ebook img

Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters PDF

16 Pages·2017·2.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters

RESEARCHARTICLE Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters MajdoulineBelaqziz1*,ShiauPinTan2,AbdelilahEl-Abbassi3,HajarKiai3, AbdellatifHafidi3,OrlaO’Donovan2,PeterMcLoughlin2 1 CenterofAnalysisandCharacterization,CadiAyyadUniversity,Marrakech,Morocco,2 The Pharmaceutical&MolecularBiotechnologyResearchCentre(PMBRC),DepartmentofScience,Waterford InstituteofTechnology,Waterford,Ireland,3 FoodScienceslaboratory,DepartmentofBiology,Facultyof a1111111111 Sciences–Semlalia,CadiAyyadUniversity,Marrakech,Morocco a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 Abstract Oliveprocessingwastewaters(OPW),namelyolivemillwastewater(OMW)andtable-olive wastewaters(TOW)wereevaluatedfortheirantibacterialactivityagainstfiveGram-positive OPENACCESS andtwoGram-negativebacteriausingthestandarddiscdiffusionandthinlayerchromatog- Citation:BelaqzizM,TanSP,El-AbbassiA,KiaiH, raphy(TLC)-bioautographyassays.DiscdiffusionscreeningandbioautographyofOMW HafidiA,O’DonovanO,etal.(2017)Assessmentof theantioxidantandantibacterialactivitiesof werecomparedtothephenolicextractsoftable-olivebrines.PositiveactivityagainstS. differentoliveprocessingwastewaters.PLoSONE aureuswasdemonstrated.Theoptimizationofchromatographicseparationrevealedthat 12(9):e0182622.https://doi.org/10.1371/journal. hexane/acetoneintheratioof4:6wasthemosteffectiveforphenoliccompoundssepara- pone.0182622 tion.AHPLC-MSanalysiswasperformedshowingthatonlytwocompounds,hydroxytyrosol Editor:CalogeroCaruso,UniversityofPalermo, andtyrosol,werethepredominantphenoliccompoundsinallOPW.Thephenolicextractof ITALY OMWgeneratedbyasemi-modernprocessshowedthehighestfreeradical-scavenging Received:October12,2016 activity(DPPHassay)comparedtotheotherphenolicextracts.Itisapparentfromthepres- Accepted:July6,2017 entstudythatOPWarearichsourceofantioxidantssuitableforuseinfood,cosmeticor Published:September5,2017 pharmaceuticalapplications. Copyright:©2017Belaqzizetal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal Introduction authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare Olivefruitsareusedintheagro-industrymainlyforthepreparationoftableolivesandoil withinthepaperanditsSupportingInformation extraction.Theoliveoilextractiongeneratesaneffluentformedbythecombinationofthe files. watercontentoftheolivefruitwiththewatergeneratedfromthewashingandprocessingof Funding:AuthorsacknowledgeAverroès theolives.Thiseffluentiscommonlyknownasolivemillwastewater(OMW).Thiseffluent FellowshipProgram(fundedbytheEuropean isoneofthemostenvironmentallyconcerningfoodprocessingeffluentsintheMediterranean CommissionwithintheframeworkofErasmus countriesduetoitsphytotoxicity[1].Virginoliveoilisextractedfromolivefruitusingmec- Mundus)forfundingtheresearchstayofDr. hanicalprocessesincludingthecrushingoftheolivefruitsfollowedbymalaxationstepwhich MajdoulineBelaqzizinWaterford(Ireland).Aswell, preparestheresultingpasteforsubsequentseparationoftheoil.Theoilyphaseisseparated Prof.AbdelilahElAbbassigreatlythanksthe throughpressureorcentrifugation.ThemainoliveoilextractionmethodusedinmanyMedi- InternationalFoundationforSciences(IFS, Sweden)fortheirfinancialsupportunderthe terraneancountriesisthecontinuouscentrifugationsystemknownasthree-phasesystem[2]. PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 1/16 Bioactivityofoliveprocessingwastewaters grantsnumberW4749-1andW4749-2.The Thecentrifugaldecanterallowsfortheseparationofthreephases;theoliveoil,wastewater fundershadnoroleinstudydesign,datacollection (OMW)andpomace(solidwaste).Besidethetraditionalpressextractionsystemandthetwo- andanalysis,decisiontopublish,orpreparationof phasecentrifugalsystem,theoliveoilextractionprocessesproducebetween10million[3]and themanuscript. 30millionm3peryearofOMW[4]. Competinginterests:Theauthorshavedeclared Moreover,therearethreemaintradepreparationsoftableolives:a)thegreenSpanishstyle, thatnocompetinginterestsexist. b)Californianstyle(ripeolivesbyalkalineoxidation)andc)Greekstyle(naturallyblack olives)[5,6].Asmentioned,tableolivepreparationgenerateslargevolumesofwastewaters. Botheffluents,OMWandtable-olivewastewaters(TOW),couldbegroupedunderasingle nameknownas“oliveprocessingwastewaters,OPW”.Thedisposalofthesewastewaterswith- outpriortreatmenthasledtosevereproblemsforthewholeecosystem.OMWandtable-olive brineshaveshowedtoxicitytosomeplantsandmicroorganismssincetheyexhibitasubstan- tialconcentrationofpolyphenolsupto10g/L[7].Thephytotoxicandantibacterialproperties ofOMWpolyphenolsweredemonstratedinarelativelyrecentstudyalongwiththenegative effectstheyhaveonincreasingthesalinityandacidityofsoils[8]. Oliveoilcontainsonly2%ofthetotalphenoliccontentfromtheolivefruitandtheremain- ing98%islostinOMWandpomace[9].Furthermore,duringtheprocessingoftableolives, hydrolyzedpolyphenolsareliberatedintothebrines.Thus,OPWarepotentiallyarichsource ofadiverserangeofpolyphenolswithalargespectrumofbiologicalactivities.Polyphenolsare foundwidelyinavarietyofplantsincludingolivesandareinvolvedinmanyvitalfunctions includingdefense[10]. Accordingtoseveralstudies,polyphenolsfromolivealsorepresentnaturalanti-inflamma- toryagents[11]andexhibitawiderangeofinterestingbioactivitiessuchasantimicrobial,anti- atherogenic,antitumoral,cytoprotectiveandcardioprotectiveproperties[12,13].Thus,they mayhavesignificanthealthbenefits.Theycouldthereforebeusedtoreplacesyntheticdrugs whichcancausesideeffects. Studieshavealsodemonstratedthatphenoliccompoundsexhibitedbroadspectrumanti- bacterialactivity[14].PhenoliccontentofOMWhasbeendemonstratedtohaveamollus- cicidalactivity[15]inadditiontoantimicrobialactivity[3].Moststudiesofantimicrobial activityhavefocusedonecologicalandenvironmentalconsequences[16]oronagricultural applications[17]. Alargenumberofresearchpapershavebeenpublishedregardingthechemicalcomposi- tionofolivesandoliveoil;but,onlyfewstudieshavefocusedonisolatingandidentifyingcom- poundsfromtheOPW[18–20].Therecoveryofthesebioactivemetabolites,especially hydroxytyrosol,aromaticacids,andconjugatedaromaticacidsfromOPW,isofparticular interestsincetheypossessverypromisingbioactivitiesandhealthpromotingproperties[12]. AspartofacomprehensivestudyofthenatureandfunctionalityofOPWphenolicextracts, weinvestigatedtheantioxidantandantibacterialactivityofOMWsamplesgeneratedbytwo differentoliveoilprocessingtechniques,andTOWsamplesissuedfrombrinesoftableolives withdifferentstagesofmaturity.Theantioxidantandantibacterialactivitywasstudiedusing theDPPHandTLC-bioautographyassay,respectively. Materialsandmethods Oliveprocessingwastewatersamples TensiftHydraulicBassinAgencyistheauthoritywhoisresponsibleforthemanagementof waterresourcesinTensiftregioninasustainablemanner.ThesamplingoftheOlivemill wastewaterandtheTableolivebrineswasconductedwiththeagreementoftheolivemilland theolivemanufacturingcompanyowners.Nospecificpermissionwasrequiredfromthe authoritytoproceedwiththesamplingoftheoliveprocessingwastewater.Ontheotherhand PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 2/16 Bioactivityofoliveprocessingwastewaters TheTensiftHydraulicBassinAgencypromotesthecollaborationwithCadiAyyadUniversity toconductresearchstudiestooptimizethetreatmentandtherecoveryofoliveprocessing wastewater.Olivemillwastewatersampleswerecollectedfromtwodifferentolivemillslocated intheOudayaregion,intheWestofMarrakechcity(Morocco)duringtheseasonof2012/ 2013.Thetwomillsusedifferentmillingtechniques,semi-modern(OMW1)andmodern (OMW2)three-phaseprocesses.TheprocessedolivefruitsarefromtheMoroccanPicholine variety.Table-olivebrineswerekindlyprovidedbyAgro-Hindtableolivemanufacturingcom- pany(Marrakech,Morocco).Threedifferentsamplesoftable-olivewastewaterwerestudied, green-olivebrine(GTOW),black-olivesbrine(BTOW)andpurpleolivebrine(PTOW).Sam- plingwascarriedoutinamannertoinsurearepresentativesample.Allanalysesweredoneat leasttwice. Physicochemicalcharacterizationofsamples ThephysicochemicalcharacterizationofOPWsampleswascarriedoutasfollow:Chemical oxygendemand(COD)wasdeterminedbythedichromatemethodasusedbypreviousstudy [19].Briefly,wastewatersamplewasdilutedupto100foldandintroducedintoalab-prepared digestionsolutioncontainingpotassiumdichromate,mercuricsulfateandsulfuricacid.The mixturewasincubatedfor120minat150˚CinaCODreactor(ModelWTWCR3000,Ger- many).CODconcentrationwasthenmeasuredcolorimetricallyat600nmusingaMultiLab P5(WTW,Germany).Standardsolutionsof1,2,3,and4gofO perliterwerepreparedusing 2 potassiumbiphthalate.Totalsuspendedsolidsweredeterminedafterfiltrationofagivenvol- umeofolivemillwastewatersamplesthroughaWhatmanfilter(934-AH).Thedryresidue(g/ L)wasthendeterminedindirectlybydryingthepermeateat105˚Covernight.Theotherphysi- cochemicalparameters(i.e.pH,sugar,acidity,sodiumandpotassium)wereanalyzedas describedpreviouslybyKiaiandHafidi[21].Water-solublephenoliccompoundsofOPW sampleswereextractedusingsolvent-solventextractionthreetimesfirstwithequalvolumeof ethylacetatefollowedbyhalfvolumeofhexane.Afterevaporationoftheorganicphaseusinga vacuumrotaryevaporator,theresiduewasdissolvedinpuremethanolandkeptat4˚Cuntil use[22]. Totalphenoliccontent,flavonoids,flavanols,andproanthocyanidins determination Thetotalphenolicconcentration(TPC)inmethanolicextractsrecoveredafterextractionwith ethylacetatewasdeterminedbytheFolin–Ciocalteaucolorimetricmethod[23].Fortotalfla- vonoids,amodifiedmethodofKimetal.[24]wasused.Briefly,0.2mLaliquotofextractwas mixedwith0.8mLofdistilledwaterina5mLassaytubefollowedby60μLof5%NaNO The 2. mixturewasallowedtoreactfor5min.Followingthis,40μLof10%AlCl wasaddedandthe 3 mixturewasleftforafurther5minbeforeadding0.4mLof1MNa CO and0.5mLofdis- 2 3 tilledwatertothereactionmixture.Theabsorbancewasmeasuredat510nmagainstablank preparedsimilarlyexceptthatdistilledwaterwasusedinsteadofextract.Totalflavonoidscon- tentwascalculatedfromacalibrationcurveusingcatechinasastandard,andexpressedasmg catechinequivalentsperliteroftheextract(CTE/L). Flavanolsweredeterminedafterderivatizationwithp-(dimethylamino)-cinnamaldehyde (DMACA),usingtheoptimizedprotocolestablishedbyNigelandGlories[25].Extract(0.2 mL),suitablydilutedwithmethanol,wasintroducedintoa5mLassaytubeand0.5mLHCl (0.24Minmethanol)and0.5mLDMACAsolution(0.2%inmethanol)wereadded.Themix- turewasallowedtoreactatroomtemperaturefor5min,andtheabsorbancewasmeasuredat 640nm.Controlwaspreparedbyreplacingsamplewithmethanol.Theconcentrationoftotal PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 3/16 Bioactivityofoliveprocessingwastewaters flavanolswascalculatedfromthecalibrationcurveobtainedusingcatechinasastandard.The resultswereexpressedasmgofcatechinequivalentsperliteroftheextract(CTE/L).Proantho- cyanidinswereanalyzedbythemethoddescribedbyWatermanandMole[26].Butanol reagentwaspreparedbymixing70mgferroussulfate(FeSO )with5mLconcentratedHCl 4 andmadeupto100mLwithn-butanol.Analiquotof0.1mLsamplewasmixedvigorously withbutanolreagent(1.4mL)andheatedfor45minat95˚Cwaterbath.Thesamplewasthan cooledand0.5mLn-butanolwasaddedtoit,beforetheabsorbancewasreadat550nmwas measured.Resultswereexpressedascyanidingequivalentsperliteroftheextract(CYE/L) usingamolarextinctioncoefficientε=26,900withamolecularweightof449.2. Antibacterialactivity Discdiffusionassay. Antibacterialactivitywastestedagainstapanelofnonpathogenic microorganismslistedbelow:Lactococcuslactis(HP),Lactobacillusbulgaricus(ATCC11842), Staphylococcusaureus(DPC5246),Bacillussubtilis,Listeriainnocua(WIT361),Escherichiacoli (DSMZ10720)andSalmonellatryphimurium(LT2).AllcultureswereobtainedfromthePhar- maceuticalandMolecularBiotechnologyResearchCentre(PMBRC)atWaterfordInstituteof Technology(Ireland).Thediscdiffusionmethod,knownastheKirby-Bauermethod,was usedtodeterminetheantibacterialactivitiesofOPWphenolicextracts.Avolumeof5mLof BHI(BrainHeartInfusion)brothwith50μLofS.aureus,B.subtilis,L.innocua,S.typhimur- iumandE.colibacteriawasincubatedat37˚Covernight.B.subtiliswasincubatedat34˚C whileshakingat200rpm.M17mediumwith0.5%lactosewasusedforL.innocuaincubated at37˚CandMRSbroth(agarofMan,RogosaandSharpe)wasusedforL.bulgaricusandincu- bationat37˚Cunderanaerobicconditions.1mLofeachculturewascentrifugedat13,000 rpmfor2min.Thesupernatantwasremovedandthepelletwasre-suspendedin1mLofster- ilemaximumrecoverydiluent(MRD)vortexedfor~30sandthenre-centrifugedat13,000 rpmfor2min.Thesupernatantwasremovedforasecondtimeandthecellpelletre-sus- pendedin1mLofsterileMRDandvortexedfor~30s.TheOPWphenolicextractswere driedbynitrogenflux,weighedandreconstitutedinpuremethanoltogiveafinalconcentra- tionof100mg/mL.Blankdiscs,6mmwereallowedtowarmtoroomtemperatureafter removalfroma–20˚Cfreezerfor1handthenimpregnatedwith10μLofthephenolicextract solutiontohavea1mgextract/discofeachsample.Thediscswerethenlefttodryforatleast 20minundersterileconditionstoallowevaporationofthesolvent.Thenegativecontrol (10μLofmethanol)waspreparedinasimilarmannertothephenolicextractdiscs.Theposi- tivecontrolwaschloramphenicol(10μg)antibioticdiscs. TLCplates. Thephenoliccompoundsinthetestedextractswereseparatedonaluminum- backedthinlayerchromatography(TLC)plateswithdifferentsolventsystemswidelyusedin chromatography.TheTLCplatesweredevelopedundersaturatedconditionswitheachofthe eluentsystems.Thedevelopedplateswerethendriedtoremovetracesofsolventontheplates. TLC-bioautography. Thebioautographymethodallowsbothseparationandmicrobio- logicaldetectiononthesameplate.Inthecurrentstudy,twobioautographicassayswereused. TheTLCseparationwasdeveloped,optimizedandfullyvalidatedusingS.aureusasanindica- torbacteriatodetectantibacterialactivity.Thefirstassaywasbasedontheoverlaymethodin whichabacterialseededagarmediumwasappliedontheTLCplate.Thesecondassaywas basedonsprayingthechromatogramswithbacterialsuspensionuntilalayerwasformed homogenouslyonthesurface.Thisprocesswascarriedoutinthelaminarflowcabinetunder sterileconditions.Thereafter,theplateswereincubatedovernightat37˚Cinthedark.The producedinhibitionzonewasvisualizedbysprayingtheplatewitha2.5mg/mLsolutionof MTTdye(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide)andfurther PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 4/16 Bioactivityofoliveprocessingwastewaters incubatedovernight.ClearbandsindicatedbacterialinhibitionastheMTTisnotreducedto theredcolorformazan.LivebacterialcellswillconverttheMTTintoredcolorformazan. Antioxidantactivity Freeradicalscavengingactivity. Theantioxidantactivityoftheextractswasevaluated basedonhydrogen-donatingorradical-scavengingabilityusingthestablefreeradical2,2- diphenyl-1-picrylhydrazyl(DPPH).Anamount(0.1mL)ofphenolicextractswasaddedto3 mLof0.04%methanolicsolutionofDPPH[18].Themixturewasmixedthoroughlyandincu- batedindarkatroomtemperaturefor60min.Thedecreaseinabsorbancewasthenmeasured at517nm,againstmethanolasablank.Thecapacityofthetestedsamplestoscavengethe DPPHradicalwascalculatedasapercentageofDPPHdiscolorationusingthefollowingequa- tion: %Inhibition¼f1(cid:0) ðA =A Þg(cid:2)100 Eqð1Þ sample control WhereA wasmeasuredastheabsorbanceofDPPHwithoutsample.Theextractconcen- control trationproviding50%inhibition(IC )wasdeterminedfromthegraphofpercentageofinhibi- 50 tionagainstphenolicextractconcentration[19]. TLCbioautographyassaywithDPPHreagent. Inordertoscreentheantioxidantactiv- ityofthetestedphenolicextracts,aTLCbioautographymethodwasperformed[27].Aftersep- arationonTLCplates,thecompoundswithfreeradicalscavengingactivityweredetermined insituwithDPPHreagent[27].TheTLCplatewasobservedundervisiblelight.Areasproduc- ingyellowishbandsagainstthepurplebackgroundwereconsideredasantioxidants. HPLC-MSanalysisofphenolicextracts HPLCanalysiswasperformedonanAgilent1200seriesequippedwithan210Agilent1200 seriesbinarypumpSL,anAgilent1200seriesG1316BSL211temperature-controlledcolumn oven,amicrovacuumdegasserandaphotodiode212array(PDA)detector,controlledby EZChromsoftware.SeparationwasachievedusingWaterssymmetryC185μm,3.9x150mm columnwithagradientrunusingA=0.1%aqueousformicacid,B=89.5:9.5:1Methanol/ nitricacid/formicacid.Thegradientrunstartswith10%Bfor10min,30%Buntil20min, maintaining30%Buntil25min,40%Buntil45min,thenuntil50minat50%B,until60min at100%B,until65minat10%Bandfinallyuntil75minat10%B,makingthetotalruntime of75min.Theusedflowratewas0.2mL/minand10μLinjectionvolume.Theextractswere analyzedat240,280and365nm.Quantitativedeterminationswerecarriedoutusingexternal standards.HPLCanalysiswasperformedfirstonthestandards,followedbytheOPWextracts, andfinallyspikingthesampleswiththestandards.Theidentificationofphenoliccompounds wasconfirmedusingLC-MSanalysis.LC-MSconditionsweresameasHPLCconditionsusing negativemode,scanbetweenm/z15–500andtargetionatm/z153(hydroxytyrosol),m/z137 (tyrosol),atm/z540(oleuropein),m/z164(p-coumaricacid),andm/z193(ferulicacid). Resultsanddiscussion Physicochemicalcharacterizationofoliveprocessingwastewaters Table1showstheresultsfromtheanalysisofcommonphysicochemicalparametersand chemicalanalysisofthefivewastewatersfromtheoliveprocessingindustry. OMWarerelativelydenseandacidicwithahighorganicloadthatreachesvaluesashighas 110g/LCOD(Table1).Itcontainslargeamountsofdryresidueuptoabout194g/L.OMW1, whichisfromasemi-modernthree-phaseprocess,showshighsalinityandthereforehigher PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 5/16 Bioactivityofoliveprocessingwastewaters Table1. Physicochemicalcharacterizationofolivemillwastewaterandtable-olivebrinesamples. Parameters Unit Olivemillwastewater Table-oliveswastewater OMW1 OMW2 GTOW PTOW BTOW pH - 5±0.10 5.10±0.10 4.5±0.1 4.5±0.1 5.1±0.1 EC mS/cm 56.30±0.50 11.01±0.60 76.2±0.4 83.8±0.6 106.4±0.5 Acidity g/L - - 6.6±0.63 5.81±0.63 - Color - - - 0.75±0.01 0.8±0.05 20.6±1.1 TPC gTYE/L 8.5±0.4 6.46±0.8 3.67±0.4 4.5±0.1 2.6±0.1 Sugar g/L - - 1.6±0.12 6.9±1.53 8.5±1.8 COD gofO /L 110±4.9 50±5.4 3.26±0.1 3.12±0.15 12.6±3.33 2 Dryresidue g/L 194.2±11 132.7±7 84.7±2.05 101.5±1 275.4±4.8 TSS g/L 86±5 50±3.5 1.68±0.11 1.69±0.02 2.6±0.26 Sodium g/L 2.10±0.10 1.45±0.09 27.5±1.5 26.2±1 9.63±0.5 Potassium g/L 1.24±0.12 0.55±0.02 1.3±0.3 2.9±0.5 22±1.2 EC:electricalconductivity,TPC:totalphenoliccontent,COD:chemicaloxygendemand,TSS:totalsuspendedsolids,OMW1:semi-modernOMWphenolic extract,OMW2:modernOMWphenolicextract,GTOW:greentable-olivewastewater,POTW:purpletable-olivewastewater,BTOW:blacktable-olive wastewater. https://doi.org/10.1371/journal.pone.0182622.t001 electricalconductivity(EC)comparedtoOMW2.Thisisduetothefactthatsomeproducers usesaltforconservationofolivesuntilmilling.OMW2wasfoundtohavelowerphysicochem- icalvaluesthanOMW1(Table1)whichcouldbeattributedtotherelativelylargervolumesof waterusedinmodernolivemillingprocesses[19],resultinginrelativelydilutedOMW.The BTOWexhibitsadarkcolorandhadthehighestorganiccontentbutthelowestphenoliccon- tent(Table1).Amongstotherorganicconstituents,OPW(OMWandTOW)containhigh concentrationofphenoliccompoundsrangingfrom2.6to8.5g/L,andhighECwhichexceeds theenvironmentallegislationlimit,setat0.5mg/Lforphenoliccompounds[28]and3mS/cm forEC[29]. Antibacterialactivity Discdiffusionassay. Noantibacterialactivitywasobservedfornegativecontrolswhilst thezoneofinhibitionforpositivecontrolswasbetween15.0±0.5mmand23.3±2.5mmfor S.aureusandL.bulgaricus,respectively.AllphenolicextractstestedwereactiveagainstS. aureus.NoneofthetestedsampleswereactiveagainstL.innocua.OMW1extract(semi-mod- ernprocess)wasactiveagainstalltestedbacteriaexceptL.innocuawhileOMW2wasonly activeagainstS.aureus,B.subtilisandL.bulgaricus.OMW1demonstratedthehighestantibac- terialactivitiescomparedtootherphenolicextracts.Thisresultcanbeattributedpartiallyto thefactthatOMW1exhibitsthehighestconcentrationofphenoliccompounds(Table1). Inordertostudytheeffectofconcentrationofphenolicextractsontheirantibacterialactiv- ity(againstS.aureus),differentconcentrationsofOMWphenolicextractsweretestedfortheir antibacterialactivityandcomparedtoTOWphenolicextracts(Table2).Theantibacterial activityincreasedwiththeincreaseinthephenoliccontentoftheextract.Thegreenbrinephe- nolicextract(GTOW)demonstratedthehighestantibacterialactivitycomparedtotheother TOWphenolicextracts(BTOWandPTOW). Atconcentrationsof0.5,1.25and5mgtheGTOWextracthadhigherantibacterialactivity againstS.aureuscomparedtotheOMWextracts.Theseresultsdemonstratedthattheantibac- terialactivityofthephenolicextractsisnotonlycorrelatedtotheirconcentrationbutthekey factorgoverningtheirantibacterialactivityistheirphenolicprofile.Duringthefermentation PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 6/16 Bioactivityofoliveprocessingwastewaters Table2. EffectofconcentrationofOMWandTOWphenolicextractsontheirantibacterialactivity againstS.aureususingthediscdiffusionassay. Testsubstance(amount/disc) ZoneofInhibition(mm) OMW1(0.125mg) 6±0.5 OMW1(0.5mg) 7±0.5 OMW1(1.25mg) 8±0.5 OMW1(5mg) 11±0.5 PC 15.6±0.6 NC 0 OMW2(0.125mg) 6±0.5 OMW2(0.5mg) 7±0.5 OMW2(1.25mg) 8±0.5 OMW2(5mg) 9.3±0.6 PC 16±0.5 NC 0 PTOW(5mg) 10±1 BTOW(5mg) 9±0.5 GTOW(5mg) 12±1 PC 15±1 NC 0 GTOW(0.25mg) 6±0.5 GTOW(0.5mg) 8±0.5 GTOW(1.25mg) 9±0.5 GTOW(2.5mg) 11±0.5 PC 14.6±0.6 NC 0 PC:positivecontrol;NC:negativecontrol;OMW1:semimodernOMWphenolicextract;OMW2:modern OMWphenolicextract;GTOW:greenbrinephenolicextract;BTOW:blackbrinephenolicextract;PTOW: purplephenolicextract. https://doi.org/10.1371/journal.pone.0182622.t002 oftableolives,thediffusionofphenoliccompoundsintothebrinedependsonseveralparame- terssuchascultivarcharacteristics,fruitskinpermeability,typeofphenoliccompoundspres- entinolivefleshandtheirabilitytodiffuseoutofthefruit[21]. Inasimilarstudy[30],hydroxytyrosolandoleuropeinwerefoundtobecytotoxictomany clinicalbacterialstrainsalthoughtoalesserextentthantheATCCstrains.Theauthors reportedthattheminimuminhibitoryconcentrationofhydroxytyrosolandoleuropeinagainst S.aureuswas3.9–31.25mg/Land62.5–125mg/L,respectively.Inarelativelyrecentstudy, hydroxytyrosol,tyrosolandoleuropeindidnotshowanybactericidalactivityataconcentra- tionashighas(20mM)0.3g/L,0.27g/Land1g/L,respectively[31].Theseresultscontribute tothedebateabouttheantimicrobialactivityoftheseolivecompounds,althoughthediffer- encesinexperimentalconditionsandmicroorganismsusedtotesttheefficacyoftheseantimi- crobialsmakeitdifficulttocomparetheireffectiveness. Thinlayerchromatography(TLC)separation. Priortothebioautographyassayandin ordertoseparatetheactivecomponentspresentinthecrudephenolicextracts,TLCwas undertakenandthemostefficientsolventsystemwasdetermined.Ninemobilephasesystems containingsolventsofdifferentpolarity(hexane:acetone(4/6);chloroform:methanol(varying ratios)andothersolventsystemstoincludecombinationsofthesesolventsandethylacetate and/ordichlorobenzenewereusedtodeterminetheappropriatesolventsystemforseparation ofcompoundsinaparticularextractbyTLC. PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 7/16 Bioactivityofoliveprocessingwastewaters TheRf(retardationfactor)valuewhichistheratioofmovementofthesolutefromitsorigin tothemovementofthesolventfromorigindeterminestheseparationofcompoundsonthe solidphaseofTLCplate.Aratioof4:6,v/vhexane/acetonephasewasfoundtobethebestchro- matographicsystemforachievingseparationofphenoliccompoundsfromamixturebasedon theobservedspotsnumberandtheshapeofthespots(roundanddistinctfromeachother). TLC-bioautography. TwoTLC-bioautographicassaymethodsweredeveloped,optimized andfullyvalidatedinourlaboratoryusingS.aureusasanindicatorbacteriumtodetectanti- bacterialactivity.Thefirstmethodwasagar-overlayorimmersionbioautography,wherethe developedplatewasoverlaidwith15mLofmoltenagarseededwith150μLofbacterialcul- ture.Afterovernightincubation,theinhibitionzonewasvisualizedbysprayingwithMTT dye.Thebioactivecompoundsweretransferredbydiffusionfromthestationaryphasetothe agarlayercontainingthebacteria.However,theuseofagargelasasupportmediumhassome disadvantagesincludingslowdiffusionandbadcontrast.Inordertooptimizethevisualization oftheinhibitionbands,asecondmethodwasusedusingTLCplatessprayedwithanovernight cultureofS.aureus(50μLin5mLofBHI).Hence,athinnerlayerofagarwascoveringthe TLCplate,allowingminimumdiffusion. ThebioautographyscreeningofOMWandbrineextractsshowedpositiveactivityagainst S.aureus.Bacterialinhibitionwasdenotedbyclearspotagainstaredpurplebackgroundon theTLCplateaftersprayingwithMTT.MostofthecompoundsseparatedontheTLCplates wereactiveagainstS.aureus. Thebioautographytestconfirmedtheresultsofthediscdiffusionassaydemonstratingcon- centrationdependentantibacterialactivity.ThehighestactivitywasregisteredbyGTOWphe- nolicsamplecomparedtotheotherOPWphenolicsamples(Table2). Whenallofthecompoundsthatshowedanactivitybasedonbioautographywereisolated andcharacterizedtheyoftenhadamuchloweractivitythanexpected(datanotshown)indi- catingsynergismcouldbeplayingasignificantrole[32].CompoundsfoundinOMWthat werereportedtoexhibitantibacterialactivityaretyrosol,oleuropein,hydroxytyrosol,4-hydro- xybenzoicacid,vanillicacid,andp-coumaricacid[33].Ithasbeenreportedthatolivepolyphe- nolssuchashydroxytyrosolhaveinvitroantibacterialactivityagainstbothGram-negativeand Gram-positivebacteriaresponsibleforintestinaltractandrespiratorytractinfections[34]. Antioxidantactivity DPPHscavengingactivity. DPPHisacommonlyusedsubstrate(freeradical)forfast andeasyevaluationoftheantioxidantactivityduetoitsstability,reliabilityandthesimplicity oftheassay[35].Compoundswithantioxidantpropertieswouldchangethepurplecolorof DPPHtoyellowastheradicalisquenchedbytheantioxidant[35].Thecolorchangecanbe measuredquantitativelybyspectrophotometricabsorbanceat517nm.Caffeicacidwasused asthereferenceantioxidantcompound.Caffeicacid(3,4-dihydroxycinnamicacid)isoneof themajorhydroxycinnamicacidspresentinOMWandhasbeenidentifiedasoneofthemain antioxidantsinthisstudy.TheIC ofcaffeicacidwasfoundtobe121±6μg/mL.OMW1and 50 OMW2exhibitedhighlyinterestingDPPHradicalscavengingabilitycomparedtothephenolic extractsofdifferentbrines(Table3).DPPHradicalwaslesssensitivetotheconcentrationvari- ationofbrineextractscomparedtothecaseofOMWextracts(Table3).Thisdifferencein activityismainlyduetothephenoliccompositionofeachwastewatertype.OMW1showed thehighestantioxidantactivity(thelowestIC Table3)followedbyOMW2.BothOMW 50, extractsshowedconsiderablyhigherantioxidantactivitycomparedtocaffeicacid.PTOWphe- nolicextractshowedanIC comparabletocaffeicacid,followedbyGTOWandfinallythe 50 BTOWwhichshowedthelowestradicalscavengingactivity(Table3). PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 8/16 Bioactivityofoliveprocessingwastewaters Table3. Totalphenoliccontent,phenolicconstituentsandantioxidantactivity(IC )ofdifferentoliveprocessingwastewaterssamples. Theval- 50 uesinthebracketsaretheproportionstothetotalphenoliccontent,TPC. Sample TPC Flavonoids Flavanols Proanthocyanidins IC 50 TYEg/L CAEg/L CAEmg/L CYEmg/L mg/L OMW1 8.5±0.4 5.74±0.36 2.63±0.12 19.32±2.03 15.83±1.9 (100%) (67.53%) (0.031%) (0.227%) OMW2 6.46±0.8 2.85±0.24 2.1±0.09 14.10±1.53 32.32±4.7 (100%) (44.11%) (0.032%)) (0.218%) GTOW 3.67±0.04 0.87±0.05 0.23±0.02 42.57±0.71 173±2.8 (100%) (23.71%) (0.006%)) (1.159%) PTOW 4.5±0.01 1.22±0.09 0.17±0.03 533.39±20.51 126.3±3.9 (100%) (27.11%) (0.004%) (11.85%) BTOW 2.6±0.01 0.67±0.05 4.17±0.14 399.83±40.31 261.3±4.8 (100%) (25.78%) (0.160%) (15.38%) https://doi.org/10.1371/journal.pone.0182622.t003 ThedifferentreactionsofthephenolicextractsagainstDPPHradicaldependonthenature oftheantioxidantsinvolvedinthereaction.Suchbehaviormustbetheresultofthedifferent individualcontributionsofthephenoliccompoundspresentinthesamples.Furthermore,ina previouswork,wehavefoundthattheantioxidantcapacityofdifferentOMWextractswas directlycorrelatedtothepercentageoffreehydroxytyrosolandtheirantioxidantactivitywas foundtobetheresultoftheirphenolicprofile(composition)ratherthantheirphenoliccon- centration[19].Hydroxytyrosolisfoundinnature(inolivefruit,oliveoilandoliveleaf)inthe formofitselenolicacidester:oleuropeinorintheformofhydroxytyrosylacetate.Owingto thechemicalorenzymatichydrolysiswhichoccursduringstorage,freehydroxytyrosolisliber- atedprogressivelyagainsttime[15]. TheantioxidantactivityofOPWandespeciallyOMWvarieswidelyfromstudytostudy. ThevariationoftheOMWphenoliccontentanditsantioxidantpropertiesareaffectedby manyfactorssuchasolivecultivar,theoliveoilextractionprocess,thephysicochemicalchar- acteristicsofOMWsamples,thefungalandbacterialfloraexistinginOMW,andfinallythe storageconditions. PreviousstudiesonthedegradationofpolyphenolsinitsoriginalOMWmatrixduringthe extractionprocessanduponstoragerevealedtheirpoorstabilityduetothecomplexandreac- tivenatureofOMW,whereoxidation,condensation,polymerization,andenzymatichydroly- siscanallpotentiallytakeplace[36,37].IthasbeenreportedpreviouslythatOMWfromsemi- modernthree-phaseprocesshashigherphenoliccontentthanOMWfrommodernthree- phaseprocess[19].Thisstudyconfirmsthesefindingsandhighlightstheeffectofmillingpro- cessonthephenoliccontentandcompositionofthegeneratedOMW. Antioxidantcompoundsarereducingagentswhichexhibitsitsantioxidantproperties throughscavengingfreeradicals.Therefore,theyareabletoextendshelflifeoffoodand pharmaceuticalproductsbydecreasingtheoxidationrateoftheproducts,hencepreventing deteriorationoftheproductsduringprocessingandstorage.Heetal.[38]investigatedthe antioxidantcapacityandstabilityofbioactivecompoundsinpurifiedoliveextract(POE)pre- paredfromOMWbyadsorptionontoapolymerresin.Theirresultsshowedthatair/oxygen wasthemainfactorthataffectsthestabilityofPOEduringstorageatlowtemperature,whereas anincreaseintemperaturesignificantlydecreasedthetotalphenoliccontentoftheextract (20–24%reduction)[38]. ManystudieshaveinvestigatedthephenoliccontentofOMW;however,thephenoliccom- positionofbrinesisalsoaverypromisinglow-costsourceforhigh-addedvaluebioactive PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 9/16 Bioactivityofoliveprocessingwastewaters compounds,especiallyhydroxytyrosol.Tothebestofourknowledge,thisisthefirststudyto comparethephenolicprofileandantioxidantpropertyofolivemilleffluentsandtable-olive wastewaters. Bioautographyassay. Bioautographyisalsoausefulmethodforseparationanddetection oftheactiveantioxidantsinamixtureofcompounds[39].TheTLCbioautographyassayisthe methodofchoiceinthescreeningofantioxidantsduetoadvantagessuchasitssimplicity,flex- ibilityandhighthroughput.OntheTLC,antioxidantcompoundswouldbeseenasawhite/ yellowspotsonapurplebackground[27].Fig1showsaprofileofbrineandOMWphenolic extractatdifferentconcentrationpresentingantioxidantactivitycomparedtostandardpheno- liccompounds.HydroxytyrosolisthemostefficientantioxidantagentpresentinOPWex- tractsasshownbyFig1,evenatalowconcentrationoftheextract(1mg/LforGTOW).The absenceofantioxidantactivityinsomebandscouldbeduetotheevaporationoftheactive compounds(highlyvolatilecompounds),photo-oxidationorduetothelowquantityofthe activecompoundontheTLCplate[40]. ThedifferentdetectionsensitivitiesobservedinFig1areattributedtothediversenatureof theoxidativecompounds.Thephenolicextractseparatedwith4:6,v/vhexane:acetoneshowed severalTLCbandswithstrongantioxidantactivitywhichincreaseswiththeincreasingcon- centrationofthephenolicextract.ResultsreportedinFig1suggestedthathydroxytyrosol (HT),p-coumaricacid(PC)andcaffeicacid(CA)maybepresentinOMWandbrinephenolic extractsasvisualizedbytheDPPH-TLCbands.Thepresenceofthesecompoundsincon- firmedwithLC-MS. Phenolicconstituentsoftheoliveprocessingwastewatersextracts Flavonoids,themostdiverseandthelargestgroupofnaturalphenoliccompounds,areknownto haveantioxidant,antiallergic,antimicrobial,anti-inflammatory,andanticarcinogenicproperties [41].ThisphenolicgroupconstitutesthelargestpartofOMW1phenoliccontent(67.53%).How- ever,flavonoidscorrespondonlyto44.11%ofOMW2phenoliccontent(Table3).Thethreestud- iedtable-olivebrinescontainedbetween23%and27%flavonoidsoftheirtotalphenoliccontent. Besidestheirantioxidantactivities,flavonoidswerefoundtoinhibitlipidperoxidation,platelet aggregationandpossesschemopreventiveeffectsoncarcinogenesis[42].Themainflavonoid subclassesinOMWareproanthocyanidinsandflavanols[19].Thesephenolicswerefoundto decreasetheriskofischemia-reperfusiondamageofheartinratbyincreasingplasmaantioxidant activity[43].Inthisstudy,fortheOPWsamples,flavanolsandproanthocyanidinswerefound tohavealowerproportion,ofapproximately2%oftheirtotalphenoliccontent,exceptfor BTOWwhichexhibitsthehighestproportionofproanthocyanidins(15.38%)followedbyPTOW (11.85%)(Table3).Furthermore,theflavanolscontentvariedfrom0.17to4.17CAEmg/L(0.004 to0.16%)ofthetotalphenoliccontentofdifferentOPWsamples. HPLC-MSanalysisofoliveprocessingwastewaters HPLC-MSanalysiswasperformedtodetermine,compare,identifyandquantifythephenolic compoundsinOPWsamples(Fig2andTable4).Compoundsfromthreemainphenolic groupswereidentified,simplephenols(hydroxytyrosolandtyrosol),phenolicacids(p-couma- ricacid,ferulicacidanditsderivative)andsecoiridoids(oleuropein). ThetotalphenolicconcentrationasrevealedbytheHPLC-MSquantificationisnotcorre- spondingtothedepictedspectrophotometricestimationinTable3.Previousstudieshigh- lightedthatthedisadvantageoftheFolin-Ciocalteucolorimetricmethodisthatcomereducing agentsmaybepresentintheextractcaninterfereintheanalysisandconsequentlyoverestimate thetotalphenoliccontentoftheextract[44].Fromthecurrentstudy,hydroxytyrosoland PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 10/16

Description:
were compared to the phenolic extracts of table-olive brines. of a diverse range of polyphenols with a large spectrum of biological activities. order to separate the active components present in the crude phenolic extracts, TLC
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.