RESEARCHARTICLE Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters MajdoulineBelaqziz1*,ShiauPinTan2,AbdelilahEl-Abbassi3,HajarKiai3, AbdellatifHafidi3,OrlaO’Donovan2,PeterMcLoughlin2 1 CenterofAnalysisandCharacterization,CadiAyyadUniversity,Marrakech,Morocco,2 The Pharmaceutical&MolecularBiotechnologyResearchCentre(PMBRC),DepartmentofScience,Waterford InstituteofTechnology,Waterford,Ireland,3 FoodScienceslaboratory,DepartmentofBiology,Facultyof a1111111111 Sciences–Semlalia,CadiAyyadUniversity,Marrakech,Morocco a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 Abstract Oliveprocessingwastewaters(OPW),namelyolivemillwastewater(OMW)andtable-olive wastewaters(TOW)wereevaluatedfortheirantibacterialactivityagainstfiveGram-positive OPENACCESS andtwoGram-negativebacteriausingthestandarddiscdiffusionandthinlayerchromatog- Citation:BelaqzizM,TanSP,El-AbbassiA,KiaiH, raphy(TLC)-bioautographyassays.DiscdiffusionscreeningandbioautographyofOMW HafidiA,O’DonovanO,etal.(2017)Assessmentof theantioxidantandantibacterialactivitiesof werecomparedtothephenolicextractsoftable-olivebrines.PositiveactivityagainstS. differentoliveprocessingwastewaters.PLoSONE aureuswasdemonstrated.Theoptimizationofchromatographicseparationrevealedthat 12(9):e0182622.https://doi.org/10.1371/journal. hexane/acetoneintheratioof4:6wasthemosteffectiveforphenoliccompoundssepara- pone.0182622 tion.AHPLC-MSanalysiswasperformedshowingthatonlytwocompounds,hydroxytyrosol Editor:CalogeroCaruso,UniversityofPalermo, andtyrosol,werethepredominantphenoliccompoundsinallOPW.Thephenolicextractof ITALY OMWgeneratedbyasemi-modernprocessshowedthehighestfreeradical-scavenging Received:October12,2016 activity(DPPHassay)comparedtotheotherphenolicextracts.Itisapparentfromthepres- Accepted:July6,2017 entstudythatOPWarearichsourceofantioxidantssuitableforuseinfood,cosmeticor Published:September5,2017 pharmaceuticalapplications. Copyright:©2017Belaqzizetal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal Introduction authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare Olivefruitsareusedintheagro-industrymainlyforthepreparationoftableolivesandoil withinthepaperanditsSupportingInformation extraction.Theoliveoilextractiongeneratesaneffluentformedbythecombinationofthe files. watercontentoftheolivefruitwiththewatergeneratedfromthewashingandprocessingof Funding:AuthorsacknowledgeAverroès theolives.Thiseffluentiscommonlyknownasolivemillwastewater(OMW).Thiseffluent FellowshipProgram(fundedbytheEuropean isoneofthemostenvironmentallyconcerningfoodprocessingeffluentsintheMediterranean CommissionwithintheframeworkofErasmus countriesduetoitsphytotoxicity[1].Virginoliveoilisextractedfromolivefruitusingmec- Mundus)forfundingtheresearchstayofDr. hanicalprocessesincludingthecrushingoftheolivefruitsfollowedbymalaxationstepwhich MajdoulineBelaqzizinWaterford(Ireland).Aswell, preparestheresultingpasteforsubsequentseparationoftheoil.Theoilyphaseisseparated Prof.AbdelilahElAbbassigreatlythanksthe throughpressureorcentrifugation.ThemainoliveoilextractionmethodusedinmanyMedi- InternationalFoundationforSciences(IFS, Sweden)fortheirfinancialsupportunderthe terraneancountriesisthecontinuouscentrifugationsystemknownasthree-phasesystem[2]. PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 1/16 Bioactivityofoliveprocessingwastewaters grantsnumberW4749-1andW4749-2.The Thecentrifugaldecanterallowsfortheseparationofthreephases;theoliveoil,wastewater fundershadnoroleinstudydesign,datacollection (OMW)andpomace(solidwaste).Besidethetraditionalpressextractionsystemandthetwo- andanalysis,decisiontopublish,orpreparationof phasecentrifugalsystem,theoliveoilextractionprocessesproducebetween10million[3]and themanuscript. 30millionm3peryearofOMW[4]. Competinginterests:Theauthorshavedeclared Moreover,therearethreemaintradepreparationsoftableolives:a)thegreenSpanishstyle, thatnocompetinginterestsexist. b)Californianstyle(ripeolivesbyalkalineoxidation)andc)Greekstyle(naturallyblack olives)[5,6].Asmentioned,tableolivepreparationgenerateslargevolumesofwastewaters. Botheffluents,OMWandtable-olivewastewaters(TOW),couldbegroupedunderasingle nameknownas“oliveprocessingwastewaters,OPW”.Thedisposalofthesewastewaterswith- outpriortreatmenthasledtosevereproblemsforthewholeecosystem.OMWandtable-olive brineshaveshowedtoxicitytosomeplantsandmicroorganismssincetheyexhibitasubstan- tialconcentrationofpolyphenolsupto10g/L[7].Thephytotoxicandantibacterialproperties ofOMWpolyphenolsweredemonstratedinarelativelyrecentstudyalongwiththenegative effectstheyhaveonincreasingthesalinityandacidityofsoils[8]. Oliveoilcontainsonly2%ofthetotalphenoliccontentfromtheolivefruitandtheremain- ing98%islostinOMWandpomace[9].Furthermore,duringtheprocessingoftableolives, hydrolyzedpolyphenolsareliberatedintothebrines.Thus,OPWarepotentiallyarichsource ofadiverserangeofpolyphenolswithalargespectrumofbiologicalactivities.Polyphenolsare foundwidelyinavarietyofplantsincludingolivesandareinvolvedinmanyvitalfunctions includingdefense[10]. Accordingtoseveralstudies,polyphenolsfromolivealsorepresentnaturalanti-inflamma- toryagents[11]andexhibitawiderangeofinterestingbioactivitiessuchasantimicrobial,anti- atherogenic,antitumoral,cytoprotectiveandcardioprotectiveproperties[12,13].Thus,they mayhavesignificanthealthbenefits.Theycouldthereforebeusedtoreplacesyntheticdrugs whichcancausesideeffects. Studieshavealsodemonstratedthatphenoliccompoundsexhibitedbroadspectrumanti- bacterialactivity[14].PhenoliccontentofOMWhasbeendemonstratedtohaveamollus- cicidalactivity[15]inadditiontoantimicrobialactivity[3].Moststudiesofantimicrobial activityhavefocusedonecologicalandenvironmentalconsequences[16]oronagricultural applications[17]. Alargenumberofresearchpapershavebeenpublishedregardingthechemicalcomposi- tionofolivesandoliveoil;but,onlyfewstudieshavefocusedonisolatingandidentifyingcom- poundsfromtheOPW[18–20].Therecoveryofthesebioactivemetabolites,especially hydroxytyrosol,aromaticacids,andconjugatedaromaticacidsfromOPW,isofparticular interestsincetheypossessverypromisingbioactivitiesandhealthpromotingproperties[12]. AspartofacomprehensivestudyofthenatureandfunctionalityofOPWphenolicextracts, weinvestigatedtheantioxidantandantibacterialactivityofOMWsamplesgeneratedbytwo differentoliveoilprocessingtechniques,andTOWsamplesissuedfrombrinesoftableolives withdifferentstagesofmaturity.Theantioxidantandantibacterialactivitywasstudiedusing theDPPHandTLC-bioautographyassay,respectively. Materialsandmethods Oliveprocessingwastewatersamples TensiftHydraulicBassinAgencyistheauthoritywhoisresponsibleforthemanagementof waterresourcesinTensiftregioninasustainablemanner.ThesamplingoftheOlivemill wastewaterandtheTableolivebrineswasconductedwiththeagreementoftheolivemilland theolivemanufacturingcompanyowners.Nospecificpermissionwasrequiredfromthe authoritytoproceedwiththesamplingoftheoliveprocessingwastewater.Ontheotherhand PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 2/16 Bioactivityofoliveprocessingwastewaters TheTensiftHydraulicBassinAgencypromotesthecollaborationwithCadiAyyadUniversity toconductresearchstudiestooptimizethetreatmentandtherecoveryofoliveprocessing wastewater.Olivemillwastewatersampleswerecollectedfromtwodifferentolivemillslocated intheOudayaregion,intheWestofMarrakechcity(Morocco)duringtheseasonof2012/ 2013.Thetwomillsusedifferentmillingtechniques,semi-modern(OMW1)andmodern (OMW2)three-phaseprocesses.TheprocessedolivefruitsarefromtheMoroccanPicholine variety.Table-olivebrineswerekindlyprovidedbyAgro-Hindtableolivemanufacturingcom- pany(Marrakech,Morocco).Threedifferentsamplesoftable-olivewastewaterwerestudied, green-olivebrine(GTOW),black-olivesbrine(BTOW)andpurpleolivebrine(PTOW).Sam- plingwascarriedoutinamannertoinsurearepresentativesample.Allanalysesweredoneat leasttwice. Physicochemicalcharacterizationofsamples ThephysicochemicalcharacterizationofOPWsampleswascarriedoutasfollow:Chemical oxygendemand(COD)wasdeterminedbythedichromatemethodasusedbypreviousstudy [19].Briefly,wastewatersamplewasdilutedupto100foldandintroducedintoalab-prepared digestionsolutioncontainingpotassiumdichromate,mercuricsulfateandsulfuricacid.The mixturewasincubatedfor120minat150˚CinaCODreactor(ModelWTWCR3000,Ger- many).CODconcentrationwasthenmeasuredcolorimetricallyat600nmusingaMultiLab P5(WTW,Germany).Standardsolutionsof1,2,3,and4gofO perliterwerepreparedusing 2 potassiumbiphthalate.Totalsuspendedsolidsweredeterminedafterfiltrationofagivenvol- umeofolivemillwastewatersamplesthroughaWhatmanfilter(934-AH).Thedryresidue(g/ L)wasthendeterminedindirectlybydryingthepermeateat105˚Covernight.Theotherphysi- cochemicalparameters(i.e.pH,sugar,acidity,sodiumandpotassium)wereanalyzedas describedpreviouslybyKiaiandHafidi[21].Water-solublephenoliccompoundsofOPW sampleswereextractedusingsolvent-solventextractionthreetimesfirstwithequalvolumeof ethylacetatefollowedbyhalfvolumeofhexane.Afterevaporationoftheorganicphaseusinga vacuumrotaryevaporator,theresiduewasdissolvedinpuremethanolandkeptat4˚Cuntil use[22]. Totalphenoliccontent,flavonoids,flavanols,andproanthocyanidins determination Thetotalphenolicconcentration(TPC)inmethanolicextractsrecoveredafterextractionwith ethylacetatewasdeterminedbytheFolin–Ciocalteaucolorimetricmethod[23].Fortotalfla- vonoids,amodifiedmethodofKimetal.[24]wasused.Briefly,0.2mLaliquotofextractwas mixedwith0.8mLofdistilledwaterina5mLassaytubefollowedby60μLof5%NaNO The 2. mixturewasallowedtoreactfor5min.Followingthis,40μLof10%AlCl wasaddedandthe 3 mixturewasleftforafurther5minbeforeadding0.4mLof1MNa CO and0.5mLofdis- 2 3 tilledwatertothereactionmixture.Theabsorbancewasmeasuredat510nmagainstablank preparedsimilarlyexceptthatdistilledwaterwasusedinsteadofextract.Totalflavonoidscon- tentwascalculatedfromacalibrationcurveusingcatechinasastandard,andexpressedasmg catechinequivalentsperliteroftheextract(CTE/L). Flavanolsweredeterminedafterderivatizationwithp-(dimethylamino)-cinnamaldehyde (DMACA),usingtheoptimizedprotocolestablishedbyNigelandGlories[25].Extract(0.2 mL),suitablydilutedwithmethanol,wasintroducedintoa5mLassaytubeand0.5mLHCl (0.24Minmethanol)and0.5mLDMACAsolution(0.2%inmethanol)wereadded.Themix- turewasallowedtoreactatroomtemperaturefor5min,andtheabsorbancewasmeasuredat 640nm.Controlwaspreparedbyreplacingsamplewithmethanol.Theconcentrationoftotal PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 3/16 Bioactivityofoliveprocessingwastewaters flavanolswascalculatedfromthecalibrationcurveobtainedusingcatechinasastandard.The resultswereexpressedasmgofcatechinequivalentsperliteroftheextract(CTE/L).Proantho- cyanidinswereanalyzedbythemethoddescribedbyWatermanandMole[26].Butanol reagentwaspreparedbymixing70mgferroussulfate(FeSO )with5mLconcentratedHCl 4 andmadeupto100mLwithn-butanol.Analiquotof0.1mLsamplewasmixedvigorously withbutanolreagent(1.4mL)andheatedfor45minat95˚Cwaterbath.Thesamplewasthan cooledand0.5mLn-butanolwasaddedtoit,beforetheabsorbancewasreadat550nmwas measured.Resultswereexpressedascyanidingequivalentsperliteroftheextract(CYE/L) usingamolarextinctioncoefficientε=26,900withamolecularweightof449.2. Antibacterialactivity Discdiffusionassay. Antibacterialactivitywastestedagainstapanelofnonpathogenic microorganismslistedbelow:Lactococcuslactis(HP),Lactobacillusbulgaricus(ATCC11842), Staphylococcusaureus(DPC5246),Bacillussubtilis,Listeriainnocua(WIT361),Escherichiacoli (DSMZ10720)andSalmonellatryphimurium(LT2).AllcultureswereobtainedfromthePhar- maceuticalandMolecularBiotechnologyResearchCentre(PMBRC)atWaterfordInstituteof Technology(Ireland).Thediscdiffusionmethod,knownastheKirby-Bauermethod,was usedtodeterminetheantibacterialactivitiesofOPWphenolicextracts.Avolumeof5mLof BHI(BrainHeartInfusion)brothwith50μLofS.aureus,B.subtilis,L.innocua,S.typhimur- iumandE.colibacteriawasincubatedat37˚Covernight.B.subtiliswasincubatedat34˚C whileshakingat200rpm.M17mediumwith0.5%lactosewasusedforL.innocuaincubated at37˚CandMRSbroth(agarofMan,RogosaandSharpe)wasusedforL.bulgaricusandincu- bationat37˚Cunderanaerobicconditions.1mLofeachculturewascentrifugedat13,000 rpmfor2min.Thesupernatantwasremovedandthepelletwasre-suspendedin1mLofster- ilemaximumrecoverydiluent(MRD)vortexedfor~30sandthenre-centrifugedat13,000 rpmfor2min.Thesupernatantwasremovedforasecondtimeandthecellpelletre-sus- pendedin1mLofsterileMRDandvortexedfor~30s.TheOPWphenolicextractswere driedbynitrogenflux,weighedandreconstitutedinpuremethanoltogiveafinalconcentra- tionof100mg/mL.Blankdiscs,6mmwereallowedtowarmtoroomtemperatureafter removalfroma–20˚Cfreezerfor1handthenimpregnatedwith10μLofthephenolicextract solutiontohavea1mgextract/discofeachsample.Thediscswerethenlefttodryforatleast 20minundersterileconditionstoallowevaporationofthesolvent.Thenegativecontrol (10μLofmethanol)waspreparedinasimilarmannertothephenolicextractdiscs.Theposi- tivecontrolwaschloramphenicol(10μg)antibioticdiscs. TLCplates. Thephenoliccompoundsinthetestedextractswereseparatedonaluminum- backedthinlayerchromatography(TLC)plateswithdifferentsolventsystemswidelyusedin chromatography.TheTLCplatesweredevelopedundersaturatedconditionswitheachofthe eluentsystems.Thedevelopedplateswerethendriedtoremovetracesofsolventontheplates. TLC-bioautography. Thebioautographymethodallowsbothseparationandmicrobio- logicaldetectiononthesameplate.Inthecurrentstudy,twobioautographicassayswereused. TheTLCseparationwasdeveloped,optimizedandfullyvalidatedusingS.aureusasanindica- torbacteriatodetectantibacterialactivity.Thefirstassaywasbasedontheoverlaymethodin whichabacterialseededagarmediumwasappliedontheTLCplate.Thesecondassaywas basedonsprayingthechromatogramswithbacterialsuspensionuntilalayerwasformed homogenouslyonthesurface.Thisprocesswascarriedoutinthelaminarflowcabinetunder sterileconditions.Thereafter,theplateswereincubatedovernightat37˚Cinthedark.The producedinhibitionzonewasvisualizedbysprayingtheplatewitha2.5mg/mLsolutionof MTTdye(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide)andfurther PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 4/16 Bioactivityofoliveprocessingwastewaters incubatedovernight.ClearbandsindicatedbacterialinhibitionastheMTTisnotreducedto theredcolorformazan.LivebacterialcellswillconverttheMTTintoredcolorformazan. Antioxidantactivity Freeradicalscavengingactivity. Theantioxidantactivityoftheextractswasevaluated basedonhydrogen-donatingorradical-scavengingabilityusingthestablefreeradical2,2- diphenyl-1-picrylhydrazyl(DPPH).Anamount(0.1mL)ofphenolicextractswasaddedto3 mLof0.04%methanolicsolutionofDPPH[18].Themixturewasmixedthoroughlyandincu- batedindarkatroomtemperaturefor60min.Thedecreaseinabsorbancewasthenmeasured at517nm,againstmethanolasablank.Thecapacityofthetestedsamplestoscavengethe DPPHradicalwascalculatedasapercentageofDPPHdiscolorationusingthefollowingequa- tion: %Inhibition¼f1(cid:0) ðA =A Þg(cid:2)100 Eqð1Þ sample control WhereA wasmeasuredastheabsorbanceofDPPHwithoutsample.Theextractconcen- control trationproviding50%inhibition(IC )wasdeterminedfromthegraphofpercentageofinhibi- 50 tionagainstphenolicextractconcentration[19]. TLCbioautographyassaywithDPPHreagent. Inordertoscreentheantioxidantactiv- ityofthetestedphenolicextracts,aTLCbioautographymethodwasperformed[27].Aftersep- arationonTLCplates,thecompoundswithfreeradicalscavengingactivityweredetermined insituwithDPPHreagent[27].TheTLCplatewasobservedundervisiblelight.Areasproduc- ingyellowishbandsagainstthepurplebackgroundwereconsideredasantioxidants. HPLC-MSanalysisofphenolicextracts HPLCanalysiswasperformedonanAgilent1200seriesequippedwithan210Agilent1200 seriesbinarypumpSL,anAgilent1200seriesG1316BSL211temperature-controlledcolumn oven,amicrovacuumdegasserandaphotodiode212array(PDA)detector,controlledby EZChromsoftware.SeparationwasachievedusingWaterssymmetryC185μm,3.9x150mm columnwithagradientrunusingA=0.1%aqueousformicacid,B=89.5:9.5:1Methanol/ nitricacid/formicacid.Thegradientrunstartswith10%Bfor10min,30%Buntil20min, maintaining30%Buntil25min,40%Buntil45min,thenuntil50minat50%B,until60min at100%B,until65minat10%Bandfinallyuntil75minat10%B,makingthetotalruntime of75min.Theusedflowratewas0.2mL/minand10μLinjectionvolume.Theextractswere analyzedat240,280and365nm.Quantitativedeterminationswerecarriedoutusingexternal standards.HPLCanalysiswasperformedfirstonthestandards,followedbytheOPWextracts, andfinallyspikingthesampleswiththestandards.Theidentificationofphenoliccompounds wasconfirmedusingLC-MSanalysis.LC-MSconditionsweresameasHPLCconditionsusing negativemode,scanbetweenm/z15–500andtargetionatm/z153(hydroxytyrosol),m/z137 (tyrosol),atm/z540(oleuropein),m/z164(p-coumaricacid),andm/z193(ferulicacid). Resultsanddiscussion Physicochemicalcharacterizationofoliveprocessingwastewaters Table1showstheresultsfromtheanalysisofcommonphysicochemicalparametersand chemicalanalysisofthefivewastewatersfromtheoliveprocessingindustry. OMWarerelativelydenseandacidicwithahighorganicloadthatreachesvaluesashighas 110g/LCOD(Table1).Itcontainslargeamountsofdryresidueuptoabout194g/L.OMW1, whichisfromasemi-modernthree-phaseprocess,showshighsalinityandthereforehigher PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 5/16 Bioactivityofoliveprocessingwastewaters Table1. Physicochemicalcharacterizationofolivemillwastewaterandtable-olivebrinesamples. Parameters Unit Olivemillwastewater Table-oliveswastewater OMW1 OMW2 GTOW PTOW BTOW pH - 5±0.10 5.10±0.10 4.5±0.1 4.5±0.1 5.1±0.1 EC mS/cm 56.30±0.50 11.01±0.60 76.2±0.4 83.8±0.6 106.4±0.5 Acidity g/L - - 6.6±0.63 5.81±0.63 - Color - - - 0.75±0.01 0.8±0.05 20.6±1.1 TPC gTYE/L 8.5±0.4 6.46±0.8 3.67±0.4 4.5±0.1 2.6±0.1 Sugar g/L - - 1.6±0.12 6.9±1.53 8.5±1.8 COD gofO /L 110±4.9 50±5.4 3.26±0.1 3.12±0.15 12.6±3.33 2 Dryresidue g/L 194.2±11 132.7±7 84.7±2.05 101.5±1 275.4±4.8 TSS g/L 86±5 50±3.5 1.68±0.11 1.69±0.02 2.6±0.26 Sodium g/L 2.10±0.10 1.45±0.09 27.5±1.5 26.2±1 9.63±0.5 Potassium g/L 1.24±0.12 0.55±0.02 1.3±0.3 2.9±0.5 22±1.2 EC:electricalconductivity,TPC:totalphenoliccontent,COD:chemicaloxygendemand,TSS:totalsuspendedsolids,OMW1:semi-modernOMWphenolic extract,OMW2:modernOMWphenolicextract,GTOW:greentable-olivewastewater,POTW:purpletable-olivewastewater,BTOW:blacktable-olive wastewater. https://doi.org/10.1371/journal.pone.0182622.t001 electricalconductivity(EC)comparedtoOMW2.Thisisduetothefactthatsomeproducers usesaltforconservationofolivesuntilmilling.OMW2wasfoundtohavelowerphysicochem- icalvaluesthanOMW1(Table1)whichcouldbeattributedtotherelativelylargervolumesof waterusedinmodernolivemillingprocesses[19],resultinginrelativelydilutedOMW.The BTOWexhibitsadarkcolorandhadthehighestorganiccontentbutthelowestphenoliccon- tent(Table1).Amongstotherorganicconstituents,OPW(OMWandTOW)containhigh concentrationofphenoliccompoundsrangingfrom2.6to8.5g/L,andhighECwhichexceeds theenvironmentallegislationlimit,setat0.5mg/Lforphenoliccompounds[28]and3mS/cm forEC[29]. Antibacterialactivity Discdiffusionassay. Noantibacterialactivitywasobservedfornegativecontrolswhilst thezoneofinhibitionforpositivecontrolswasbetween15.0±0.5mmand23.3±2.5mmfor S.aureusandL.bulgaricus,respectively.AllphenolicextractstestedwereactiveagainstS. aureus.NoneofthetestedsampleswereactiveagainstL.innocua.OMW1extract(semi-mod- ernprocess)wasactiveagainstalltestedbacteriaexceptL.innocuawhileOMW2wasonly activeagainstS.aureus,B.subtilisandL.bulgaricus.OMW1demonstratedthehighestantibac- terialactivitiescomparedtootherphenolicextracts.Thisresultcanbeattributedpartiallyto thefactthatOMW1exhibitsthehighestconcentrationofphenoliccompounds(Table1). Inordertostudytheeffectofconcentrationofphenolicextractsontheirantibacterialactiv- ity(againstS.aureus),differentconcentrationsofOMWphenolicextractsweretestedfortheir antibacterialactivityandcomparedtoTOWphenolicextracts(Table2).Theantibacterial activityincreasedwiththeincreaseinthephenoliccontentoftheextract.Thegreenbrinephe- nolicextract(GTOW)demonstratedthehighestantibacterialactivitycomparedtotheother TOWphenolicextracts(BTOWandPTOW). Atconcentrationsof0.5,1.25and5mgtheGTOWextracthadhigherantibacterialactivity againstS.aureuscomparedtotheOMWextracts.Theseresultsdemonstratedthattheantibac- terialactivityofthephenolicextractsisnotonlycorrelatedtotheirconcentrationbutthekey factorgoverningtheirantibacterialactivityistheirphenolicprofile.Duringthefermentation PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 6/16 Bioactivityofoliveprocessingwastewaters Table2. EffectofconcentrationofOMWandTOWphenolicextractsontheirantibacterialactivity againstS.aureususingthediscdiffusionassay. Testsubstance(amount/disc) ZoneofInhibition(mm) OMW1(0.125mg) 6±0.5 OMW1(0.5mg) 7±0.5 OMW1(1.25mg) 8±0.5 OMW1(5mg) 11±0.5 PC 15.6±0.6 NC 0 OMW2(0.125mg) 6±0.5 OMW2(0.5mg) 7±0.5 OMW2(1.25mg) 8±0.5 OMW2(5mg) 9.3±0.6 PC 16±0.5 NC 0 PTOW(5mg) 10±1 BTOW(5mg) 9±0.5 GTOW(5mg) 12±1 PC 15±1 NC 0 GTOW(0.25mg) 6±0.5 GTOW(0.5mg) 8±0.5 GTOW(1.25mg) 9±0.5 GTOW(2.5mg) 11±0.5 PC 14.6±0.6 NC 0 PC:positivecontrol;NC:negativecontrol;OMW1:semimodernOMWphenolicextract;OMW2:modern OMWphenolicextract;GTOW:greenbrinephenolicextract;BTOW:blackbrinephenolicextract;PTOW: purplephenolicextract. https://doi.org/10.1371/journal.pone.0182622.t002 oftableolives,thediffusionofphenoliccompoundsintothebrinedependsonseveralparame- terssuchascultivarcharacteristics,fruitskinpermeability,typeofphenoliccompoundspres- entinolivefleshandtheirabilitytodiffuseoutofthefruit[21]. Inasimilarstudy[30],hydroxytyrosolandoleuropeinwerefoundtobecytotoxictomany clinicalbacterialstrainsalthoughtoalesserextentthantheATCCstrains.Theauthors reportedthattheminimuminhibitoryconcentrationofhydroxytyrosolandoleuropeinagainst S.aureuswas3.9–31.25mg/Land62.5–125mg/L,respectively.Inarelativelyrecentstudy, hydroxytyrosol,tyrosolandoleuropeindidnotshowanybactericidalactivityataconcentra- tionashighas(20mM)0.3g/L,0.27g/Land1g/L,respectively[31].Theseresultscontribute tothedebateabouttheantimicrobialactivityoftheseolivecompounds,althoughthediffer- encesinexperimentalconditionsandmicroorganismsusedtotesttheefficacyoftheseantimi- crobialsmakeitdifficulttocomparetheireffectiveness. Thinlayerchromatography(TLC)separation. Priortothebioautographyassayandin ordertoseparatetheactivecomponentspresentinthecrudephenolicextracts,TLCwas undertakenandthemostefficientsolventsystemwasdetermined.Ninemobilephasesystems containingsolventsofdifferentpolarity(hexane:acetone(4/6);chloroform:methanol(varying ratios)andothersolventsystemstoincludecombinationsofthesesolventsandethylacetate and/ordichlorobenzenewereusedtodeterminetheappropriatesolventsystemforseparation ofcompoundsinaparticularextractbyTLC. PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 7/16 Bioactivityofoliveprocessingwastewaters TheRf(retardationfactor)valuewhichistheratioofmovementofthesolutefromitsorigin tothemovementofthesolventfromorigindeterminestheseparationofcompoundsonthe solidphaseofTLCplate.Aratioof4:6,v/vhexane/acetonephasewasfoundtobethebestchro- matographicsystemforachievingseparationofphenoliccompoundsfromamixturebasedon theobservedspotsnumberandtheshapeofthespots(roundanddistinctfromeachother). TLC-bioautography. TwoTLC-bioautographicassaymethodsweredeveloped,optimized andfullyvalidatedinourlaboratoryusingS.aureusasanindicatorbacteriumtodetectanti- bacterialactivity.Thefirstmethodwasagar-overlayorimmersionbioautography,wherethe developedplatewasoverlaidwith15mLofmoltenagarseededwith150μLofbacterialcul- ture.Afterovernightincubation,theinhibitionzonewasvisualizedbysprayingwithMTT dye.Thebioactivecompoundsweretransferredbydiffusionfromthestationaryphasetothe agarlayercontainingthebacteria.However,theuseofagargelasasupportmediumhassome disadvantagesincludingslowdiffusionandbadcontrast.Inordertooptimizethevisualization oftheinhibitionbands,asecondmethodwasusedusingTLCplatessprayedwithanovernight cultureofS.aureus(50μLin5mLofBHI).Hence,athinnerlayerofagarwascoveringthe TLCplate,allowingminimumdiffusion. ThebioautographyscreeningofOMWandbrineextractsshowedpositiveactivityagainst S.aureus.Bacterialinhibitionwasdenotedbyclearspotagainstaredpurplebackgroundon theTLCplateaftersprayingwithMTT.MostofthecompoundsseparatedontheTLCplates wereactiveagainstS.aureus. Thebioautographytestconfirmedtheresultsofthediscdiffusionassaydemonstratingcon- centrationdependentantibacterialactivity.ThehighestactivitywasregisteredbyGTOWphe- nolicsamplecomparedtotheotherOPWphenolicsamples(Table2). Whenallofthecompoundsthatshowedanactivitybasedonbioautographywereisolated andcharacterizedtheyoftenhadamuchloweractivitythanexpected(datanotshown)indi- catingsynergismcouldbeplayingasignificantrole[32].CompoundsfoundinOMWthat werereportedtoexhibitantibacterialactivityaretyrosol,oleuropein,hydroxytyrosol,4-hydro- xybenzoicacid,vanillicacid,andp-coumaricacid[33].Ithasbeenreportedthatolivepolyphe- nolssuchashydroxytyrosolhaveinvitroantibacterialactivityagainstbothGram-negativeand Gram-positivebacteriaresponsibleforintestinaltractandrespiratorytractinfections[34]. Antioxidantactivity DPPHscavengingactivity. DPPHisacommonlyusedsubstrate(freeradical)forfast andeasyevaluationoftheantioxidantactivityduetoitsstability,reliabilityandthesimplicity oftheassay[35].Compoundswithantioxidantpropertieswouldchangethepurplecolorof DPPHtoyellowastheradicalisquenchedbytheantioxidant[35].Thecolorchangecanbe measuredquantitativelybyspectrophotometricabsorbanceat517nm.Caffeicacidwasused asthereferenceantioxidantcompound.Caffeicacid(3,4-dihydroxycinnamicacid)isoneof themajorhydroxycinnamicacidspresentinOMWandhasbeenidentifiedasoneofthemain antioxidantsinthisstudy.TheIC ofcaffeicacidwasfoundtobe121±6μg/mL.OMW1and 50 OMW2exhibitedhighlyinterestingDPPHradicalscavengingabilitycomparedtothephenolic extractsofdifferentbrines(Table3).DPPHradicalwaslesssensitivetotheconcentrationvari- ationofbrineextractscomparedtothecaseofOMWextracts(Table3).Thisdifferencein activityismainlyduetothephenoliccompositionofeachwastewatertype.OMW1showed thehighestantioxidantactivity(thelowestIC Table3)followedbyOMW2.BothOMW 50, extractsshowedconsiderablyhigherantioxidantactivitycomparedtocaffeicacid.PTOWphe- nolicextractshowedanIC comparabletocaffeicacid,followedbyGTOWandfinallythe 50 BTOWwhichshowedthelowestradicalscavengingactivity(Table3). PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 8/16 Bioactivityofoliveprocessingwastewaters Table3. Totalphenoliccontent,phenolicconstituentsandantioxidantactivity(IC )ofdifferentoliveprocessingwastewaterssamples. Theval- 50 uesinthebracketsaretheproportionstothetotalphenoliccontent,TPC. Sample TPC Flavonoids Flavanols Proanthocyanidins IC 50 TYEg/L CAEg/L CAEmg/L CYEmg/L mg/L OMW1 8.5±0.4 5.74±0.36 2.63±0.12 19.32±2.03 15.83±1.9 (100%) (67.53%) (0.031%) (0.227%) OMW2 6.46±0.8 2.85±0.24 2.1±0.09 14.10±1.53 32.32±4.7 (100%) (44.11%) (0.032%)) (0.218%) GTOW 3.67±0.04 0.87±0.05 0.23±0.02 42.57±0.71 173±2.8 (100%) (23.71%) (0.006%)) (1.159%) PTOW 4.5±0.01 1.22±0.09 0.17±0.03 533.39±20.51 126.3±3.9 (100%) (27.11%) (0.004%) (11.85%) BTOW 2.6±0.01 0.67±0.05 4.17±0.14 399.83±40.31 261.3±4.8 (100%) (25.78%) (0.160%) (15.38%) https://doi.org/10.1371/journal.pone.0182622.t003 ThedifferentreactionsofthephenolicextractsagainstDPPHradicaldependonthenature oftheantioxidantsinvolvedinthereaction.Suchbehaviormustbetheresultofthedifferent individualcontributionsofthephenoliccompoundspresentinthesamples.Furthermore,ina previouswork,wehavefoundthattheantioxidantcapacityofdifferentOMWextractswas directlycorrelatedtothepercentageoffreehydroxytyrosolandtheirantioxidantactivitywas foundtobetheresultoftheirphenolicprofile(composition)ratherthantheirphenoliccon- centration[19].Hydroxytyrosolisfoundinnature(inolivefruit,oliveoilandoliveleaf)inthe formofitselenolicacidester:oleuropeinorintheformofhydroxytyrosylacetate.Owingto thechemicalorenzymatichydrolysiswhichoccursduringstorage,freehydroxytyrosolisliber- atedprogressivelyagainsttime[15]. TheantioxidantactivityofOPWandespeciallyOMWvarieswidelyfromstudytostudy. ThevariationoftheOMWphenoliccontentanditsantioxidantpropertiesareaffectedby manyfactorssuchasolivecultivar,theoliveoilextractionprocess,thephysicochemicalchar- acteristicsofOMWsamples,thefungalandbacterialfloraexistinginOMW,andfinallythe storageconditions. PreviousstudiesonthedegradationofpolyphenolsinitsoriginalOMWmatrixduringthe extractionprocessanduponstoragerevealedtheirpoorstabilityduetothecomplexandreac- tivenatureofOMW,whereoxidation,condensation,polymerization,andenzymatichydroly- siscanallpotentiallytakeplace[36,37].IthasbeenreportedpreviouslythatOMWfromsemi- modernthree-phaseprocesshashigherphenoliccontentthanOMWfrommodernthree- phaseprocess[19].Thisstudyconfirmsthesefindingsandhighlightstheeffectofmillingpro- cessonthephenoliccontentandcompositionofthegeneratedOMW. Antioxidantcompoundsarereducingagentswhichexhibitsitsantioxidantproperties throughscavengingfreeradicals.Therefore,theyareabletoextendshelflifeoffoodand pharmaceuticalproductsbydecreasingtheoxidationrateoftheproducts,hencepreventing deteriorationoftheproductsduringprocessingandstorage.Heetal.[38]investigatedthe antioxidantcapacityandstabilityofbioactivecompoundsinpurifiedoliveextract(POE)pre- paredfromOMWbyadsorptionontoapolymerresin.Theirresultsshowedthatair/oxygen wasthemainfactorthataffectsthestabilityofPOEduringstorageatlowtemperature,whereas anincreaseintemperaturesignificantlydecreasedthetotalphenoliccontentoftheextract (20–24%reduction)[38]. ManystudieshaveinvestigatedthephenoliccontentofOMW;however,thephenoliccom- positionofbrinesisalsoaverypromisinglow-costsourceforhigh-addedvaluebioactive PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 9/16 Bioactivityofoliveprocessingwastewaters compounds,especiallyhydroxytyrosol.Tothebestofourknowledge,thisisthefirststudyto comparethephenolicprofileandantioxidantpropertyofolivemilleffluentsandtable-olive wastewaters. Bioautographyassay. Bioautographyisalsoausefulmethodforseparationanddetection oftheactiveantioxidantsinamixtureofcompounds[39].TheTLCbioautographyassayisthe methodofchoiceinthescreeningofantioxidantsduetoadvantagessuchasitssimplicity,flex- ibilityandhighthroughput.OntheTLC,antioxidantcompoundswouldbeseenasawhite/ yellowspotsonapurplebackground[27].Fig1showsaprofileofbrineandOMWphenolic extractatdifferentconcentrationpresentingantioxidantactivitycomparedtostandardpheno- liccompounds.HydroxytyrosolisthemostefficientantioxidantagentpresentinOPWex- tractsasshownbyFig1,evenatalowconcentrationoftheextract(1mg/LforGTOW).The absenceofantioxidantactivityinsomebandscouldbeduetotheevaporationoftheactive compounds(highlyvolatilecompounds),photo-oxidationorduetothelowquantityofthe activecompoundontheTLCplate[40]. ThedifferentdetectionsensitivitiesobservedinFig1areattributedtothediversenatureof theoxidativecompounds.Thephenolicextractseparatedwith4:6,v/vhexane:acetoneshowed severalTLCbandswithstrongantioxidantactivitywhichincreaseswiththeincreasingcon- centrationofthephenolicextract.ResultsreportedinFig1suggestedthathydroxytyrosol (HT),p-coumaricacid(PC)andcaffeicacid(CA)maybepresentinOMWandbrinephenolic extractsasvisualizedbytheDPPH-TLCbands.Thepresenceofthesecompoundsincon- firmedwithLC-MS. Phenolicconstituentsoftheoliveprocessingwastewatersextracts Flavonoids,themostdiverseandthelargestgroupofnaturalphenoliccompounds,areknownto haveantioxidant,antiallergic,antimicrobial,anti-inflammatory,andanticarcinogenicproperties [41].ThisphenolicgroupconstitutesthelargestpartofOMW1phenoliccontent(67.53%).How- ever,flavonoidscorrespondonlyto44.11%ofOMW2phenoliccontent(Table3).Thethreestud- iedtable-olivebrinescontainedbetween23%and27%flavonoidsoftheirtotalphenoliccontent. Besidestheirantioxidantactivities,flavonoidswerefoundtoinhibitlipidperoxidation,platelet aggregationandpossesschemopreventiveeffectsoncarcinogenesis[42].Themainflavonoid subclassesinOMWareproanthocyanidinsandflavanols[19].Thesephenolicswerefoundto decreasetheriskofischemia-reperfusiondamageofheartinratbyincreasingplasmaantioxidant activity[43].Inthisstudy,fortheOPWsamples,flavanolsandproanthocyanidinswerefound tohavealowerproportion,ofapproximately2%oftheirtotalphenoliccontent,exceptfor BTOWwhichexhibitsthehighestproportionofproanthocyanidins(15.38%)followedbyPTOW (11.85%)(Table3).Furthermore,theflavanolscontentvariedfrom0.17to4.17CAEmg/L(0.004 to0.16%)ofthetotalphenoliccontentofdifferentOPWsamples. HPLC-MSanalysisofoliveprocessingwastewaters HPLC-MSanalysiswasperformedtodetermine,compare,identifyandquantifythephenolic compoundsinOPWsamples(Fig2andTable4).Compoundsfromthreemainphenolic groupswereidentified,simplephenols(hydroxytyrosolandtyrosol),phenolicacids(p-couma- ricacid,ferulicacidanditsderivative)andsecoiridoids(oleuropein). ThetotalphenolicconcentrationasrevealedbytheHPLC-MSquantificationisnotcorre- spondingtothedepictedspectrophotometricestimationinTable3.Previousstudieshigh- lightedthatthedisadvantageoftheFolin-Ciocalteucolorimetricmethodisthatcomereducing agentsmaybepresentintheextractcaninterfereintheanalysisandconsequentlyoverestimate thetotalphenoliccontentoftheextract[44].Fromthecurrentstudy,hydroxytyrosoland PLOSONE|https://doi.org/10.1371/journal.pone.0182622 September5,2017 10/16
Description: