,J.M.Distinctfastandslowprocessescontributetotheselectionofpreferred stepfrequencyduringhumanwalking. Journalofappliedphysiology(Bethesda,Md.: 1985)110,1682–1690(2011). 25. Malone,L.A.,Bastian,A.J.&Torres-Oviedo,G. Howdoesthemotorsystemcorrectforerrorsintimeandspaceduring locomotoradaptation? JournalofNeurophysiology108,672–683(2012). 26. Egerton, T., Danoudis, M., Huxham, F. & Iansek, R. Central gait controlmechanismsand the stride length - cadence relationship. GaitandPosture34,178–182(2011). 27. Cusumano, J. P. & Cesari, P. Body-goal variability mapping in an aiming task. Biological Cybernetics 94, 367–379 (2006). 28. Sadeghi,H., Allard, P., Prince, F. & Labelle, H. Symmetryandlimb dominancein able-bodiedgait: a review. Gait& posture12,34–45(2000). 29. Terrier,P.&Schutz,Y. Variabilityofgaitpatternsduringunconstrainedwalkingassessedbysatellitepositioning(GPS). EuropeanJournalofAppliedPhysiology90,554–561(2003). 30. Terrier,P.FractalFluctuationsinHumanWalking:ComparisonBetweenAuditoryandVisuallyGuidedStepping.Annals ofbiomedicalengineering44,2785–2793(2016). 31. Todorov,E.&Jordan,M.Optimalfeedbackcontrolasatheoryofmotorcoordination.Natureneuroscience5,1226–1235 (2002). 32. Mohler,B.J.,Thompson,W.B.,Creem-Regehr,S.H.,Pick,H.L.&Warren,W.H. Visualflowinfluencesgaittransition speedandpreferredwalkingspeed. ExperimentalBrainResearch181,221–228(2007). 33. O’Connor,S.M.&Donelan,J.M. Fastvisualpredictionandslowoptimizationofpreferredwalkingspeed. Journalof Neurophysiology107,2549–2559(2012). 34. Dal, U., Erdogan,T., Resitoglu, B. & Beydagi, H. Determinationofpreferredwalkingspeed ontreadmillmaylead to highoxygencostontreadmillwalking. Gait&posture31,366–9(2010). 10/11